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1~, Introduction 

We consider the response of a superconductor to the external 

fields¢ , A (electromagnetic potential), ~ ( superconducting order 

paramete~r treated as an external field) and ~+ ih arbitrary order, 

In calculating this response it is convenient first to solve an unphy

sical problem in an imaginary time interval (for which the boundary 

conditions for the Green func::tions are known)· and then to go over 

to the physical problem by analytical continuation, There are diffe

rent vva.ys to do this,, 

Following K~danoff and Baym/1/ we solve in the present paper 

the equations: of motion for the Green functions in the time interval 

[t
0 

,t 
0 

-il3] ( t
0 

real, 13= 1/T )x/, The external -fi~lc:S are conside-

red to be analytical functions in the domain 0 ~ Im t ~ - 13 and 
• 

to satisfy the condition 

fim ¢ ( t l = 0 (1) 
Ret -+-oo 

x/Throughout the paper we use h = c = k =I. 
· Boltzmann 
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(analogous for the other fields) describing the absence of the fields 

at very early times. The resulting ~orrelation functions, for example F+ > (12) = 
= < .;,~+ (1 l 1/J; (2) > , are then analytically continued to real times. The 

physical problem is determined by correlation functions, for example 

r + > (12) x/ ," which are defined for real times and which describe 

the response of the superconductor to the external fields turned on 

at an early tim~. ·In / 1/ it is proven that the two types of correlation 

functions (for example F +> and f +> ) are both analytical functions and 

coincide in the limit t 
0 

_, -oo • 

Recently, Gorkov and Eliashber~/2/ treated the· same problem in 

another way. They considered the Green function~ and the external 

fields in the time interval [0,- i,B] with the usual boundary conditions 

(for example for the potential </>(tll,=o =</>(tllt=-t,B ). The coeffi

cients Be£! (col •••• (<) e ) (wher~ CUB = i21Tns /,8 ) describing the re!t>

ponse of the correlation functions to the external fip,lds, for example 

< 1/1 + (1 ) o/1' (1 ) > 
.J, (<) 

( 1) + 
B (col ll. w + ••• 

+~ . B(3)(w ,w ,w lll.+ 
I 2 3 W 

w
1 

+W
2 

+W
3 

=W 1 

ll. 
(<)2 

ll.+ 
(<) 

3 

(2) 

+ •••• 

are then (in the upper half-plane) analytically continued to real frequ

encies. The corresponding coefficients b c f> , which des~ribe the phy

sical response and which are first defined for real frequencies, are 

also analytical .functions in the upper .half-plane because of the cau

sality conditiori. The method of Gorkov and Eliashberg/
2

/ is based 

on the probable, but not proven identit-y of the two types of analyti

cal functions xx/ 

x/ . 
· ·For the definition see equation (16). 

I 

xx/ We remark in this connecti~n, that in each order the result is 
a certain sum of terms, where each term is an analytical function 
in the upper half-plane. 
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The Kadanoff-Baym method of analytical continuation i 

time representation is not more complicated than the. analyti 

tinuation in the frequency representation and has · the ad van 

the latter, that for it exists an appropriate proof of the ider 
--- . 

two types of analytical functions resulting from the physical and 

physical problems. Because of the differences between the two ~ 

seemed easier to compare the results than to discuss the < 

between these methods. The results of the present paper jL 

treatment of Gorkov and Eliashberg/
2

/. The general conside 

are also applicable to other similar problems. 

2. Basic Formulae 

The superconductor is described by the Hamiltonian E 

where 

H 
0 

= f d3 r 1/1 + h Ul 1/J 
a a 

HI =f d 3 r{p<f><1 tl-j A(; t) + 

,(,+,+A(_, + 
+ '~'1' ljlj. Ll r t) + rfrj. rfr.,. ll. (r t)} , 

- 2 
• --)> v -+ 4 

h ( r ) =- --- fl + ~ u ( r -a ) • 
2m : 

11 is the chemical potential, u\1-i. l is the potential of an · ir 
... ... 

at r =a ,.p is the charge density and J the current dt-t 

self-consistency it is necessary that for all times ll. and ll. 

with the averages of lg I rfrt rfr.,_ and I g I .Pt rfr/ ., respective! 

the coupling constant). 

