ОБЪЕДИНЕННЫЙ ИНСТИТУТ яДЕРНЫХ НССЛЕПОВАНИЙ

Дубта.

ААБОРАТОРИЯ TEOPETИUELKOЙ ОМВИКИ

REACTIONS WITH TRANSFER OF k NUCLEONS AND NUCLEAR STRUCTURE

E4 - 43:1

1.Rotter *

REACTIONS WITH TRANSFER OF k NUCLEONS AND NUCLEAR STRUC'IURE

Submitted to Nucl. Prys.

[^0]

Abstract

Assuming a pure transfer mechanism, the structure factor determining the excitation of the final nucleus in reactions of the type $A+B \rightarrow(A-k)+(B+k)$ with $k=2,3,4$ is discussed in some details. Al: intermediate states of the group of the transferred particles are taken into account. The structure factor is written in a form analogou; to the structure factor of reactions with one-nucleon transfer. The theory determining the dynamical factor of reactions with one-nucleor transfer can therefore be applied also to reactions with transfer of a group of nucleons.

It is show, that there is no factorization of the spectroscopic factor of the rec ction into two factors one of which depends only on the properties of the nuclei A and A-k and the other depends only on the propertics of the nuclei B and $B+k$. From this, it follows in most cases ε. reduction of the number of terms determining the spectroscop.c factor of the reaction. The excitation spectra of the final nucleu; observed in different reactions with transfer of k nucleons on the same target nuclei will be different from one another, as a rule, and different from the specticum of the corresponding usual spectroscopic factors. Exception from this rule are discussed.

1. Introduction

In a preceding paper ${ }^{/ 1 /}$ (in the following designated as I) the mechanism of reactions with transfer of two particle; was discussed. The structure factor which determines the probability for excitation of a level of the final nucleus in reactions between ccmplex nuclei has been given there by taking into account all inttrmediate states which the transferred nucleons can form. Here, reactions with transfer of three or four nucleons of the type

$$
A+B \rightarrow(A-k)+(B+k)
$$

are considered in the approximation of a pure one-: step process

$(\mathbf{k}=2,3,4)$. As in paper I, all intermediate states of the group of the transferred nucleons are taken into account.

There is not yet a theory .describing both the structure properties and the dynamical properties of reactions induced by heavy ions in which transfer of several nucleons takes place. In this paper, the structure factors will be discussed in so ne details. They are written in a form analogous to the form of the structure factors of reactions with transfer of only one nucleon. To \S et the cross section of the reaction, one has to multiply the struisture factors $A_{N L}^{N^{\prime} L^{\prime}}$
by the dynami:al factors $\mathrm{B}_{\mathrm{NL}}^{\mathrm{N}} \mathrm{L}^{\prime}$ and to sum over all intermediate states. The ${ }^{B_{N L}} \mathbf{N L}^{\prime}$ show up like the dynamical factors in the theory of reactions with transfer of only one nucleon.

The struc ure factors are compared with the usual spectrosco pic factors for fucleon groups as deuterons, He^{3} or tritons, and
a -particles. Most reactions with transfer of a nucleon group will lead to an exciation of the final nucleus which is not proportional to the usual spectroscopic factor for the corresponding nucleon group. It is shc wn from which type of reactions one can get the usual spectrosc opic factors.

2. Formalisms

2.1. Transfer of a group of \mathbf{k} particles

It has be $e n$ shown in paper.I that the structure factor for reactions $A+B \rightarrow(A-k)+(B+k) \quad$ with transfer of a group of nucleons can the written in the form

$$
\begin{aligned}
& A_{N L}^{N^{\prime} L^{\prime}}=R 1 \cdot\left\{\binom{A}{k}\left(\begin{array}{c}
B+k \\
k
\end{array}\right\}^{1 / 2}\right.
\end{aligned}
$$

$$
\begin{align*}
& \left\langle x_{1} \mid x_{2} x_{k}\right\rangle\left\langle x_{4} \mid x_{8} x_{k}\right\rangle \tag{1}\\
& \left(\frac{t}{A-k}\right)^{N+L / 2}\left(\frac{B+k}{B}\right)^{N^{\prime}+L / 2} \quad K\left(n \ell, N L, L_{k}\right) K\left(n \ell, N^{\prime} L^{\prime}, L_{k}^{\prime}\right) .
\end{align*}
$$

Here, the indices $1,2,3,4$, correspond to the nuclei $A, A-k, B, B+k$. The factors $R H^{\prime}$ contain all uncertainties coming from the radius dependence of the structure factor. For the main discussion here, they will be n iglected ($\mathrm{H}=\mathrm{F}^{\prime}=1$). The ($\mathrm{T}_{\mathrm{i}} \mathrm{T}_{\mathrm{iz}} \mid \mathrm{T}_{\mathrm{j}} \mathrm{T}_{\mathrm{jz}}, \mathrm{T}_{\mathrm{k}} \mathrm{T}_{\mathrm{kz}}$) are Clebsch-fiordan coefficients. The oscillator quantum numbers of the group of the k transferred nucleons are the following: n, ℓ
the inner quantum numbers, N, L, the quantum number; of the centre-of-mass with respect to the nucleus $A-k$, and N^{\prime}, L ', the quantum numbers of the centre-of-mass with respect to the nicleus $B \quad L_{k}$ and L_{k}^{\prime}, are the orbital momenta of the group of the transferred nucleons with respect to the nucleus $A-k$, and B, r espectively.

The main factors which the structure factor $A_{1} \|_{L}^{\prime} L^{\prime}$ consists of are the overlap integrals $\left\langle\chi_{1}\right| \chi_{2} \chi_{k}>K\left(n \ell, N L, L_{k}\right) \quad$ on the one hand and the overlap integrals $\left\langle\chi_{4}\right| \chi_{3} \chi_{k}>K_{n}\left(n, N_{L}^{\prime}, L_{k}^{\prime}\right)$ on the other hand. The integral $\left\langle\chi_{1} \mid \chi_{2} \chi_{\mathbf{k}}\right\rangle$ is the overlap integral of the shell-model wave function of the nucleus A vith the shellmodel wave function of the nucleus $A-k$ and that of the k separated nucleons (fractional parentage coefficient). It taises into account the structure of the nuclei in the initial and final sta es. The integral $K\left(n l, N L, L_{k}\right) \quad$ is the overlap integral of the wave function of the k separated nucleons with the wave functior of the group of the k nucleons in the intermediate state. It takes nto account the formation of a nucleon group with the inner quartum numbers
n, ℓ and the relative quantum numbers N, L fron the k separated nucleons. The integral $K\left(n \ell, N^{\prime} L^{\prime}, L_{k}^{\prime}\right)$ is analc gous to $K\left({ }_{n} \ell, N L, L_{k}\right)$ and the integral $\left\langle\chi_{4} \mid \chi_{a} \chi_{k}\right\rangle$ to $\left\langle\chi_{1} \mid \chi_{2} \chi_{k}\right\rangle$.

The factors most important for the excitation of a level are the two fractional parentage coefficients $\left\langle\chi_{1} \mid \chi_{2} \chi_{k}\right\rangle$ and $<\chi_{4}\left|\chi_{a} \chi_{\mathbf{k}}\right\rangle$. The properties of these coefficients are well known.

The overlap integrals $K\left(n \ell, N L, L_{k}\right)$ and $1 .\left(n \ell, N^{\prime} L^{\prime}, L_{k}^{\prime}\right)$ contain the dependence on the quantum numbers N, L and N^{\prime}, L. The two integrals are not independent of each other. That means,

$$
\begin{equation*}
\left(\frac{A}{A-k}\right)^{N+L / 2}\left(\frac{B+k}{B}\right)^{N^{\prime}+L^{\prime} / 2} K\left(n \ell, N L, L_{k}\right) K\left(a \ell, N^{\prime} L^{\prime} L_{k}^{\prime}\right) \tag{2}
\end{equation*}
$$

is not separable into a part which depends only on the nuclei A and $A-k$ and a part which depends only on the nuclei B
and $B+k$. This follows from the assumption that the group of transferred nucleons has definite quantum numbers S_{k}, T_{k} and f_{k} (spin, isospin ard symmetry) as well as n and 1 which are not changing in the transfer process \mathbf{x}. By this, (2) connects the two vertices of the eaction.

