

ААБОРАТОРИЯ ТE OPETUUELKOÏ OHBMKY

SPIN-ORBIT INTERACTION

IN THE DEUTERON STRIPPING REACTION ON DEFORMED NUCLEI

1969

H.Schulz*, H.J.Wiebicke*

SPIN-ORBIT INTERACTION
 IN THE DEUTERON STRIPPING REACTION ON DEFORMED NUCLEI

ERE腊OTEMA

[^0]
I. Introduction

By neglecting the spin-orbit interaction the deuteron stripping reaction on deformed nuclei is treated in ref. $/ 1 /$ and numerical results are given in ref. $/ 2 /$. However, from stripping reactions on spherical nuclei, it is well known that the agreement of the experimental data with the theoretical predictions could be improved taking into account the spin-orbit interaction ${ }^{1 / 3 /}$. A corresponding treatment for deformed nuclei is carried out in this paper. At present numerical results are not obtained.
2. The Differential Cross Section and the Polarization

In this section the expressions for the differential cross section and the polarization of the emergent protons including spin-orbit interaction in both the initial and final channels are obtained.

If a zero range force is taken for the neutron-proton interaction the amplitude of the $A(d, p) B$ reaction in terms of the DWBA is $\mathrm{T}_{M_{A^{M}}^{M_{B}}}^{\Sigma_{\dot{p}}^{\prime} \Sigma_{p}^{\prime}}=\left\langle\Psi_{\vec{k}_{p}}^{(-)}\left(\vec{r}, \theta_{1}, s_{p}, \Sigma_{p}^{\prime}\right) \Phi_{M_{B} K_{B}}^{J_{B}}\left(\theta_{1}, \vec{r}_{n}\right) \mid \Phi_{M_{A} K_{A}}^{J_{A}}\left(\theta_{1}\right) \Psi_{\vec{k}_{d}}^{(+)}\left(\vec{r}, \theta_{1}, s_{d}, \Sigma_{d}\right)\right\rangle$.

Here the wave functions in both initial and final channels are represented in the adiabatic approximation that means like a product of the wave functions of the interior and relative motions. The adiabatic approximation $/ 4 /$ can be used when the incident energy of the projectile is much higher than the excitation energies of the above rotational states and the excitation spectrum of the initial and final nuclei is closly that of an ideal rotational band. Therefore, we describe the initial and final nuclei as

$$
\begin{equation*}
\Phi_{M_{A} K_{A}}^{J_{A}}\left(\theta_{1}\right)=\mathscr{T}_{M_{A} K_{A}}^{J_{A}}\left(\theta_{1}\right) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi_{M_{B} K_{B}}^{J_{B}^{*}}\left(\theta_{1}, r_{n}\right)=\mathscr{I}_{M_{B} K_{B}}^{J_{B}^{*}}\left(\theta_{i}\right) \phi_{\Omega}^{*}\left(\vec{r}_{n}^{*}\right), \tag{3}
\end{equation*}
$$

respectively. Here is

$$
\begin{equation*}
\mathfrak{T}_{\mathrm{MK}}^{\mathrm{J}}={\sqrt{\frac{2 \mathrm{~J}+1}{8 \pi^{2}}} \mathrm{D}_{\mathrm{MK}}^{\mathrm{J}}, ~}_{\text {. }} \tag{4}
\end{equation*}
$$

the wave function of the symmetric top and describes the rotational levels of the nucleus with the angular momentum J and its projections on the nuclear symmetric and the laboratory axis, with the quantum numbers K and M, respectively. θ_{i} stands for the Euler angles between the body-fixed and space-fixed coordinates and
$\phi_{\Omega}^{*}\left(\vec{r}_{n}\right)=\sum_{n} \sum_{\nu_{n} \Sigma_{n}} C_{n}^{\Omega} \nu_{n} R_{n}(r)\left(\ell_{n} s_{n} \Omega-\Sigma_{n} \Sigma_{n} \mid j_{n} \Omega\right) Y_{\ell_{n}}^{*} \Omega_{-} \Sigma_{n}^{(\omega)} \chi_{s_{n}^{*}}^{*} \Sigma_{n}$
is the wave function of the captures neutron in the deformed nucleus $/ 5 /$, at which the angles ω are referred to the nuclear symmetric axis $\left(\nu_{i} \equiv \ell_{i} j_{i}\right)$. The whole interaction to which an incident particle is subject is described by an optical model potential $\mathrm{V}(\mathrm{r}, \theta, \phi)$. This potential is usually complex and includes the
spin-orbit interaction and, if the incident particle is charged, the Coulomb interaction too. As to the radial dependence of the potential we assume that of the Saxon-Woods form. If the nucleus is axially deformed we can expand the potential in powers of $\sum_{\lambda} \beta_{\lambda} Y_{\lambda \cdot 0}$ and obtain