We consider the Green functions 

G a ,B (12 ) ,;, o a,B G ( 12 ) 
.L <TSrpa(l) rp~(2)> 

< TS > 
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Lbsence of the fields 

>ns, for example F+ > (12} .. 

to real times. The 

tnctions, for example 

:md which describe 

rna! fields turned on 

·o types of correlation 

:tlytical functions and 

the· same problem in 

:ms and the external 

! boundary conditions 

). The coeffi-

describing the re!l>

:tl fidds, for example 

(2) 

+ •••• 

::mtinued to real frequ
v 

1ich describe the phy-

real frequencies, are 

) because of the cau-
• /21 

:tshberg is based 

two types of analyti-

order the result is 
analytical function 

• 
1 
I 
I 

The Kadanoff-Baym methxl of analytical continuation in the 

time representation is not l1llore complicated than the. analytical con

tinuation in the frequency representation and has ·the advantage over 

the latter, f:!:1at for it exists an appropriate proof of the identity of the 

two types of analytical functions resulting .from the physical and the un

physical problems. Because of the differences between the two methods it 

seemed easier to compare the results than to discuss the connection. 

between these methods, The results of the present paper justify the 

treatment of Gorkov and Eliashberg/
2

/. The general considerations 

are also applicable to other similar problems. 

2. Basic Formulae 

The superconductor is described by the Hamiltonian H =II 0 +II 1., 

where 

(3) 

(4) 

(5) 

!L is the chemical potential, u1("t-i. l is the potential of an · impurity 

at 
-> 

r =a ,.p is the charge density and l the current d&nsity. For 

self-consistency it is necessary that for all times !). and/).+ coincid~ 
with the averages of . I g I t/11 t/Jl- and I g I t/J,t t/1/ ·• respectively (. g is 

the coupling constant). 

We consider the Green functions 

< TS <{Ia (1}. <{! +~'~(2} > 
L ----~~--~~------

< TS > 
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F+ (12) 
a{3 

I F+ ( 12) = 
af3 

+ 
< TS 1/J: (1) 1/J {3 (2) > 

< TS> 

in the time interval [to , t 0 - i {3 ] , Here means < ••• > 

'v-r = 1 • '1'-J- = - 1 

(the other elements are zero), and S is given by 

•o- I f3 
S = exp I - i J dt 11

1 
( t )j. 

'o 

(7) 

-{3H -{3H0 
tr( ••• e ')/tre; 

(8) 

The time dependence of the operators is given in the interaction 

picture x/, 

The Green functions satisfy the equations of motion 

I i .£._ - h (-; ) -<I> (1) I G (12) + i ~ (I) F + (12) = 0 0- 2 ) • ' a., . ·' 

{i_2_+h(-; l+ <l>+ Oll F+(l2) -i~+(l)G (12) =0, 
a , I ., 

-..vith 

<l>Ol=e <f>Ol + ...i.L;\(1) 'V 
m 

+ ie ..., <I> (1) =e</> (I)-- A (I) V 
m 

(9) 

(10) 

(11) 

xl For example .;+ (tl =;lb· o/+(0) e -!Hot 

quantifies independent of time) + has 
mitean (or complex) conjugate 

, For real times (or for 
the u~ual meanfng of Her-

6 

! 

i" 
'! 

I 
I 
I. 

·!J' 
~ 

!I 
( 
I. 

(we use a gauge for which V A = 0 

A 
2 

), and the boundaty condition 

and neglect the term 

G02l\ =-G(l2l\ 
•,=•o •,=•o-1/3 

and analogous for F' + 

By help of the unperturbed Green 
I 

the equations of motion 

a ... <:;::.> 
i --- h ( r ) I G (12) = o (1 -2 ) 

at I + I 0 

functions 
<+ 

Go 

andthe boundary condition (12), we convert equatio~ (9) 

into integral equations: 

t () -1{3 
(-) (-) + 

G(l1 'l=G 
0 

(11 'l-i f G 0 (12) ~ (2) F (21') + 

'o 

t 0 -I f3 (-) 
+ f G (12) <l> (2) G (21 ' ) , 

'o 0 

F+(l1'l= 
•o-1/3 <+l 

•f G (12) ~+(2) G(21') -
'o 0 

t -if3 (+) + 0 j G 
0 

(12) <l> (2) F + (21' ) • 

'o . 