To get the oross section of the reaction, one has to multiply the structure: factors by the corresponding dynamical factors and to sum ove all intermediate states. The dynamical factors are the same as for reactions with transfer of only one nucleon keeping in mind the fact that the quantum numbers N, L and N^{\prime}, L ' charazterizing the motion of the centre-of-mass of the transferred nucl \equiv on group with respect to the nuclei A and $P+k$ correspond to the q^{\prime} lantum munbers n, l and $n^{\prime}, \ell^{\prime} \quad$ characterizing the motion of the transferred nucleon in the nuclei A and $B+1$.
2.2. $K\left(n \ell, N L, L_{k}\right)$ for transfer of two nucleons

The overlip integral $K\left(n, \ell, N L, L_{k}\right)$ for transfer of two nucleons is given by a Moshinsky coefficient. If the two nucleons are identical ($n_{1} \ell_{1}=n_{2} \ell_{2}$), then it follows

$$
\begin{equation*}
\left.K_{a}^{(2)}\left(\mathrm{n} \mid, N L, L_{k}\right)=<\mathrm{n} \ell, N L: L_{k}|1,1| n_{1} \ell_{1} n_{g} \ell_{2}: L_{k}\right\rangle \tag{3}
\end{equation*}
$$

Here, the defirition of Smirnov $/ 2 /$ for the generallzed Moshinsky coefficients was used. If the two nucleons are distingulshable ($n_{1} l_{1} \not \|_{2} l_{2}$), then

[^1]\[

$$
\begin{aligned}
& K^{(2)}\left(\mathrm{n} \ell, N L, L_{k}\right)=\frac{1}{\sqrt{2}}\left|<_{n} \ell, N L: L_{k}\right| 1,1\left|n_{1} \ell_{1}, n \mathcal{f}_{2}: L_{k}\right\rangle
\end{aligned}
$$
\]

$$
\begin{align*}
& =\sqrt{2} K_{s}^{(2)}\left(n \ell, N L, L_{k}\right) \delta_{\mathbf{L}_{\mathbf{k}}} \cdot \mathbf{L} \pm^{2}+\mathbb{y} \tag{4}\\
& (i=0,2, \ldots) .
\end{align*}
$$

Here $s y=0$ if the orbital wave function of the two nucleons is symmetrical and $s y=1$ if the orbital wav? function of the two nucleons is antisymmetrical.
2.3. $K\left(n \ell, N L, L_{k}\right)$ for transfer of three nucle.ons

The overlap integral $K\left(n \ell, N L, L_{k}\right)$ for the transfer of three nucleons can be calculated in the following manne:. If the three particles are identical then

$$
\begin{align*}
& \left.X_{k}\left(\ell_{1} \ell_{1}, n_{2} \ell_{2}, n_{8} \ell_{a}\right)^{3}: L_{k}\right) \\
& =\sum<\ell_{1,2,3}^{a} \mid \ell_{1,2}^{2}: \ell_{a}^{0}, \ell_{3}> \\
& <n_{0} \ell_{0}, N_{0} L_{0}: \ell_{a}^{0}|1,1| n_{1} \ell_{1}, n_{i 2} \ell_{2}: \ell_{a}^{0}> \tag{5}\\
& U\left(L_{0} \ell_{0} \ell_{8} L_{k}, \ell_{a}^{0} \ell_{a}^{00}\right) \times \Psi
\end{align*}
$$

$$
\begin{align*}
& =\Sigma<r_{00} \ell_{00} N_{L}: \ell_{a}^{09} 2,1\left|N_{0} L_{0}, n_{a} \ell_{z}: \ell_{a}^{\infty 0}\right\rangle \tag{6}\\
& U\left(\ell_{0}, L \ell_{0} L_{k} ; \ell_{0}^{\infty} \ell\right)
\end{align*}
$$

 is the orbital par of the fractional parentage coefficient of the three transferred particies (tables of fractional parentage coefficients in ${ }^{1 / 3}$). One gets from (5) and (6)

$$
\begin{align*}
& K_{s}^{(8)}\left(n \ell, N 1, L_{k}\right)=\Sigma<\ell_{1,2,3}^{3}\left|\ell_{1,2}^{2}: \ell_{\ell}^{0}, \ell_{8}\right\rangle \\
& \left\langle\mathrm{n}_{0} \boldsymbol{\ell}_{0}, \mathrm{~N}_{0} \mathrm{~L}_{\mathrm{o}}: \boldsymbol{\ell}^{0}\right| 1,1\left|\mathrm{n} \boldsymbol{l}_{1}, \mathrm{n}_{2} \ell_{2}: \ell_{a}^{0}\right\rangle \\
& \left\langle n_{00} \ell_{00}, N L: \ell_{a}^{00}\right| 2,1 \mid N_{0} L_{0}, n_{8} \ell_{8}=\ell \ell_{0}^{00} \tag{7}
\end{align*}
$$

where

$$
\begin{equation*}
2 n_{0}+\ell_{0}+2 n_{00}+\ell_{00}=2 a+l \text {. } \tag{8}
\end{equation*}
$$

 Lien for the zase that the orbital wave function is symmetrical it follow;
where $K_{: ~ f o l l}^{s+1}$ follows from $K_{s}^{(s)}$ by exchange of n, ℓ and n_{1}, ℓ_{1}.
2.4. K ($\ell, N L, L_{k}$) for transfer of four nucleons

In an analogous manner, one gets the following value for
K in the case of four transferred particles which are identical
$K_{s}^{(4)}(n \ell, N L, L \underset{k}{\prime}=$
$=\Sigma<\ell_{1,2,3,4}^{4}: L_{k} \mid \ell_{1,2}^{a}: \ell_{a}, \ell_{8,4}^{2}: \ell_{a}^{\prime}>$

$$
\left\langle n^{\prime}{ }_{0}^{\prime} \ell_{0}^{\prime}, N_{0}^{\prime} L_{0}^{\prime}: \ell_{a}^{\prime}\right| 1,1 \mid n_{8} \ell_{8}, n_{4} \ell_{4}: \ell_{a}^{\prime}
$$

$$
\left\langle n_{00} \ell_{0 \delta} \mathrm{NL}: L_{a z}\right| 2,2\left|N_{0} L_{0}, N_{0}^{\prime} L_{0}^{\prime}: L_{a}\right\rangle
$$

$$
\left\{\left(2 \ell_{a}+1\right)\left(2 \ell_{a}^{\prime}+1\right)\left(2 \ell_{a \mathrm{a}}+1\right)\left(2 L_{a \mathrm{a}}+1\right)\right\}
$$

$$
1 / 2
$$

$$
\begin{align*}
& K^{(3)}(n \ell, N L, L, k)=\sqrt{\frac{1}{3}}\left\{K_{s}^{(3)}\left(n \ell, N L, L_{k}\right)+\right. \\
& +\left(1+(-1)^{\ell_{a}^{0}+L_{0}}\right) K_{s}^{8} \overbrace{i}^{1}\left(n \ell, N L, L_{k}\right)], \tag{9}
\end{align*}
$$

Here

$$
\begin{equation*}
2 n 00+\ell_{00}+2 n_{0}+\ell_{0}+2 n_{0}^{\prime}+\ell_{\sigma}^{\prime}=2 n+\ell . \tag{11}
\end{equation*}
$$

The factor

$$
\left\langle\ell_{1,2,3,4}^{4}: L_{k} \mid \ell_{1,2}^{2}: \ell_{2}, \ell_{3,4}^{2}: \ell_{i}^{\prime}\right\rangle
$$

is the orbital part of the fractional parentage coefficient for the four transferrec particles (tables in ${ }^{/ 4 /}$).