$$
\begin{equation*}
\mathrm{V}(\mathrm{r}, \theta, \phi)=\mathrm{u}_{0}(\mathrm{r})+\sum_{\lambda} \mathrm{u}_{\lambda}(\mathrm{r}) \mathrm{Y}_{\lambda 0}(\theta) \tag{6}
\end{equation*}
$$

The appropriate partial wave expansion for a particle moving in such a potential is

with

$$
\begin{equation*}
\mathcal{Y}_{1 \ell_{s} \mu}(\omega)=\sum_{\Sigma}(\ell s \mu-\Sigma \Sigma \mid j \mu) Y_{\ell \mu-\Sigma}(\omega)^{X}{ }_{s \Sigma} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{\nu \nu}^{\mu},(r)=4 \pi i^{\ell} e^{1 \sigma_{\ell}} \frac{\phi_{\nu \nu^{\prime}}^{\mu}(r)}{2 k r} \tag{9}
\end{equation*}
$$

and $\Psi_{\vec{k}}^{(+)}$is essentially the same as used in ref. $/ 4 /$. The radial functions $\phi_{\nu \nu^{\prime}}^{\mu}(r) \quad$ satisfy the following coupled channel equations $/ 4,6 /(\hat{\ell} \equiv \sqrt{2 \ell+1})$

$$
\begin{gathered}
{\left[\frac{d^{2}}{d r^{2}}-\frac{\ell(\ell+1)}{r^{2}}-u_{0}(r)+k^{2}\right] \phi_{\nu \nu}^{\mu}(r)=\sum_{\lambda \geq 2, \nu_{1}} u_{\lambda}(r) *} \\
* \frac{\hat{\ell}_{1} \hat{\ell}_{1} \hat{j}}{2 \lambda+1}(-1)^{s+\mu}\left(\ell \ell_{1} 00 \mid \lambda 0\right)\left(j j_{1}-\mu \mu \mid \lambda 0\right) * \\
* W\left(j_{1} j_{1} \ell ; \lambda s\right) \phi_{\nu}^{\mu} \nu_{2}(r)
\end{gathered}
$$

with the appropriate asymptotic

$$
\begin{equation*}
\sim \quad \phi_{\nu \nu}^{\mu} \approx\left(\mathrm{F}_{\ell}+\mathrm{i} \mathrm{G}_{\ell}\right) \delta_{\nu \nu}+\left(\mathrm{F}_{\ell}-\mathrm{i} \mathrm{G}_{\ell}\right) \mathrm{S}_{\nu \nu}^{\mu}, \tag{11}
\end{equation*}
$$

where $\mathrm{S}_{\nu \nu}^{\mu}$, are the elements of the scattering matrix. The transition amplitude can now be written as

$$
T_{M_{A^{M}}}^{\Sigma_{\dot{d}}^{\prime} \Sigma_{\dot{\prime}}^{\prime}}=\frac{\hat{\mathrm{J}}_{A} \hat{\mathrm{~J}}_{B}}{\sqrt{4 \pi}} \sum_{J} \frac{(-1)^{K_{A}-M_{A}}}{2 J+1}\left(J_{A} J_{B},-M_{A} M_{B} \mid J M\right)\left(J_{A} J_{B}^{\prime}-K_{A} K_{B} \mid J \Omega\right)^{*}
$$