The integrals in these {and further) equations indicate spa 

momentum) and time integrations over all inte~nal variables 

Equations (14) and (15) can be iterated and lead to 

ing rules ·for the construction of the diagrams: One has tc 

rt 
... . ( ·-) . ..,+ 

the ve ex .... between two G0 funcbons, the vertex-.... 
' (+) • . . • A (-). (+) 
two Go funcbons, the vertex:--•u . betw-aen G 0 and G0 

+ ~ (~ 
vertex i ~ between G 0 · and G0 

In this way we can calculate the corresponding cor 
. +> > funcbons F , G +< < . th t• "trvai[ and F , G tn e tme tn e . t c 
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(7) 

: ••• > 
-{3H -{3H0 

tr( ••• e ')/tre; 

by 

(8) 

in the interaction 

of motion 

(9) 

(10) 

' (11) 

real times (or for 
:tl meaning of Her-

·ll 
ll 

(we use a gauge for which V A. = o 

A 2 
), and the boundary condition 

and neglect the term containing 

and analogous for F + 

By help of the unperturbed Green 
I 

the equations of motion 

a ... <~-> I i -- - h ( r l I G 
0 

02 l = 8 (1 -2 l 
at I + I 

(12) 

functions 
<+) 

G 
0 

, satisfying 

(13) 

andthe boundary condition (12), we convert equations (9) and (10) 

into integral equations: 

(-) t 0 -1{3 (-) 
G(ll 'l=G 

0 
(11 'l-i f G

0 
(12) !:1 (2) F + (21' l + 

to 

t 0-1{3 <-> 
+ f G 

0 
(12 l II> (2) G (21 ' l , 

to 

F+(l1'l= 

_ t 0-tG~+l(l2) II>+ (2) F+ (21'). 

to 

(14) 

(15) 

The integrals in these (and further) equations indicate space (or 

momentum) and time integrations over all inte~nal variables, 

Equations (14) and (15) ~an be iterated and lead to the follow

ing rules for the construction of the diagrams: One has to insert 

the vertex II> bet~een two G~->functions, the vertex -11> + between 
. <+> • . . (-) (+) 
two Go funchons, the vertec-t!:l . betw-aen G 0 and Go , and the 

+ (-t) (-) 
yertex i !:1 between G 0 ·and Go 

In this way we -can calculate ·the corresponding correlation 
+> > + < < "] functions F , G and F , G in the time interval [ t 0 , t 0 - i f3 
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1 ti f. t' f +> > d +< < d . 'b' h . The corre a on unc tons ,g an f , g escr1 1ng the p yst-

cal problem of the response of the ·superconductor to the external 

fields, for example 

+> - + ~ 
f (12) =<~ (l) :tf/(2) >. 

.J. ,. 
(:16) 

with 

~/(I) u+ m .p; mu<n. (:17) 

tl 

U (1)= T exp ( - i f d t H 
1 

( t) (:18) 

+> > 
( t 

1 
, t 

2 
real ), can be calculated from F < G < , by means of ana-

lytical continuation. 

3. Analytical Cor.~tinuation 

As already stated in the introduction the analytical continuation 

in the time representation is based on the following theorem of Ka

d~noff and Baym/:1/, valid for external fields which are analytical 

functions in the domain o ::_ Im t ~ ~- {3 and satisfy condition ( :1): 

(i) The cor<"~lal:ion functions F+> · .,G> and F+< ,G < are analytical 

functions of their time variables in the domains 

0 :::. Im ( t 
1 

- t 2 ) > - {3 for F +> > 
(:19a) ,G 

0 < Im ( t 
1 
-t 

2 
) < {3 for 

+< < 
F ,G (:19b) 

(ii) The correlation functions. 1+> ,g> and f+< ,g <are also analytical 

functions in the domains (:19a) and (:19b), respectively. In the limit 

t 
0

-> -oo the two types of analytical functions coincide, that means 

·I+>~ F +> ,... . ~ 
The iterated equations (:14) and (:15) lead to integrals of the 

type 

8 

•o-if3 + + ,.. 
In(II')= f G~->(l2)G ~>(23) .... G~->(n,II 

'o 

with 
+ 

<-> 
I

1
0I')=G

0 
(II'). 