If the fou• nucleons are not idenfical but, for example, $n_{1} \ell_{1} n_{2}^{\ell}{ }_{2} f_{8} \ell_{8}=n_{4} \ell_{4}$ then it follows

$$
\begin{align*}
& K^{(4)}\left(\mathrm{n} \ell, N L, L_{k}\right)=\sqrt{\frac{1}{6}} 1 K_{0}^{(4)}\left(\mathrm{n} \ell, N L, L_{k}\right)+ \\
& +K_{1}^{1,2 \sim 3.4}\left(n \boldsymbol{R}, N L, L_{k}\right)+ \tag{12}
\end{align*}
$$

$$
\left.K_{y}^{2 \rightarrow 3}\left(n \ell, N L, L_{k}\right)\right\}
$$

in the cas. that the orbital wave function of the four nucleons is symmetrical. $K_{s}^{1,2} \leftrightarrow 8,4$ follows from $K_{s}^{(4)}$ by exchange of $n_{1} l_{1}, n_{2} l_{2}$ and $n_{a} l_{8}, n_{4} l_{4} \quad$ whereas $K{ }_{8}^{2 \& s}$ follows from $K_{a}^{(4)}$ br exchange of $n_{2} l_{2}$ and $n_{8} l_{s}$
2.5. Factorization of the amplitude

In paper ${ }^{/ 5 /}$, factorization of the amplitude $A_{N L} N^{\prime} L^{\prime}$ into two factors is assumed one of which depends only on the properties of the vertex $A \rightarrow(A-k)+k$ and the other depends only on the properties of tie vertex $B+k \rightarrow(B+k)$. In such a theory, the product of the overlap integrals is

$$
\begin{equation*}
\left.Y_{0}=\sum_{n \ell N_{L}} K\left(n \ell \quad, N L, L_{k}\right) \sum_{n^{\prime} \ell^{\prime} N^{\prime} L^{\prime}} K^{\prime}\left(n^{\prime} \ell^{\prime}, N^{\prime} L^{\prime}, L^{\prime}\right)^{\prime}\right) \tag{13}
\end{equation*}
$$

(up to multiplication by' the dynamical factors $B_{N L}^{N}{ }_{N}^{\prime}{ }^{\prime}$) where summation goes over n, ℓ and $n^{\prime}, \ell^{\prime}$ independent of eash other. That means, the group of particles is assumed to change their inner quantum numbers n, ℓ to all possible values $n^{\prime} \ell^{\prime}$ in the transfer process.

In section 3, the results of the theory assuming factorization of the amplitude into two parts each of which deperds only on one vertex will be discussed and compared with the rosults of the theory without factorization of the amplitude.
2.6. Definition of the spectroscopic factor for a
group of nucleons
The spectroscopic factor for a group of nucleons such as deuterons, $H e^{3}$ or tritons, and a-particles is deined in the following manner $/ 6 /$

$$
\begin{align*}
S^{1 / 2} \sim & \left.\binom{A}{k}^{1 / 2}\left(\frac{A}{A-k}\right)^{N+L / 3}<X_{A} \right\rvert\, X_{A-k}, X_{k}^{\prime}> \tag{14}\\
& K_{0}\left(n=0 \quad \ell=0 \quad N L, L_{k}\right) .
\end{align*}
$$

The spectroscopic factor is defined for at group of incleons obsemed in the experiment. This froup is in the low t t stote, $\mathrm{n}=\ell=0$.

In general, l. differs from K. For example, one gets

$$
\Gamma_{0}=\sum_{N L} K_{0}\left(00, N L, L_{k}\right)=0
$$

but

$$
Z_{b}=\underset{n \ell, N L, N}{\sum} K_{L}^{\prime}\left(n \ell, N L, L, L_{k}\right) K\left(n \ell, N^{\prime} L^{\prime}, L_{k}\right)=1
$$

for the case of two particles with the orbital wave function $\left(O_{p}\right)^{x}[11]$ p in both the initial nucleus A and the final nucleus $B+k$. An analogous result follovis, for example, for the case of three particles with the orbital wa re function $\left(O_{p}\right)^{s}[21] P$ in both nuclei:

$$
\begin{gathered}
\gamma_{0}=\underset{N L}{\left.\Sigma K 600, N L, L_{k}^{\prime}\right)=0} \\
Z_{0}=\sum_{n \ell, N L, N^{\prime} L^{\prime}}^{K}\left(n \ell, N L, L_{k}\right) K\left(n \ell, N^{\prime} L^{\prime}, L_{k}^{\prime}\right)=\frac{1}{3} .
\end{gathered}
$$

In some cases, the K reduce to K_{0}. If $n_{1} \ell_{1}=n_{2}=0 a$ for two-nucleon iransier then

$$
\begin{aligned}
& K\left(u \ell, N L, L_{k}\right)=1, \\
& K\left(\Omega \ell, N^{\prime} L^{\prime}, L_{k}^{\prime}\right)=K_{0}\left(00, N^{\prime} L^{\prime}, L_{k}^{\prime}\right)
\end{aligned}
$$

and
$x /$ ifere, folluwing Brody and Moshinsky $/ 7 /$, the energy levels of the hatmonic oscillator are numbercd as follows: Os, Op, 19, Od, 1 p , Of, :...

$$
\begin{aligned}
Z_{0} & =\sum_{n \ell, N L, N^{\prime} L^{\prime}} K\left(n \ell, N L, L_{k}\right) K\left(n \ell, N^{\prime} L^{\prime}, L^{\prime} k\right) \\
& =\sum_{N^{\prime} L^{\prime}} K_{0}\left(00, N^{\prime} L^{\prime} \ddots, L^{\prime},\right)=T_{0},
\end{aligned}
$$

Analogous results follow for transfer of three and four particles. That means, if the transferred nucleons come from the Os -shell of the initial nucleus A then the structure factors de:ermining the excitation of the levels of the final nucleus are proportional to the corresponding usual spectroscopic factors.

Such a result does not follow from a theory in which factorization of the amplitude $A_{N L}^{N ' L}$ ' into two parts is assumed each of which depends only on one vertex. One has

$$
\begin{aligned}
Y_{0} & ={\underset{n}{ } \ell^{2}, N L}_{K} K\left(n \ell, N L, L_{k}\right) \sum_{n^{\prime} \ell^{\prime}, N^{\prime} L^{\prime}} K\left(n^{\prime} \ell^{\prime}, N^{\prime} L^{\prime}, L_{k}^{\prime}\right) \\
& =\sum_{n^{\prime} \ell^{\prime}{ }^{\prime} N^{\prime} L^{\prime}} K\left(n^{\prime} \ell^{\prime}, N^{\prime} L^{\prime}, L_{k}^{\prime}\right)
\end{aligned}
$$

in the case of two-particle transfer with $n_{1} \ell_{1}=n_{2} \ell_{2}=O_{s}, Y$ is not proportional to T_{0}. For example, it is ${ }^{x}$ /

$$
Y_{0}=\sum_{n^{\prime} R^{\prime} N^{\prime} L^{\prime}} \quad K\left(n^{\prime} R^{\prime}, N^{\prime} L^{\prime}, L_{k}^{\prime}\right)=\left\{\begin{array}{l}
0 \text { for } L_{k}^{\prime}=0,2 \\
1 \text { for } \cdot L_{j}^{\prime}=1
\end{array}\right.
$$

$x /$ In the theory of Glendenning $/ 8 /$ and also in t te theory of El - Batanoni et.al. $/ 8 /, \ell=\ell^{\prime}$ is assumed. For the case of two particle transfer into the O_{p}-shell of the final nucleus, it follows

$$
\begin{aligned}
& \rightarrow 0 \text { for } L_{k}^{\prime}=0 \\
& \mathrm{n}^{\prime} \mathrm{\Sigma}^{\prime} \mathrm{L}^{\prime} \mathrm{K}^{\prime}\left(\mathrm{n}^{\prime} 0, \mathrm{~N}^{\prime} \mathrm{L}^{\prime}, \mathrm{L}_{k}^{\prime}\right)=0.707 \quad \text { for } \quad L_{k}^{\prime}=2 \\
& 0 \text { for } \quad L_{k}^{\prime}=1
\end{aligned}
$$

for transfer of two particles into the $O_{p}-$ shell ($n_{1}^{\prime}=n^{\prime}=0, \ell_{1}^{\prime}=\ell_{2}^{\prime}=$), whereas

$$
T_{0}=\sum_{N^{\prime} L} \cdot K_{0}\left(0\left(, N^{\prime} L^{\prime}, L_{k}^{\prime}\right)= \begin{cases}0,707 & \text { for } \quad L_{k}^{\prime}=0,2 . \\ 0 & \text { for } \quad L_{k}^{\prime}=1 .\end{cases}\right.
$$

In reality, one has to multiply the components depending on N^{\prime} and L^{\prime} by the dynamical factor and a correction factor like $(B /(B+k))^{\prime}+L^{\prime} / 2$. This will change the result $Y_{0}=0$ for $L_{k}^{\prime}=0,2$ into a value. convanishing but depending strongly on B and the dynamical featur:3s.