$$
\begin{align*}
& * \sum_{n \nu_{n} \Sigma_{n}} C_{n}^{\Omega} \sum_{\nu_{d}}^{\Omega} \sum_{\nu_{d}^{\prime} \mu_{d} \mu_{d}^{\prime} \Sigma}(-1)^{s} \frac{{ }_{d}-\mu_{p}^{\prime} \hat{\ell}_{d} \hat{s}_{d}}{\hat{\ell}_{n} \hat{s}_{n}} \hat{\ell}_{p}\left(\ell_{d} \ell_{p} 00 \mid \ell_{n} 0\right) * \\
& \nu_{\mathrm{p}} \nu_{\mathrm{p}}^{\prime} \mu_{\mathrm{p}} \mu_{\mathrm{p}}^{\prime} \Sigma_{\mathrm{p}} \\
& *\left(\ell_{d}^{\prime} s_{d} \mu_{d}^{\prime}-\Sigma_{d}^{\prime} \Sigma_{d}^{\prime} \mid j_{d}^{\prime} \mu_{d}^{\prime}\right)\left(\ell_{p}^{\prime} s_{p} \mu_{p}^{\prime}-\Sigma_{p}^{\prime} \Sigma_{p}^{\prime} \mid j_{p}^{\prime} \mu_{p}^{\prime}\right)_{*} \\
& *\left(\mathrm{j}_{\mathrm{d}}^{\prime} \mathrm{j}_{\mathrm{p}}^{\prime} \mu_{\mathrm{d}}^{\prime},-\mu_{\mathrm{p}}^{\prime} \mid \mathrm{J} \mathrm{M}\right)\left(\mathrm{j}_{\mathrm{d}}^{\prime} \mathrm{j}_{\mathrm{p}}^{\prime} \mu_{\mathrm{d}},-\mu_{\mathrm{p}} \mid \mathrm{J} \Omega\right) * \tag{12}\\
& *\left(\ell_{d} s_{d} \mu_{d}-\Sigma_{d} \Sigma_{d} \mid j_{d} \mu_{d}\right)\left(\ell_{p} s_{p} \mu_{p}-\Sigma_{p} \Sigma_{p} \mid j_{p} \mu_{p}\right) * \\
& *\left(\ell_{d} \ell_{p} \mu_{d}-\Sigma_{d},-\mu_{p}+\Sigma_{p} \mid \ell_{n} \Omega-\Sigma_{n}\right)\left(s_{d} s_{p} \Sigma_{d}-\Sigma_{p} \mid s_{n} \Sigma_{n}\right) * \\
& *\left(l_{n} s_{n} \Omega-\Sigma_{n} \Sigma_{n} \mid j_{n} \Omega\right) I_{R} Y_{\mathcal{R}_{d}^{\prime} \mu_{d}^{\prime}}-\Sigma \cdot\left(\hat{\mathrm{k}}_{\mathrm{d}}\right) Y_{\mathcal{P}_{p}^{\prime} \mu_{p}^{\prime}-\Sigma_{p}}\left(\hat{\mathrm{k}}_{\mathrm{p}}\right)
\end{align*}
$$

in which the subscripts \mathbf{p} and d stand for proton and deuteron, respectively, and

$$
\begin{equation*}
I_{R}=\frac{\left(2_{\pi}\right)^{2}}{k_{\mathrm{p}} \mathrm{k}_{\mathrm{d}}} \mathrm{i}^{\ell_{\mathrm{d}}^{\prime}-\ell_{\mathrm{p}}^{\prime}} \mathrm{e}^{1\left(\sigma_{\ell_{d}^{\prime}}+\sigma_{\ell_{\mathrm{p}}^{\prime}}^{\prime} \iint_{\mathrm{dr}} \phi_{\nu_{\mathrm{p}} \nu_{\mathrm{p}}^{\prime}}^{\mu_{\mathrm{p}}}(r) \mathrm{R}_{\mathrm{n} \nu_{\mathrm{n}}}(\mathrm{r}) \dddot{\phi}_{\nu_{\mathrm{d}} \nu_{\mathrm{d}}^{\prime}(r)}^{\mu_{d}}\right) .} \tag{13}
\end{equation*}
$$