(In considering the process of analytical continuation we omii 
' + 

vertices between the G~..:> ·). The corresponding correlation 

satisfy the recursion formulae 

> 
'1 < 

I Ol ') = f I> ( I2) G (21 ') + 
n+l n 0 

'o 

'1 
G > (21') 

•o-if3 
+ f I> (12) + J 1 < 02 l i:; > <2I' l 

' n 0 n 0 

'1 
., 

and analogous for I < 1 • In (2:1) and the following formulae 
n+ 

omitted the indices + from G 
0 

• The analytical continuation 

to real times leads to 

"" >< A 

I>< (II') = J I (12) G (2I ') + 
n+1 n 0 

oo R >< 
+ f I n (12) G 

0 
(2I '), 

..00 

where 

() (t -I) 
( 1 2 

-8(t -t 
2 1 

l (G~ (12)-G ~(12)) R,A 
G 

0 
(12) = 

R,A 
and analogous for I • With the help of the recursion formul< 

we get for the equal-time correlation functions the result 
:;, ""><A A A 

I ,; (II) = f ( G 
0 

(12) G 0 (2~) G 0 (34) ... G 0 ( n I) + 

R >< A A ' 
+ G 

0 
02) G 

0 
(23) G 0 (34). .. G 0 ( n 1) + 

9 



< describing the physi

ductor to the external 

(16) 

(17) 

(18) 

G >< , by means of ana-

he analytical continuation 

)llowing theorem of Ka

which are analytical 

nd satisfy condition: (1): 

d F+< ,G < are analytical 

ins 

~> > 
,G 

< ,G 

(19a) 

(19b) 

r+< ,g <are also analytical 

>pectively, In the limit 

coincide, that means 

1ad to integrals of the 

.) 

I • 

(20) 

with 

(In considering the process of analytical continuation we omit the 
. + 

vertices between the G~ ... , ·). The corresponding correlation functions 

satisfy the recursion formulae 

> 
tl 

I> ( 12) G < I (11 ') = f (21 'l + 
n+l n 0 

to 
(21) 

tl 
I> (12) G > (21' l 

t
0
-;f3 

I< 021 c >o <21'l + f 0 + f n 
t' tl 

I 

and analogous for I :+
1 

, In (21) and the following formulae "{e have 

omitted the indices + from G 
0 

, The analytical continuation of, (21) 

(22) 

where 

I (G ~ (12)- G ~ (12)) (23) 

n,A ( and analogous for I • With the help of the recursion formula 22) 

we get for the equal-time correlation functions the result 
00 >< A A A 

I~ (11) = f I G 0 (12) G 0 (2~) G 0 (34) ••• G 0 ( n ll + 
n 

(24) 
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:, 

I • 
I 

> 
+G~(l2) G:(23) G\(34) ••• G

0
< (nlll. 

where . all times are real. 

As example we consider the physical. response of I'J. + to the 

external fields, which is given by the analytical continuation to real 

times of 

+ +> 1 +> +< . 
L\ (l) ~ JgJ F (11) ~ yJgJ (F (11\+F (11)). (25) 

For a term A+ <nl of the n-th order we get from (24) {going over to 

the fr.equency representation) 

(n) 
+(n) 1 · dw' <h> , (n) 

I'J. =-JgJ Jdw
1 
-·····--8(w-w - ..• -w lx 

w 2 217 2a 

x{-th {3wl 
A A ~ A 

G
0 

(w
1
lf"',G

0 
(w

1
-w )..,,( (nl G

0
·(w 1 -w.l + 

2 "' 

{3(6JI-<U) R R R 
+ th --- G (w ·) f , G 0 ( w 1 -w' l. ... _I 'nl G (w -w ) + 

2 0 I w . w' 0 I 

R f3w {3<wi-<U') A 
+G

0 
(w l[th~- th ] f G (w -w'l ... 

I 2 2 w' 0 I 
f (n) G~(w 1-w l+ 

"' 
(26) 

R R {3(w -w ') {J(w -<U. '...w ~~ A A 
+ G 

0 
(w ) f , G (w -w 'l[th 1 -th 1 ]! G (w -w~w"l. .. f G (w -<U)+ 

1 W 0 I 2 2- W" 0 I cJn) 0 I 

+ G R (w )! G R {3(w ""6J'- (n-1~ 
o I w' o(wl-w'l ....... [th I .. -w 

2 

where we have use<;l 

10 

~(w-<U) A ll 
1-' 1 ]! G (w -w , 

- th - 2-- w<nl o 1 

> < {3w ' R A 
G 0 (w) + .G 0 (w l = th -- ( G ( w) - G 0 (w)), 

2 0 

The vertex functions f in (26) stand for _ ;I'J. ii'J. + .~ and-' 
(i) w ' (i) (i) 

accordance with the rules given at the end of section 2. 