3. Discussion

Here, two points will be discussed: firstly, the quantum numbers NL and $N^{\prime} L^{\prime}$ ' which are important for the multiplication with
 the usual spectroscopic factors for nucleon groups are proportional to the structure factors $A_{N L}^{N^{\prime} L^{\prime}}$ determining the cross section of reactions with trarisier of a nucleon group. To this end, the structure factors $A_{N L}^{N^{\prime}} L^{\prime}$ vill be summed up over the oscillator quantum numbers $n \ell, N L$ and N ' L ' without multiplication with the dynamical factors $\mathrm{B}_{\mathrm{NL}}^{\mathrm{N}^{\prime} \mathrm{L}^{\prime} \text {. }}$

The overlap integrals $K\left(a \ell, N L, L_{k}\right) K\left(n \ell, N^{\prime} L^{\prime}, L^{\prime}{ }_{k}\right)$ contain all the dependence on the quantum numbers $N L$ and $N^{\prime} L^{\prime}$ characterizing the motion of the centre-of-mass of the group of the transferred particles in the intermediate state with respect to the nucleus A and with respect to the nucleus $B+k$. These quantum numbers corres rond to the quantum numbers $n \ell$ and $n^{\prime} \ell$ ' characrerizing the motion of the transferred nucleon in the nucleus A and in the nucleus $B+1$ in the case of one-nucleon transfer. The theory of the dynamical part $\mathrm{BN}_{\mathrm{NL}}^{\mathrm{N}^{\prime}}$ is, therefore, the same as in the case of one-nucleon transfer.

To get the excitation probability for the levels of the final nucleus in reactions with transfer of several nucleons one has, naturally, to multiply the structure factors by/the tynamical factors (sce also ${ }^{/ 8 /}$).

$$
\begin{equation*}
S \quad \sum^{-} A_{N L}^{N^{\prime} L^{\prime}} B_{N_{N}}^{\prime N_{L}^{\prime} L^{\prime}} \tag{15}
\end{equation*}
$$

where summation goes over all intermediate states of the nucleon group. Here, it will be shown that $A{ }_{N L}{ }_{N}^{\prime} L^{\prime}$ is proportional to the usual spectroscopic factor only for a small class of reactions.

3.1. Reactions with transfer of two particles

First of all, one has to do some remarks about the theory assuming factorization of the amplitude $A_{N L}^{N^{\prime}} \mathbf{L}^{\prime}$ in:o two parts each of which depends only on one vertex. One expects that the overlap integrals and the amplitude $A_{N L}^{N^{\prime} L^{\prime}}$ are large in the case in which the group of the transferred particles has the same quantum numbers in the initial nucleus A as in final nu leus $B+k\left(n_{1} \ell_{1}=n_{1}^{\prime} \ell_{1}^{\prime}\right.$, $n_{2}^{l_{2}}=n_{2}^{\prime} l_{2}^{\prime}$). But the theory assuming factorization of the amplitude into two parts $A_{N L}^{N} L^{\prime}=a_{N L}{ }^{\text {a }} N^{\prime} L^{\prime} \quad$ does not give such a result. In table 1, the values

$$
\begin{align*}
& \left.Z=\sum_{n \ell, N L, N^{\prime} L^{\prime}}\left(\frac{A}{A-k}\right)^{N+L / 2}\left(\frac{B+k}{B}\right)^{N^{\prime}+L^{\prime} / 2} K(\mathbf{n}!, N L, L)_{k}\right) K\left(n \ell, N^{\prime} L^{\prime}, L_{k}^{\prime}\right) \tag{17}
\end{align*}
$$

characterizing the theory without factorization of the amplitude $A_{N L}^{N} L^{\prime}$ and the values

$$
\begin{aligned}
& n^{\prime} \boldsymbol{R}^{\prime}, \mathrm{N}^{\prime} \mathrm{L}^{\prime}
\end{aligned}
$$

characterizing the theomy with factorization of the amplitude $A_{N L}^{N^{\prime}} L^{\prime}$ are given for two particles transferred from the $O_{p-s h e l l}$ of the initial nucleus ($A=9$) into the $0 p-s h e l l$ of the final nucleus ($A=7$). As one expects, Z , and Z are maximal if the two separated nucleons have the same quantum numbers in the initial nucleus as in the final nucletus. Z_{0} and Z are vanishing if the Young scheme of the two sarticles is changed in the transfer process. The
Y_{0} and Y show another behaviour. Y_{0} vanishes not only in the cases in which the Young scheme of the transferred particles is changed in the transfer process, but also in the cases where $\left[f_{k}\right]=\left[l_{k}\right]=[2] \quad$ and $L_{k}=L_{k}^{\prime}$. This result is not expected. The Y are non-vanishing in all cases, but they strongly depend on A and B in the cases for which the corresponding Y_{0} are vanishing

The Z_{0} and Z show some regularity: if the quantum numbers of the two nucleons in the initial nucleus A and in the final nucleus $B+2$ cre the same, then Z and Z_{0} are maximal. If the symmetry of the wave function must be changed in tire transfer process ($\left[f_{k} \mid \neq\left[f_{k}^{\prime}\right]\right)$ then $Z=Z_{0}=0$. There is some dependence on L_{k} and L_{k}. In general, Z and Z iare maximal if L_{k} and L_{k}^{\prime} are maximal Such a depentence on I_{k}
and L_{k}^{\prime} is known also for the values

$$
T_{0}=\sum_{N^{\prime} L^{\prime}} K\left(00, N^{\prime} L^{\prime}, L_{k}^{\prime}\right)
$$

and the spectroscopic factors.
The transfer of two 1 s -nucleons of the initial nucleus into the Od -shell of the final nucleus is of some interest. For $L_{k}=L_{k}^{\prime}=0$ it follows

$$
\begin{aligned}
& Z_{0}=0.000, \\
& z=0,013, \\
& T_{0}=0.298 .
\end{aligned}
$$

In this case, Z shows a strong dependence on A and B.
From this discussion, it follows that the N^{\prime}, L^{\prime} a ad N, L are not independent of each / other. The connection of N, L and N^{\prime}, L^{\prime} caused by the condition $n \ell=n^{\prime} \ell^{\prime}$ leads in the most cases o a limitation of the possible values of N, L or $\mathrm{N}^{\prime}, \mathrm{L}^{\prime}$ and therefore to a simplifiction of the sum (15).

The usual spectroscopic factors are proportional to

$$
\begin{equation*}
T=\sum_{N^{\prime} L^{\prime}}\left(\frac{B+k}{B}\right)^{N^{\prime}+L / 2} K\left(00, N^{\prime} L^{\prime}, L L_{k}^{\prime}\right) \tag{20}
\end{equation*}
$$

In reactions with transfer of two particles coming from the 0 -shell of the initial nucleus A, the structure factors determining the exchtation of the levels of the final nucleus $B+2$ are proportional to $Z=T$ (up to multiplication by the dynamical factors $B_{00}^{N^{\prime} L^{\prime} \text { '), }}$ Because of $n=l=0$, one has in the most cases only one term in (20). That means, one can get the usual spectroscopic factors
from a study of these reactions. Moreover, because of their simplicity they are suitable also for a study of the contributions of the different components mixed into the wave function.

