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The tunnel effect has been firstly notified forty years ago when
G. Gamow/l/, trying a theoretical description for alpha decay of heavy
nuclei, has pointed out that in the frame of quantum mechanics, con-
trary to the classical mechanics case, a particle can pass through
a potential barrier even if the maximum height of the barrier is lar-
ger than the particle energy.

During the following years important efforts have been made
in order to study this effect in greater detail/2‘4/and, with that end
in view, a new ad hoc parameter, named as penetrability or transpa-
rency, has been introduced,

As a matter of fact, there are several distinct definitions for
this parameter or, in other words, the tunnel effect is quantitatively
marked by an ensemble of parameters and althougH each of the ele-
ments belonging to this ensemble has the same name-penetrability,
they are carrying different physical meanings.

Of course, approximate calculation formulae can be derived for
each penetrability depending on the approximations involved in the
estimations of the wave functions.

Unfortunately, the existence of distinct definitions of the pe -
nelrability, on the one hand, and of various approximate formulae
correspording to each definition, on the other hand, is often unob~
served, More exactly one compares usually different approximate
formulae as if they would come from one and the same definition

and this often leads to some confusions,



The aim of this paper is to review briefly some distinct defi-
nitions for penetrabilities and to obtaine exact calculation formulae
as well as JWKB-approximate formulae for each penetrability.

The potential used here has a simplest form but is in the
author's views to coantinue this work by extending these estimations

for potentials having more complicated forms,

1, The Statement of the Problem

The tunnel effect is mainly involved during the study of two
kinds of physical processes: scattering and decay,

Both processes have a common char;acteristic feature: the posi-
tionsx) of the particles taking part in such processes are strongly
time-dependent, So, in a collision, for example, at t+~w when the ex-
periment starts, the particles, which are very far apart, are ejected
towards one another, While time passing they bring together nearer
and nearer, interact and finally (i»_+m) move off again.

Obviously, a rigorous treatment of such a problem can be per-
formed by solving a time-dependent Schroedinger equation and using
wave packets in order to localize involved particles.

As Goldberger and Wattson have shown in their brilliant book
on Qpllisions/s/ , this rigorous treatment leads to results which are
identical®@ to those given by the formal treatment (or, as one often
says, the formal theory).

According to this theory both scattering and decay processes

can be described by a time-independent Schroedinger equation and

specific character of each of them is incorporated in the boundary

conditions which are to be imposed in order to solve this equation,

x) Obviously, within the quantum mechanics language, this word is an
improper one. It indicates usually the space region where the wave
function is significantly different from zero.

xx)We tacitly suppose anywhere in this paper that the Hamilton ope-
rator is a time-independent one.
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One of the most important consequencesi of different boundary
conditions is, as is well known, that for a scattering process the
energy spectrum is real and continuous while it is complex and dis -
crete for a decay one.

The present paper will use the formal theory only,

It is perhaps worthwhile to illustrate the formal theory on a
simplest case, This insertion is made only due to didactic reasons
and certain readers could reading this papers simply by skiping over
these considerations.

Our examwple is the one-dimensional collision of two particles
having the masses m, and m, , respectively.

Let us denote by x |, and x, their positions and suppose that
their mutual interaction is described by the potential function V(x l—x,)

where, as one sees on fig.1, flim V =0 and flim V=V £ 0,
xl—xa-ﬂ—w xl—xa-vq-oo
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Fig. 1.
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As we previously said, this process can be described by solving

a time-independent Schroedinger equation, i.e.,

w2 da‘l’(xl,xa) 42 dz“’(xl.xa) (1)
- + Vix ~x YW ,x )-E‘l’(xl,xa)
Tmy 4l 2m,  dxp T3 1'%

subject to certain boundary conditions,
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In the following we will establish these conditions, In order to
settle our ideas, let us suppose that at the beginning of the éxperi-
ment (t+«=c) the particle m, is coming from the left while m, from
the rigth side of fie.2, and 1k ,‘uz are their momenta, Obviously,
in his case k; is a positive and k,; a negative quantities, The

wave function corresponding to this moment is
e .e (x >> x ). (2)

The particles are going on their nearness and interact with each
other, After that they move off again, in such a manner that at t ++«

two situations can take place:

Fig.2

a). Each particle is returning towards its initial region ( =, on the
left side and m, on the right one, on fig.2). b) The particles have
interchanged their positi.ons and m, is now on the right, while L
on the left, If we dencte by M‘;' nk; ,nxl, 1A . the momenta of the
partig;es in each of two possibilities just mentioned above, the wave
functions of our system are

itk x 1kgx

L (x  >>x ) (3)
corresponding to a) case (in any rate k’ >0) and

tAx 1A, x
e ! l-e L (12<<xl ) (4)

for b) case, Here A, >0 .