is the overlap integral of the radial functions of the relative motion of the proton and deuteron with the bound state radial wave function. After some standard Racah algebra/7/ eq. (12) becomes

$$
\begin{aligned}
& T_{M_{A} M_{B}}^{\Sigma_{B}^{\prime} \Sigma_{P}^{\prime}}=\frac{\hat{J}_{A} \hat{J}_{B}}{\sqrt{4 \pi}} \sum_{J} \frac{(-1)^{K_{A}-M_{A}}}{2 J+1}\left(J_{A} J_{B},-M_{A} M_{B} J M\right)\left(J_{A} J_{B},-K_{A} K_{B} \mid J \Omega\right) *
\end{aligned}
$$

$$
\begin{align*}
& \nu_{p} \nu_{p}^{\prime} \mu_{p} \mu_{p}^{\prime} \\
& *\left(\ell_{d} \ell_{p} 00 \mid \ell_{n} 0\right)\left(\ell_{d}^{\prime} s_{d}^{\prime} \mu_{d}^{\prime}-\Sigma_{d}^{\prime} \Sigma_{d}^{\prime} \mid j_{d}^{\prime} \mu_{d}^{\prime}\right)\left(\ell_{p}^{\prime} s_{p},-\mu_{p}^{\prime}+\Sigma_{p}^{\prime}, \Sigma_{p}^{\prime} \mid j_{p}^{\prime},-\mu_{p}^{\prime}\right) * \tag{14}
\end{align*}
$$

* $\left(\mathrm{j}_{\mathrm{d}}^{\prime} \mathrm{j}_{\mathrm{p}}^{\prime} \mu_{\mathrm{d}}^{\prime},-\mu_{\mathrm{p}}^{\prime} \mid \operatorname{JM}\left(\mathrm{j}_{\mathrm{d}}^{\prime} \mathrm{j}_{\mathrm{p}}^{\prime} \mu_{\mathrm{d}^{\prime}-\mu_{\mathrm{p}}} \mid \mathrm{J} \Omega\right) *\right.$
$*\left(j_{d} j_{p} \mu_{d}-\mu_{p} \mid j_{n} \Omega\right) X\left(\ell_{d} s_{d} j_{d} ; \ell_{p} s_{p} j_{p} ; \ell_{n} s_{n} j_{n}\right) *$
* $I_{R} Y_{\ell_{d}^{\prime} \mu_{d}^{\prime}}^{*}-\Sigma_{d}^{\prime}\left(\hat{k}_{d}\right) Y_{\ell_{p}^{\prime}} \mu_{p}^{\prime}-\Sigma_{p}\left(\hat{k}_{p}\right)$.

The angular momentum transfer J is given by $\vec{J}=\vec{J}_{A^{+}} \vec{J}_{B}$ and its projection Ω on the nuclear symmetric axis by $\Omega=K_{A}-K_{B} \cdot \cdot$ It should be noted that in general the angular momentum transfer J does not coincide with the nonconserved momentum j_{n} of the neutron captured on the Nilsson orbit ($\overrightarrow{\mathrm{j}}_{\mathrm{n}}=\vec{\ell}_{\mathrm{n}}+\overrightarrow{\mathrm{s}}_{\mathrm{n}}$).

For further investigations it. is convenient to define the amplitude $\bar{T}_{\mathrm{T}}^{\mathrm{J}} \Sigma_{\mathrm{p}}^{\prime}$ by means of

$$
\begin{equation*}
T_{M_{A} M_{B}}^{\Sigma_{d}^{\prime} \Sigma_{j}^{\prime}} \sum_{J}(-1)^{K_{A}-K_{A}} \cdot\left(J_{A} J_{B},-M_{A} M_{B} \mid J M\right)\left(J_{A} J_{B},-K_{A} K_{B} \mid J \Omega\right) \bar{T}{ }_{J}^{\Sigma_{d}^{\prime} \Sigma^{\prime}} \tag{15}
\end{equation*}
$$

which does not depend on the projections $M_{A}, M_{B}, K_{A}, K_{B}$. The resultant expression for the differential cross section and the polarization are related to the stripping amplitude by