Reactions induced by lithium ions will also lead to an excitation spectrum of the final. nucleus which is similar to the spectrum of the corresponding usual spectroscopic factors. The wave function of ${ }^{6} \mathrm{Li}$ is $[42]^{13} \mathrm{~S}$. Therefore, the two transferred nucleons have the same configuration as a deuteron. In table 2, the values Z and T are given for the reaction ${ }^{7} \mathrm{Li}\left({ }^{6} \mathrm{Li}, a\right){ }^{9} \mathrm{Be}$, Deviations of the wave function of ${ }^{6}{ }^{\mathrm{Li}}{ }_{\mathrm{g} . \mathrm{s}}$ from the shell-model wave function $[\cdot, 2]^{18} \mathrm{~S}$ in favour of the cluster-model wave function $a+d$ which e:ist in reality will make the ${ }^{0}{ }_{\mathrm{Li}}$ nucleus only more suitable fo a study of the spectroscopic factors for deuterons.

The excitation spectrum of the final nucleus which one gets in reactions such as $\left({ }^{11} \mathrm{~B},{ }^{9} \mathrm{Be}\right)$ or $\left({ }^{9} \mathrm{Be},{ }^{7} \mathrm{Li}\right)$ will, as a rule, differ from the corresponding spectrum of spectroscopic factors. The fractional parentage coefficients ${ }^{11} \mathrm{~B} \rightarrow{ }^{9} \mathrm{Be}+[11] \mathrm{P}$ and ${ }^{\boldsymbol{\theta}} \mathrm{Be} \rightarrow{ }^{7} \mathrm{Li}+[11] \mathrm{P}$ are not small. Ir table 3 the values Z and T are given for the reaction ${ }^{12} \mathrm{C}\left({ }^{9} \mathrm{Be},{ }^{7} \mathrm{Li}\right){ }^{14} \mathrm{~N}$ and in table 4 for the reaction ${ }^{12} \mathrm{C}\left({ }^{11} \mathrm{~B},{ }^{9} \mathrm{Be}\right)^{14} \mathrm{~N} . \quad$ For' the cases [11] P \rightarrow [11] P, the Z are not small. There:ore, the two nucleons can be transferred also in a state the o bital wave function of which is antisymmetric. To get the cross sæction, one has to sum over the intermediate states of the pair of the transferred nucleons with the symmetry[2]as well as over the inte mediate states with the symmetry [11].

In table 5, the values Z and T are given for the case that the transferred rucleons were in the initial nucleus in a shell different from that of the fincl nucleus. The results are similar to those of $\left(O_{p}\right)^{2} \rightarrow\left(O_{p}\right)^{2}$ (tables 3,4).

From this, it follows that even the excitation spectra of the final nucleus wh ch one gets in ($\left.{ }^{11} \mathrm{~B},{ }^{9} \mathrm{Be}\right)$ and ($\left.{ }^{9} \mathrm{Be},{ }^{7} \mathrm{Li}\right)$ reactions on the same target nucleus must not be similar to each other
and will differ, in general, from the excitation sfectrum of the final nucleus which one gets in the (${ }^{8} \mathrm{He}, \mathrm{p}$) reaction on the same target nucleus. For a more detailed discussion of these interference effects see paper $/ 9 /$.

3.2. Reactions with transfer of three particles

As in the case of two-particle transfer, the the:ory without factorization of the amplitude $A_{N L}^{N^{\prime}} L^{\prime}$ will be compared with the theory factorizating the amplitude $A_{N L}^{N} L^{\prime}$ ' into two perts a ${ }_{N L}$ and $a_{N} L^{\prime}$ each of which depends only on one vertex.

In table 6 , the values Z_{0} and Z character zing the theory without factorization of the amplitude and the values Y_{0} and Y characterizing the theory with factorization of the anplitude are given for three-particle transfer $\left(O_{p}\right)^{3} \rightarrow\left(O_{p}\right)^{3}$. As in the case of twoparticle transfer, the Z_{0} and Z are maximal if the quantum numbers of the transferred particles are the same in thi initial nucleus. as in the final nucleus, whereas Y, and Y do not show such a regularity.

The Z_{0} and Z are vanishing for the case in which the Young scheme of the two transferred nucleons is changed in the transfer process and $L_{k}=L_{k}^{\prime}$. As in the case of two particle transfer, Z_{0} and $Z \quad$ show some deprindence on L_{k} and L_{i} : they are maximal if L_{k} and L_{k}^{\prime} are maximal.

From the results of table 6, one can draw the conclusion that the condition $n \ell=n^{\prime} \ell$ ' is a reasonable one. This condition leads in the most cases to a simplification of the sim (15), i.e. to a limitation of the number of terms with different $N \mathrm{~L}$ or $\mathrm{N}^{\prime}, \mathrm{L}$ '. This simplification is of some importance for the analysis of a concrete reaction

The usual spectroscopic factors for ${ }^{3} \mathrm{He}$ of tritons having the wave function $[3]^{22} \mathrm{~S}$ are proportional to T (eq. 20). For reactions with transfer of three particles coming from the Os -shell of the initial nucleus A, the structure fuctors $A N_{N L}^{N \prime}$
determining the prokability for excitation of the levels of the final nucleus $B+3$ are proportional to $Z=T$ (up to the dynamical factors $B{ }_{N L}^{N \prime L} \quad$. Triat means, the excitation spectrum of the final nucleus in reactions as (α, p) will be proportional to the spectrum of the corresponding spectroscopic factors if the reaction mechanism is the one-ste, process with transfer of three particles,

The wave function of $\quad 7 \mathrm{Li}$ is in a good approximation $/ 443]^{22} P$ and the wave function $/ 11 /$ of ${ }^{19} \mathrm{~F}$ is $\left(\mathrm{Od}^{2}, 1 \mathrm{~s}\right)^{32} \mathrm{~S}$. Therefore, the three nucleons ransferred in ($\left.{ }^{7} \mathrm{Li}, \alpha\right)$ reactions and in (${ }^{19} \mathrm{~F},{ }^{16} \mathrm{O}$) reactions ${ }^{x /}$ have the configuration [3] as H^{8} or t. The values

Z and T for the reaction ${ }^{12} \mathrm{C}\left({ }^{7} \mathrm{Li}, a\right){ }^{13} \mathrm{~N}$ are given in table 7 , for the reaction ${ }^{12} \mathrm{C}\left({ }^{19} \mathrm{~F},{ }^{18} \mathrm{O}\right){ }^{16} \mathrm{~N}$ in table 8 , and for the reaction ${ }^{16} \mathrm{O}\left({ }^{7} \mathrm{Li}, a\right){ }^{19} \mathrm{~F}$ in table 9. Comparison of the results for $\left({ }^{7} \mathrm{Li}, a\right)$ and for $\left({ }^{19} F,{ }^{16} 0\right)$ on the same target nucleus shows that, in general, the values of N 'L' differ in the two reactions. Nevertheless, the excitation spectium of the final nucleus taken in the ($\left.{ }^{7}{ }^{\mathrm{Li}}, a\right)$ reaction must not be different from the excitation spectrum of the final nucleus taken n the ($\left.{ }^{19} F,{ }^{16} 0\right)$ reaction on the same target nucleus because the excitation spectrum is determined in the main by the fractional parentage coefficients which are independent on $N^{\prime} L{ }^{\prime}$. Moreover, the excitation spectrum of the final nucleus taken in a $\left({ }^{7} \mathrm{Li}, a\right)$ eaction or in a $\left({ }^{19} \mathrm{~F},{ }^{16} \mathrm{O}\right)$ reaction will be, as a rule, similar to the spectrum of the corresponding usual spectroscopic factors.