So far we have used the intuition only.

The second stage in finding the boundary conditions consists
in the application word for word of the formal theory prescription:

1. We ignore the physical evidence that the wave functions (2),
on the one hand, and (3), (4) on the other hand, are taking place at

distinct times,
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2. We remark that both (2) and (3) are valid within the same
spatial domain- (x4 >>x,) and urge for ¥ to be a linear combina-

tion of them, i.e.:

1 x4k x ) 10 k' x +n’x2)

‘l’(x‘,xa)-cle +C,e (x’-xl>>0)(5)

In addition
l(Xlxlﬁ-Xaxa )

Y « ,x Jm C e (xa—xl<<0) (6)
1 3 3

vielding as a linear combination of (4) itself,

3. The wave numbers &k, ,kg,kj.,ks, A, A, satisfy the

equations
. 2, ,12
ST %y S LT
+ - + =F,
2m1 ) 2lll2 2ml 2|n2 (7)
P RS
+ -E-Vw,
2m, 2m , (8)

due to the energy conservation law, and
2 (9)

’by the force of the momentum conservation law,
As a conclusion, the equations (5), (6) satisfying (7), (8), (9)

‘are the boundary conditions of (1) for the problem under ‘considera-

’ 4
kl+k2-kl+k2 -X1+A

tion,

This problem can be reduced to a simpler one by perfofming,,

as usually, the coordinate transformation:

(10)

mlxl +max-2. (11)

m + m
1

Using them the equation (1) becomes :
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2 42 (e,x) 2 4,y
. - V(¥ () eE P (12)
2(m1+m’)' dx 2 2m dr

while the boundary conditions (5), (6) get the following aspect

1tk +k,)x N -t
Pawae TP e e " e ™) (o (13)
1 +k,)x

1 2 iqr

W(r,x)ncae e (19)
Here:

D e et Za
m +m (15)

1 3
1 , ’ .
p-:l-l—:—:(m’kl—m‘k’)som’(m’kl -mlkz) (16)
q= Am A ~m A ), (1?)

mo+m,

By taking as a guide the separation of the functions which we
see in the equations (13), (14) of the boundary conditions we will jn-
troduce the new function ¥ (;) defined asx):

1k +k Ix
Y(r,x)ae ! 3

LITER (18)
Now, by straightforward calculation, it is easy to verify that ¥(r)is

the solution of the equation

22 4 ()

2m de 3

+ V()Y () m €¥(r) (19)

for ¢ & (= ,+ ), subject to the boundary conditions

1 -
‘l’(r)-c|° Pt +C3° o (r << o) (20)

far

V(r)-Cae (r> 0), (21)

®) The fact that the same Y is appearing in both sides of the equa-
tion (18) is not to induce confussions: the lef hand ¥ iIs obeying(1)
while the right hand ¥ is obeying (19).

Lo = o b e e S S A 5 mi

where R

rEs ot (22
2(m .t mn)
represents the energy in c,m.s,
One remark is to be made: the usual quantities involved in all
the definitions for the penetrabilities are |¥ (’1”2)I2and the current
density J which is defined as

J ¢! _;_...(¢"'(xl,x2 v ix l,x2)---<ﬁ(xl,xn)v¢"'(xl,x ’).(23)

where
1 d 1 d
- it — -
Vo= ! m dx m dx ) (24)

1 1 2

is the velocity operator. By using (10) and (11) it is easy to see
that

¥ G 01 e ) ? (25)
and

] -3 = L (U ¥ (- V() Er (), (26)
'l‘(xi:n) Yie) 2.

where expressed in r,x variables is

i8 d
Vome = (27)

i.e, it does not depend on x . As a conclusion, all the subsequent

considerations can be performed in c.m.s,

2, Penetrabilities for the One-Dimensional Scattering Problems

As we can see from the equation (16), p is a positive quan-
tity. Consequently, as the formal theory says, the first .term of the
right part of (19) represents a wave propagating from the left to the
right, or , in the language of the old variables x‘and x, the both
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particles m, and m , approach each other nearer and nearer (fig.3a).