It is possible, formally to sum up all. terms for I'J. +with tl 

of the retarded and advanced solutions. of the equations {all ti 

are real) 

+ a ... <-> 
{ i --- h (r ) - II> (l) I G (12) + 

at I I 

•i'J.(l)F (12) =80-2), 

i-a-+h<7) +ll>+(l)}F+ (12)-iL\+(l)G<->(12)=0, 
at 1 

and 

a + <+> + 
!;a--+h<r'1 >+~~> o> IG o2> -;I'J. mF o2> =80-2>. 

tl 

i-a--h(r' l-11> (l)j F (12) +i ~(l)G<+>(l2)=0. 
at 1 

I 

We get the final result 

. + 1 dw 1 f3w 1 +A 
I'J. w= -JgJ J -1-th --F 

{3<w -w) 

+ th ----1- F +R I + 
2 217 2 "' ·"' -<U I I 

2 w ,w -w 

1 dw
1 

dw
2 

<h>' . f3w {3 <w· -w') 
+ -I g I f --- -- [ th .::.::.'i - th 2 

] X 
2 217 217 217 2 2 

(+)R + (-)A +R +A 
x{iG i'J.,G, -iF i'J.,F, 

(i) (i) (i) w -w ,w -(U (.() (i) (i) (i) -((.) ,w -w 
I 2 2 I I 2 2 I 

(+)R + +A 
- G II> wf . , + 

wt llJ2 w 2-(j) ,cu 1-((.) 

F+R 

"'I"' 2 

II> G (-)A 

w' w -<o ~ ,ru -w 
2. I 

11 
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;ponse of 1'1 + to the 

1 continuation to real 

:n l l. (25) 

1 (24) (going over to 

) 
G R (w -w ) + 

0 I 

G A (w 
1
-w l + 

0 
(26) 

\ {Hw -<Ul A 

-- th--1 -]f G0 (w -wll, 
2 W(n) I 

', ___ 
':•, .' '~, ' : 

> < {3w ' R A 
G 

0 
(w) + G 

0 
(w) = th -- ( G ( w) - G 0 (w )). 

2 0 
(2'?) 

The vertex functions f 
w 

in (26) stand for _ il'! il'! + ,<ll and -<ll + in w • (I) (I) (I) 

accordance with the rules given at the end of section 2. · 

It is possible, formally to sum up + . ·-all. terms for 1'1 with the help 

of the retarded and advanced solutions of the equation:S (all times 

are real) 

a ~> I i --- h (r-+
1 

) - <ll (1) I G 02) + 
at 

1 

+ 
·1'1(1) F (12) = o 0-2), 

(28) 

and 

(29) 

i-a--h(t l-<ll (l)j F (12) +i ~(l)G<+>(l2)=0. 
at 1 

I 

We get the final result 

. + 1 dw 1 f3w 1 +A 
1'1 = -I g I I - I -th -- F 

w 2 2lT 2 · w
1
,w

1
-<U 

f3 (w -<U) 

+ th --1
- F +R I + 

2 w ,w -w 
I I 

l I I I dwl dw2 dw' [ f3w. f3 (ril2-w'l] x ' +- g - . __ -- th ___.. - th --~--
2 2lT 2lT 2lT 2 2 

(+)R + (-)A +R A 

xliGww i'!w, Gw-<U',w -<U -iF f'1, F + 
1 2 2· 1 w1w2 w w2-<.u',cu1-<t.l 

(30) 

(-)A 
<ll G I. 

cu' (.1)2.-<U ',(I)~ 

11 
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l 

l 
I, 
I 
! 

f' 

I· 
l 
[ 
! . 

I 
r 
I 

I 
I 

i 
i 

In (26) and (30) we nave not indicated the necessary integrations 

over. the coordinates or the momenta. 

The resUlts' (26) and (30) coincidex/ With the resUlts of. Gorkov. 

and. Eliashberg/2/and, theref~re, justify their treatment. 

I would like to thank Professor D.N.Zuba.rev for his interest 

in this work. 
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