If one consideis, for example, the reaction ($\left.{ }^{10} \mathrm{~B},{ }^{7} \mathrm{Li}\right)$ then the three nucleons can be transferred not only in an intermediate state the orbital wave function of which is symmetric ($\left[f_{k}\right]=\left[f_{k}^{\prime}\right]=[3]$) but also in an interr nediate state with the symmetry $\left[f_{k}\right]=\left[f_{k}^{\prime}\right]=[21]$.

[^2]The fractional parentage coefficients ${ }^{10} \mathrm{~B} \rightarrow{ }^{7} \mathrm{Li}+[21$ are not smaller than the farctional parentage coefficients ${ }^{10} \mathrm{~B} \rightarrow{ }^{7} \mathrm{Li}+[3]$. The values Z and T for the reaction ${ }^{7} \mathrm{Li}^{(}\left({ }^{10} \mathrm{~B},{ }^{7} \mathrm{Li}\right){ }^{0} \mathrm{~B}$ are given in table 10. Analogous results follow if the three transferred nucleons are in the initial nucleus in a shell different fom that of the final nucleus (for example $\left(O_{p}\right)^{8} \rightarrow(\mathrm{Od}, 1 \mathrm{~s})^{8}$) From thes: results, it follows that the excitation spectrum of the final nucleus observed in reactions like ($\left.{ }^{10} \mathrm{~B},{ }^{7} \mathrm{Li}\right)$ will, as a rule, be differ In^{n} from the excitation spectrum of the same final nucleus observei in (a, n) or (a, p) reactions or in other reactions with three-perticle transfer as ($\left.{ }^{7} \mathrm{Li}, a\right),\left({ }^{14} \mathrm{~N},{ }^{11} \mathrm{~B}\right),\left({ }^{15} \mathrm{~N},{ }^{12} \mathrm{C}\right),\left({ }^{19} \mathrm{~F},{ }^{16} \mathrm{O}\right)$. It musi be remarked here, that this result follows from the assumption that in all considered cases the reaction machanism is the direct trarisfer of three particles from the initial nucleus to the final nucleus.

3.3. Reactions with transfer of four particles

In table 11, the values Z_{0} and Z of the theory without factorization of the amplitude $\mathrm{AN}_{\mathrm{NL}} \mathrm{L}^{\prime}$ and the values, Y and Y_{0} of the theory with factorization of the amplitude ${ }_{A_{N}}^{N^{\prime} L^{\prime}}$ into two parts ${ }^{a}{ }_{N L}$ and ${ }^{n}{ }^{\prime} L^{\prime}$ are given for four-particle trinsfer $\left(l_{p}\right)^{4} \rightarrow$ $\rightarrow\left(t_{p}\right)^{4}$. The Z_{0} and Z are maximal, as a rule, if th: quantum numbers of the transferred nucleons in the initial nucieus are the same as the quantum numbers of the transferred nucleons in the final nucleus. The Y_{0} and Y do not show such a regubarity. This result is analogous to the results which one obtains in the case of two- and three-particle transfer.

That means, the condition $n \ell=n^{\prime} . \ell^{\prime}$ seems to be justifiable also in the case of four-particle transfer. It leads in the most cases to a limitation of the number of terms dependin! on $\mathrm{N}^{\prime}, \mathrm{L}^{\prime}$ in the sum (15) what is important for the analysis of a concrete reaction.

The spectro:scopic factors for a -particles having the wave function [4] ${ }^{11} \mathrm{~S}$ are proportional to T . The structure factors $\mathrm{A}_{\mathrm{NL}}^{\mathrm{N}} \mathrm{L}^{\prime}$ determining the excitation of the levels of the final nucleus $B+4$ in reactions with transfer of four particles are proportional to $K\left(n \ell, N L, L_{k}\right) K\left(n \ell, I^{\prime} L^{\prime}, L_{k}^{\prime}\right)=K_{0}\left(0, N^{\prime} L^{\prime}, L_{k}^{\prime}\right)$ only in that case in which the particles; come from the 0 s - shell of the initial nucleus A. The wave function of ${ }^{6} \mathrm{Li}$ is $[42]{ }^{18} \mathrm{~S}$ and that of Li_{i} is $[43]{ }^{22} \mathrm{P}$ in the framework of the shell model ${ }^{10 / \text {. The fracti- }}$ onal parentage coefficients are, in general, small for a group of nucleons which censists from nucleons of different shells. Moreover, the nuclei ${ }^{6}$ Li g. . and ${ }^{7}$ Li ${ }_{\text {g.s. }}$. show some deviations from the shell-model descrition in favour of a cluster-model description. as $a+d$ and $x+t$, Therefore, the four particles transferred in (${ }^{6} \mathrm{Li}, \mathrm{d}$) reactions or in (${ }^{7} \mathrm{Li}_{\mathrm{a}}$,) reactions come from the

Os -shell of the ithium nuclei, in the main. Such a result is confirmed also by experiments $/ 12 /$. That means, the excitation spectrum of the final nucleus which one gets in (${ }^{6} \mathrm{Li}, \mathrm{d}$) and (${ }^{7} \mathrm{Li}, \mathrm{t}$) reactions must correspond to the spectrum of the usual spectroscopic factors for a-particles.

The wave function of $\quad{ }^{20} \mathrm{Ne}$ g.s. is

$$
\begin{aligned}
\Psi= & 0.667[4] \mathrm{d}^{41} \mathrm{~S}+0.342[4] \mathrm{d}^{8} \mathrm{~s}^{11} \mathrm{~S}+ \\
& +0.548[6]_{\mathrm{d}}{ }^{2} \mathrm{~s}^{2}{ }^{11} \mathrm{~S}+0.227[4]^{411} \mathrm{~S}+\ldots
\end{aligned}
$$

The wave function of ${ }^{16} \mathrm{O}$.s. contains some admixtures of $\left(\mathrm{O}_{\mathrm{p}}\right)^{-4}(1 \mathrm{~s}, \mathrm{Od})^{4}$ components to the closed O_{p}-core. These admixtures are important for the calculation of the fractional parentage coefficients ${ }^{20}{ }_{\mathrm{Ne}}^{\mathrm{B} . \mathrm{s}} \mathrm{P}$. $\rightarrow{ }^{16} \mathrm{O}_{\text {g.s. }}+4$ nucleons, but they are not yet known. Therefore, one can say only some words about ($\left.{ }^{20} \mathrm{Ne},{ }^{16} \mathrm{O}\right)$ reactions. The four nucleons trarsferred in $\left({ }^{20} \mathrm{Ne},{ }^{16} \mathrm{O}\right)$ reactions have the configuration [4] as ar a-particle, in the main In all probability, there are no interference effects which lead to an excitation spectrum
of the final nucleus observed in $\left({ }^{20} \mathrm{Ne},{ }^{16} \mathrm{O}\right)$ reactions which is not similar to the spectrum of the spectroscopic factors for a -particles.

As to reactions of the type ($\left.{ }^{10} \mathrm{~B},{ }^{6} \mathrm{Li}\right)$ there is no reason for it that the excitation spectrum of the final nucleus nust be similar to the spectrum of the spectroscopic factors for -particles. The fractional parentage coefficients ${ }^{10} \mathrm{~B}_{\mathrm{B} . \mathrm{s} .}{ }^{6} \mathrm{Li}_{\text {c.s. }}+a \quad$ are small ${ }^{14 /}$. They are much smaller than the fractional parentage: coefficients ${ }^{10} \mathrm{~B}$ g.s. $\quad{ }^{6} \mathrm{Li}^{*}+a$. The Z ofor $\left(0_{\mathrm{p}}\right)^{4} \rightarrow\left(0_{\mathrm{p}}\right)^{4}$ are given in table 12. They are nonvanishing also if the four transfered nucleons have a symmetry other than [4] in the intermediate state. Therefore, the four particles can be transferred not only in an intermediate state with the wave function of an a -particle but also in states with some other wave function. The excitation spectrum of the final nucleus taken in $\left({ }^{10} \mathrm{~B},{ }^{6} \mathrm{Li}\right)$ reactions can be similar to the spectrum of the spectroscopic factors for a-particles only by chance. Analogous results follow for the reaction (${ }^{16} 1 /{ }^{13} \mathrm{~B}$) and other reactions of such a type.