$$
\begin{equation*}
\sigma(\theta)=\mathbf{c} \sum_{M_{A^{M}} \Sigma_{B}^{\prime} \mathcal{S}_{p}}\left|T_{M_{A}}^{\Sigma_{d}^{\prime} \Sigma_{p}^{\prime}}\right|^{2}=c \sum_{J}\left(J_{A} J_{B}-K_{A} K_{B} \mid J \Omega\right)^{2} \sum_{\Sigma_{d}^{\prime} \Sigma_{p}^{\prime}} \mid \bar{T}_{J}^{\left.\Sigma_{d}^{\prime} \Sigma_{p}^{\prime}\right|^{2}} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
P=\frac{\mathrm{c} \sum_{\mathbf{J}}\left(J_{A} J_{B}-K_{A} K_{B} \mid J \Omega\right)^{2} \sum_{\Sigma_{d}^{\prime}}\left[\left\lvert\, \mathrm{T}_{\mathrm{d}}^{\left.\left.\Sigma_{d}^{\prime} \frac{1}{2}\right|^{2}-\left\lvert\, \mathrm{T}_{\mathrm{d}}^{-\Sigma_{\dot{d}}-\left.\frac{1}{2}\right|^{2}}\right.\right]}\right.\right.}{\sigma(\theta)}, \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
C=\left[\left(2 J_{A}+1\right)\left(2 s_{d}+1\right)\right]^{-1} \frac{\bar{\mu}_{d} \bar{\mu}_{\mathrm{p}}}{\left(2 \pi \mathrm{~h}^{2}\right)^{2}} \frac{\mathrm{k}_{\mathrm{p}}}{\mathrm{k}_{\mathrm{d}}} A^{2} \tag{18}
\end{equation*}
$$

with the reduced masses $\bar{\mu}_{d}$ and $\bar{\mu}_{p}$ and the strength A of the zero range force $/{ }^{1}{ }^{\prime}$.

Now we are going over to the special case when the spin-orbit interaction in the optical potential for the deuteron and proton is omitted $/ 1,2 /$. For this reason we write once more the wave function (7) for the initial channel:

$$
\begin{equation*}
\Psi_{\vec{k}}^{(+)}=\sum_{\nu \nu^{\prime} \mu \mu^{\prime} \Sigma} R_{\ell \ell^{\prime}}^{\mu} Y_{\ell^{\prime} \mu^{\prime} \Sigma^{\prime}}^{*}(\hat{\mathrm{k}}) \mathrm{D}_{\mu^{\prime} \mu}^{\prime^{\prime}}(\theta)\left(\ell^{\prime} \mathrm{s} \mu^{\prime} \Sigma \Sigma \Sigma^{\prime} \mathrm{j}^{\prime} \mu,(\ell \mathrm{s} \mu-\Sigma \Sigma \mid \mathrm{j} \mu) \mathrm{Y}_{\ell \mu-\Sigma}(\omega) \chi_{\mathrm{s}} \Sigma^{(1}\right. \tag{19}
\end{equation*}
$$

and by means of

$$
]_{\mu^{\prime} \mu}^{\prime^{\prime}}\left(\theta_{1}\right)=\sum_{\Sigma_{1} \Sigma_{2}}\left(\mathcal{R}^{\prime} s \mu^{\prime}-\Sigma_{1} \Sigma_{1} \mid j^{\prime} \mu\right)\left(\ell^{\prime} s \mu-\Sigma_{2} \Sigma_{2} \mid j^{\prime} \mu\right) D_{\mu^{\prime}-\Sigma_{1} \mu-\Sigma_{2}}^{R^{\prime}}\left(\theta_{1}\right) D_{\Sigma_{1} \Sigma_{2}}^{s}\left(\theta_{1}\right)
$$