As to the (${ }^{16} 0$ g.s. ${ }^{13} \mathrm{C}$ g.s.) reaction, one can say only some words. The fractional parentage coefficients for the main configuration $\left(O_{p}\right)^{12} \rightarrow\left(O_{p}\right)^{8}+\left(O_{p}\right)^{4} \quad[4] \quad$ are small ${ }^{14 /}$: they lead to a calculated spectroscopic factor for a -particles which is only 5% of the sum of spectroscopic factors for a-particles with respect tc all excited states of ${ }^{12} \mathrm{C}$ (calculated for the pure configuratiors $\left(O_{p}\right)^{12}$ and $\left.\left(O_{p}\right)^{8}\right)$. Therefore, admixtures of the type $\left(O_{p}\right)^{-4}\left(l_{s}, O d\right)^{4}$ to the wave functions of ${ }^{16} 0_{\text {g.a. }}$ and ${ }^{12} \mathrm{C}$ e.s. as well as transfer of the four particles with a symmetry different from the symmetry of an a -particle can play here an important role. Especially, they can lead to interference effects.

4. Conclusions

In this paper, the structure factors $A_{N L}^{N / L}$ determining the probability for excitation of the levels of the final nicleus in reactions with transfer of k nucleons

$$
A+B \rightarrow(A-k)+(B+k)
$$

($k=2,3,4$) are d scussed in more details. It is shown that there is no factorizatio? of the spectroscopic factor of the reaction

$$
\begin{equation*}
S \sim E A_{N L}^{N^{\prime} L^{\prime}} B_{N L}^{N^{\prime} L^{\prime}} \tag{21}
\end{equation*}
$$

into two factors anch of which depends only on the properties of one pair of nucl i, either of A and $A-k$ or of B and $B+k$. The number of $t \in r m s$ with different N^{\prime}, L^{\prime} doponds not only on the nuclei B and $B+k$, but also on A and $A-k$. That means, one has to calculate ever, reaction individually what seems to be a very complicated procedure. In reality, however, the connection of N, L and N^{\prime}, L leads in most cases to a reduction of the number of terms in (21), in no one case, liowever, to an enlargement. That means, many reaztions become siomple and accessible to an analysis only by the comection uetween N, L airt N^{\prime}, L^{\prime}.

The reactions in which the transfimed nucleons come from the Os-shell of tro nucleus A are of some importance. In these cases, the connestion between N, L and N^{\prime}, L.' leads to a strong reduction of term; with different $\mathrm{N}^{\prime}, \mathrm{L}^{\prime}$. Moreover, the structure factors $A N_{N L}^{N ' L}$ determining the probability of excitation of the final nucleus are proportional to the usual spectroscopic factors. Therefore, these reactions are very suitable for an analysis of the muclear structure.

The excitation spectra of the final nucleus observed in different reactions with transfer of k nucleons on the same target nucleus will be different from one another , as a rule, and different from the spectrum of the corresponding usual spectroscopic factors for k nu=leons. There are only a few exceptions from this
rule. For example, the ($\left.{ }^{6} \mathrm{Li}, \alpha\right)$ reactions will lead to an excitation spectrum of the final nucleus similar to the spectrum of reduced deuteron widths. Attention should be attracted to the fact that this result follows from the assumption that the reaction mechanism is the direct transfer of a nucleon group from the initial nucleus to the final nucleus. No effects like excitation of A or B before transfer or successive transfer of single nucleons are taken into account.
References

1. LRotter. Nucl. Phys., 123, 567 (1968).
2. Yu.F.Smirnov. Nucl. Phys., 27, 177 (1961) 39, 34ϵ (1962).
3. H.A.Jahn, W. van Wieringen. Proc. Roy. Soc., 209502 (1951); H.A.Jahn. Proc. Roy. Soc., 205, 192 (1951); T.Jnolve, T.Sebe, H.Hagiwana, A.Arima. Nucl. Phys., 85, 184 (1966).
4. J.P.Elliott, J.Hope, H.A.Jahn. Phil. Trans. Roy. Soc., A246, 241 (1953); H.A.Jahn. Proc. Roy. Soc., 205, 192 (1951.
5. A.Rabi. Preprint IKF-19, Frankfurt/Main, 1968.
6. V.V.Belashov, V.G Neudachin, Yu.F.Smirnov, N.P.Yudin. JETP, 37, 1387 (1959); Yu.F.Smirnov, D.Chlebovska. Nucl. Phys., 26, 306 (1961).
7. T.A.Brody, M.Moshinsky. Tables of Transformatior Brackets, Mexico, 1980.
8. N.K.Glendenning. Phys. Rev., 137, 102 (1965); F.EL-Batanoni, M.EL~Nadi, G.L.Vysotski. Nucl. Phys., 82, 407 (19(5).
9. O.Lkhagva, LRotter. Joumal of Nuclear Physics (tc be published).
10. A.N.Boyarkina. Izv. AN USSR, 28, 337 (1964).
11. J.P.Elliott, B.H.Flowers. Proc. Roy. Soc., A229, 536 (1955).
12. G.C.Morrison Phys. Rev. Lett., 5, 565 (1960); Rividdleton, L. M. Polsky, C.H.Halbrow, K.Bethge. Phys. Rev. Lミtt, 21, 1398 (1968) and other papers.
13. T.Inoue, T.Se se, H.Hagiwara, A.Arima, Nucl. Phys., 85, 184 (1966).
14. V.V.Balashov, A.N.Boyarkina, I.Rotter. Nucl. Phys. 59, 417 (1964); I.Rotter. Firtsc:hritte der Physik, 16, 195 (1968).

Received by Publishing Department on February 20, 1969.

Table _1

Comparison of Z and Y for a reaction with two -particle transfer $\left(A=9, B=7,\left(O_{p}\right)^{2} \rightarrow\left(O_{p}\right)^{2}\right)$:

$\left[f_{k}\right] L_{k}$	$\left[f_{k^{\prime}}\right] L_{k}^{\prime}$	Z_{0}	Z	Y_{0}	Y
$[2] \mathrm{S}$	$[2] \mathrm{S}$	1.000	1.327	0	0.041
$[2] s$	$[2] \mathrm{D}$	0.500	0.827	0	0.041
$[2] \mathrm{D}$	$[2] \mathrm{D}$	1.000	1.327	0	0.041
$[17] \mathrm{P}$	$[11] \mathrm{P}$	1.000	1.286	1.000	1.284
$[2] \mathrm{S}$	$[11] \mathrm{P}$	0	0	0	0.229
$[2] \mathrm{D}$	$[11] \mathrm{P}$	0	0	0	0.229

Table 2

Comparison of Z and T for the reaction ${ }^{7} \mathrm{Li}\left({ }^{6} \mathrm{Li}, a\right){ }^{9} \mathrm{Be}$.

Table 3
Comparison of Z and T for the reaction ${ }^{12} C\left({ }^{9} \mathrm{Be},{ }^{7} \mathrm{Li}\right)^{14} \mathrm{~N}$.

$\left[f_{k}\right] L_{k}$	$\left[f_{k}^{\prime}\right] L_{k}^{\prime}$	2	T
$[2] \mathrm{S}$	$[2] \mathrm{S}$	1.250	0.745
$[2] \mathrm{D}$	$[2] \mathrm{S}$	0.745	0.745
$[2] \mathrm{S}$	$[2] \mathrm{D}$	0.745	0.745
$[2] \mathrm{D}$	$[2] \mathrm{D}$	1.250	0.745
$[11] \mathrm{P}$	$[11] \mathrm{P}$	1.225	0

Comparison of Z and T for the reaction ${ }^{12} C\left({ }^{41} B,{ }^{9} B e\right){ }^{14} \mathrm{~N}$.

$\left[f_{k}\right] L_{k}$	$\left[f_{k}^{\prime}\right] L_{k}^{\prime}$	Z	T
$[2] \mathrm{S}$	$[2] \mathrm{S}$	1.213	0.713
$[2] \mathrm{D}$	$[2] \mathrm{S}$	0.713	0.713
$[2] \mathrm{S}$	$[2] \mathrm{D}$	0.713	0.713
$[2] \mathrm{D}$	$[2] \mathrm{D}$	1.213	0.713
$[11] \mathrm{P}$	$[11] \mathrm{P}$	1.194	0

Table 5

Comparison of Z anc T for the reaction $\left({ }^{14} \mathrm{~N},{ }^{12} \mathrm{C}\right)$ on ${ }^{16} \mathrm{O}$.

$\left(n_{i} l_{i}\right)^{2}\left[f_{k}\right] L_{k}$	$\left(n_{i}^{\prime} l_{i}^{\prime}\right)^{2}\left[f_{k}^{\prime}\right] L_{k}^{\prime}$	z	T
(0p) ${ }^{2}$ [2] S	$(1 \mathrm{~s})^{2}[2] \mathrm{S}$	0.344	0.477
$(0 p)^{2}[2] \mathrm{D}$	$[2] \mathrm{s}$	1.069	0.477
$(0 p)^{2} \quad[2] \mathrm{S}$	$(0 p)^{2}[2] \mathrm{s}$	1.019	0.426
	[2] D	0.652	0.301
	[2] G	0.639	0.639
$(0 p)^{2}[2] \mathrm{D}$	$(0 d)^{2}[2] s$	0.161	0.426
	[2] D	0.122	0.301
	[2] G	1.037	0.639
$(0 p)^{2}[11] P$	$(0 p)^{2}[11] p$	0.911	0
	[11] F	0.911	0
$(0 \mathrm{p})^{2}[2] \mathrm{S}$	(1:,0d) [2] D	0.658	0.564
$(0 p)^{2}[2] D$	[2] D	1.154	0.564
$(0 p)^{2}[11] P$	[11] D	0.263	0

Table 6

Comparison of Z and Y for a reaction with three-parti le transfer $\left(A=15, \quad B=12,\left(O_{p}\right)^{3} \rightarrow\left(O_{p}\right)^{3}\right)$.
$\left[f_{k}\right] L_{k}$
$[3] \mathrm{P}$
$\left.\left[\begin{array}{l}{[3}\end{array}\right] L_{k}^{\prime}\right]$
P

Table 7

Comparison of 2 and T for the reaction ${ }^{12} \mathrm{C}\left({ }^{7} \mathrm{Li}, a\right)^{1} \mathrm{~N}$ with $\left(O_{p}\right)^{3} \rightarrow\left(O_{p}\right)^{3}$.

$\left[f_{k}\right] L_{k}$	$\left[f_{k}^{i}\right] L_{k}^{i}$	Z	T
$[3] \mathrm{P}$	$[3] \mathrm{P}$	1.725	0.641
	$[3] \mathrm{F}$	1.334	0.697

Table (8 .
Comparison of Z and T for the reaction

$$
\left.{ }^{12} \mathrm{C}\left({ }^{19} \mathrm{~F},{ }^{16} \mathrm{O}\right)^{15} \mathrm{~N} \quad \text { with }\left(\mathrm{Od}^{2}, 1 \mathrm{~s}\right) \rightarrow\left(\mathrm{O}_{\mathrm{p}}\right)\right)^{3}
$$

$\begin{array}{cccc}{\left[f_{k}\right] L_{b_{k}}} & {\left[f_{k}^{\prime}\right] L_{k}^{\prime}} & Z & - \\ {[3] \mathrm{S}} & {[3] \mathrm{P}} & -0.986 & -0.314 \\ & {[3] \mathrm{F}} & -0.638 & -0.342\end{array}$

Table 9

Comparison of Z end T for the reaction ($\left.{ }^{7} L i, a\right)$ on ${ }^{18} 0$,

Table 10
Comparison of Z anc T for the reaction $\left.{ }^{7} \mathrm{Li}^{(10} \mathrm{B},{ }^{7} \mathrm{Li}\right)^{10} \mathrm{~B}$.

$\left[f_{k}\right] L_{k}$	$\left[f_{b}^{\prime}\right] L_{k}^{i}$	Z	T
$[3] \mathrm{P}$	$[3] \mathrm{P}$	1.635	0.578
	$[3] \mathrm{F}$	1.244	0.628
$[3] \mathrm{F}$	$[3] \mathrm{P}$	1.244	0.628
	$[3] \mathrm{F}$	1.750	0.684
$[21] \mathrm{P}$	$[21] \mathrm{P}$	1.429	0
	$[21] \mathrm{D}$	-1.065	0
$[21] \mathrm{D}$	$[21] \mathrm{P}$	-1.065	0
	$[21] \mathrm{D}$	1.429	0
$[111] \mathrm{S}$	$[111] \mathrm{S}$	0	0

Table 11
Comparison of Z, Y and T for the reaction ${ }^{12} \mathrm{C}\left({ }^{16} \mathrm{O},{ }^{12} \mathrm{C}\right){ }^{16} \mathrm{O}$.

$\left[f_{k}\right] L_{k}$	$\left[f_{k}^{\prime}\right] i_{k}^{\prime}$	z_{0}	z	Yo	Y	To	T
[4] s	[4] s	1.000	1.855	0.266	0.420	0.408	0.395
	[4] D	1.021	1.990	0.403	0.650	0.408	0.395
	[4] G	0.625	1.282	0.082	0.112	0.408	0.395
[4] D	[4] S	1.021	1.990	0.403	0.650	0.408	0.395
	[4] D	1.441	2.668	0.612	1.065	0.408	0.395
	[4] G	0.946	1. 856	0.124	0.173	0.408	0.395
[4] G	[4] s	0.625	1.282	0.082	0.11 .2	0.408	0.395
	[4] D	0.946	1.856	0.124	$0.1: 3$	0.408	0.395
	[4] G	1.000	1.855	0.025	0.0:10	0.408	0.395
[31] P	[31] P	1.000	1.490	0.057	0.0188	0	0
	[31] D	-0,026	0.018	-0.073	-0.0.11	0	0
	[31] F	0.044	0.156	0.175	0.018	0	0
[31] D	[31] P	-0.026	0.018	-0.073	-0.0.31	0	0
	[31] D	0.149	0.213	0.094	0.1:14	0	0
	[31] F	0.081	0.152	-0.226	-0.2i1	0	0
[31] F	[31] P	0.044	0.156	0.175	0.038	0	0
	[31] D	0.081	0.152	-0.226	-0.251	0	0
	[31] F	1.000	1.533	0.544	0.554	0	0
[22] S	[22]s	1.000	1.600	0.399	0.552	0	0
	[22] D	-0.676	-1.101	-0.234	-0.359	0	0
[22]D	[22]s	-0.676	-1.101	-0.234	-0.369	0	0
	[22]D	0.515	0.826	0.138	0.244	0	0
[211] P	[211]P	1.000	1.331	1.000	1.331	0	0

[^0]: - On leave from Zentralinstitut für Kernforschun: ${ }^{3}$ Rossendorf bei Dresden (GDR)

[^1]: $x /$ This as sumption is the simplest one. The change of the quantum numbers should be taken into account only in a higher order approximition. In such a case, however, one cannot neglect processes in which the nucleons are transferred after each other, i.e. processes in which the nucleons are not transferred as a group in a one-step process.

[^2]: ${ }^{x}$ The wave fuiction of $\quad{ }^{16} \mathrm{O}_{\mathrm{g} . \mathrm{s}}$ is known only in an approximation not taking i into account $\left(O_{p}^{\text {s.s }}\right)^{-n}(1 \mathrm{~s}, \mathrm{Od})^{\circ}$ admixtures ($\mathrm{n}=3,4$) which are mportant for the calculation of the structure factors of (${ }^{19} \mathrm{~F},{ }^{16} 0$) reactions. But the main results discussed here will not be influenced by taking into account such admixtures to the wave function of ${ }^{16} 0$ g.s.