may be derived

$$
\begin{align*}
& \Sigma \Sigma_{1} \Sigma_{2} \tag{21}
\end{align*}
$$

We note that this wave function does not agree with that used in $/ 1 /$, because we have proceeded from the wave function (7) represented by a superposition of different spin states. With regard to this we must set the primes in the last Clebsch-Gordon coefficient. Performing the sums over j^{\prime} and j^{\prime} we obtain the resultant expression for the wave function ($\mathrm{m} \equiv \mu-\Sigma$)
which is now in agreement with that used in ref. $/ 1 /$ and with the common practice. With respect to that which was mentioned above and using

$$
\begin{align*}
& \left(\ell_{1} s_{1} m_{1} \Sigma_{1} \mid j_{1} \mu_{1}\right)\left(\ell_{2} s_{2} m_{2} \Sigma_{2} \mid \dot{j}_{2} \mu_{2}\right)\left(j_{1} j_{2} \mu_{1} \mu_{2} \mid J M\right)=\sum_{L S} \ddot{L S}_{1}^{n} \ddot{j}_{1} \ddot{j}_{2} * \\
& *\left(\ell_{2} \ell_{2} m_{3} m_{2} \mid L_{m}\right)\left(s_{1} s_{2} \Sigma_{1} \Sigma_{2} \mid S \Sigma\right)\left(L S_{m} \Sigma \mid J M\right) X\left(\ell_{1} s_{1} j_{j} \ell_{2} s_{2} j_{2} ; L S J\right) \tag{24}
\end{align*}
$$

and the orthogonality relation for the X-coefficients we obtain from (12) the same expression for the cross section

$$
*\left(s_{d} s_{p} \Sigma_{d}^{\prime}-\sum_{p} \cdot \mid s_{n} \Sigma_{n}\right)\left(\ell_{n} s_{n} \Omega_{-} \sum_{n} \sum_{n} \mid j_{n} \Omega\right)\left(\ell_{d}^{\prime} \ell_{p}^{\prime} m_{d}^{\prime}-m_{p}^{\prime} \mid L M-\Sigma_{n}\right)\left(\ell_{d}^{\prime} \ell_{p}^{\prime} m_{d},-m_{p} \mid L \Omega_{-} \Sigma_{n}\right) *
$$

$$
\begin{equation*}
\left(\operatorname{Ls}_{n} M_{-} \Sigma_{n} \Sigma_{n} \mid J M\right)\left(L s \Omega-\Sigma_{n} \Sigma_{n} \mid J \Omega\right) Y_{\ell_{d}^{\prime} m_{d}^{\prime}}^{}\left(\hat{k}_{d}\right) Y_{\ell_{p}^{\prime} m_{p}^{\prime}}\left(\hat{k}_{p}\right) I_{R}(\underbrace{\ell_{d} m_{d}}_{\ell_{p} \ell_{p}^{\prime} m_{p}}) \tag{25}
\end{equation*}
$$ given in ref. $1 /$.

The well-known differential cross section derived by Satchler $/ 8 /$ follows from eq. (25) if central field distorted waves are used $\left(\ell_{p}=\ell_{p}\right.$, , $\ell_{d}=\ell_{d}^{\prime} \quad, R_{\ell_{p} \ell_{p}^{\prime}}^{m_{p}}=R_{\ell_{p}}, R_{\ell_{d} \ell \ell_{d}}^{m_{d}}=R_{\ell_{d}} \quad$). In this case the cross section can be written using the equations

$$
\begin{align*}
& \sum_{m_{p} m_{d}}\left(\ell_{d}^{\prime} \ell_{p}^{\prime} m_{d},-m_{p} \mid \ell_{n} \Omega-\Sigma_{n}\right)\left(\ell_{d}^{\prime} \ell_{p}^{\prime} m_{d},-m_{p} \mid L \Omega-\Sigma_{n}\right)=\delta_{\ell_{n} L} \\
& \sum_{\sum_{n}}\left(\ell_{n} s_{n} \Omega-\Sigma_{n} \Sigma_{n} \mid j_{n} \Omega\right)\left(\ell_{n} s_{n} \Omega-\sum_{n} \Sigma_{n} \mid J \Omega\right)=\delta_{I_{n} j} \tag{25}
\end{align*}
$$

$$
\begin{aligned}
& \sigma(\theta)=\left[\left(2 J_{A}+1\right)(2{\underset{S}{d}}+1)\right]_{M_{A} M_{B} \Sigma_{d} \Sigma_{p}} \mid T_{M_{A} M_{B}}^{\Sigma_{d}^{\prime} \Sigma_{C^{\prime}}^{\prime}} \\
& T_{M_{A} M_{B}}^{\Sigma_{d}^{\prime} \Sigma_{q}^{\prime \prime}}=\frac{\hat{J}_{A} \tilde{J}_{B}}{\sqrt{4 \pi}} \sum_{L J} \frac{(-1)^{K_{A} M_{A}}}{2 J+1}\left(J_{A} \cdot J_{B},-K_{A} K_{B} \mid J \Omega\right)\left(J_{A} J_{B},-M_{A} M_{B} J M\right) *
\end{aligned}
$$

$$
\begin{aligned}
& \ell_{P} \ell_{p}{ }^{\prime} m_{p}{ }^{m}{ }_{P}
\end{aligned}
$$

$$
\begin{aligned}
& \sigma(\theta)=\left[\left(2 J_{A^{\prime}}+1\right)\left(2 s_{d}+1\right)\right]^{-1} \sum_{n j_{n} \ell_{n} \Sigma_{n}}\left(e_{n \nu_{n}^{\prime}}^{\Omega}\right)^{2}\left(J_{A} J_{B}-K_{A}^{1} K_{B}| |_{n} \Omega\right)^{2} * \\
& * \left\lvert\, \frac{\hat{J}_{A} \hat{J}_{B}}{\sqrt{4 \pi}} \sum_{\ell_{d}^{\prime} m_{d}^{\prime} \ell_{p}^{\prime} m_{p}^{\prime}}(-1)^{m_{p}^{\prime}} \frac{\hat{\ell}_{d} \hat{s}_{d}}{\hat{\ell}_{n} \hat{s}_{n}} \frac{\ddot{\ell}_{p}^{\prime}}{\hat{j}_{n}^{2}}\left(\ell_{d}^{\prime} \ell_{p}^{\prime} 00 \mid \ell_{n} 0\right) *\right. \\
& *\left(\ell_{d}^{\prime} \ell_{p}^{\prime} m_{d}^{\prime},-m_{p}^{\prime} \mid \ell_{n} m_{d}^{\prime}-m_{p}^{\prime}\right)\left(\ell_{n} s_{n} m_{d}^{\prime}-m m_{p} \sum_{n} \mid j_{n} m_{d}^{\prime}-m_{p}^{\prime}+\Sigma_{n}\right) * \\
& \left.\quad * Y_{\ell_{d}^{\prime} m}^{*}\left(\hat{k}_{d}\right) Y_{\ell_{p}^{\prime} m}^{\prime}\left(\hat{k}_{p}\right) I_{R}\left(\ell_{p}^{\prime} \ell_{d}^{\prime}\right)\right|^{2}
\end{aligned}
$$

In this expression for the cross section the angular momentum transfer J coincides with that of the Nilsson orbit j_{n}.

References

1. V.K.Lukyanov, I. ̌̌.Petkov. Yadernaya Fizika, 6, 988 (1967).
2. H.Schulz, H.J.Wiebicke. Phys. Lett., 29, 18 (1969).
3. D. Robson. Nucl. Phys., 22, 47 (1961).
4. S.J.Drosdov. Yadernaya Fizika, 2, 810 (1965).
5. S.G.Nilsson. Mat. Fys. Medd. Dan. Vid. Selsk., 29, No 16 (1955).
6. T.Tamura. Rev. of Mod. Phys., 37, 679 (1965).
7. Ф.П. Юдись, А.А. Бандзайтис. Теория момента количества движения в квентовой механике, Вильнюс, 1965.
8. G.R.Satchler. Ann. of Phys., 3, 275 (1958).
9. N_Austern. In Fast Neutron Physics, edited by J.B.Marion and J.L.Fowler (Interscience Publ. Inc. New York (1962).

> Received by Publishing Department on August 27, 1969.

[^0]: - On leave from Central Institute of Nuclear Research, Rossendorf, GDR.