The second. term is a wave propagating in the opposite sense or, V(()“
in other words, the distant m; and m, particles move off again and
again, (See fig.3b). As it concerns ¥ (r) given by (20), it represents £
a wave propagating from the left to the right but corresponding to \IA T T~ --
{
the case when m and m, have interchanged their positions (fig.3¢). : Joo
Intuitevely, the penetrability must characterize the transition 1 \ "% pul
from the situation envisaged on fig.3a to that represerted of fig.3c. : “:K’%/
We now denote by 0 the projection operator on the outgoing fun-
ctions (i.e. corresponding to fig,3a, 3b): . Fig.4
i The Schroedinger equation is :
Oq"(l)l 00 -Cle“” H O‘l’(l‘)l _’”-Cae‘q' (28) J
[ 3G I r .+ . ‘ ‘ﬁ’ d"l’(r) (30)
- m——— -+ V VY (r)am eW(r)
2m dr 2 t
l6-8] .

The first definition for the penetrabilities is s .
within i interval, and

2

: . w2 dY(r)

c ‘ ~ R L
P - 0'}‘(?)‘!"4"" - _ﬂ__ I-—-'LI . (29) ‘ 2m dr 2

400, =00 P C, ]

0¥ ()| rw-w ) within j interval,

FV, ¥ (- ¥ () (31)

As we can see this definition connects the value of currents in Now, by denoting:

the extreme regions of the real axis and for this reason we will 1 e e 1 B —
P -T\/zm(c-.v!), q’.T\/zm(,_v’) (32)

céll it asymptotic current penetrability (ACOP). It provides only a ‘ !

gross information about the potential v (:) .

]!

A more subtile information would be obtained by defining the we must solve the Schoedinger equation (19) for the interval [rl,r '
i+
penetrabilities for limited regions of the real axis. For example, it ’ subject to the boundary conditions

would be nécessary to study only the penetrability of the first bar- i ¥Y(r)aC e"'l' +C e —ip,r (rar ) (33)
‘ 1 21
rier belonging to the potential V(r) , shown on fig.4. In order to !

do it we approximate V(r) by a sequence of step functions and 5 Yir)ac 1q‘ r
Pi=tyy e (r-br,+1). (34)

consider the intervals i= [rl "1+l] and j ={r . H-l] bordering this ‘

§
barrier. i We can now define a local one-dimensional penetrability (LCOP)
", } : My . .
— E for this barrier:
- 3a Jown|
e T o P = T he 4 1 _Cy 2
M 2 1.1 ] - | . ‘ (35)
- Ff’.s‘ Oq’(r)lr-r’ { 1
I
11
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As we remark, the LCOP definition is inadequate when p,or 4, are
very small, This is, perhaps, the reason for which Gamow have
avoided to define penetrabilities using the currents,

The asymptotic Gamow one-dimensional penetrability (AGOP) is

simply/ 1: 9/:
2
. o |0‘l’(r)|,_,+,, _ c, I’ (36)
e, =2 oY (n)|® c,
P 4= o0

while for the local Gamow-type penetrability (LGOP) the definition is:

2
P . IOW(I‘)I,H,‘+1 -‘ C“ Iﬂ (37)
it |o¥()|? ¢

3. Penetrabilities for the Three-Dimensional Scattering Problems

According to the formal theory, the scattering of the two parti-
cles m, and m, is described, in cm.s,, by the time-independent

equationx)- 4

-2:'.AW(?)+V-(r)W(m =¥ (P). (38)
Here m is, as usually, the reduced mass of two particles, (15),
The boundary conditions which are to be imposed are genenrally
rather complicated but they get a simplest form if we additionally
impose as the two particle system to have a given total angular mo-
meatum @ . In this case, by using sphérica.l coordinates (r,0,¢),

the wave function can be sepahatedxx):

- ¥(r) 0
(T) = - 'Yzm( ). (39)

Here Y&‘ (6,4) is the familiar spherical function, the eigenfunction

of the operator

.

%) We suppose that the mutual interaction potential V(r) is a central
one.

Again we are not to fall into confusion as ¥ is appearing within
both sides of (39), :

12

)
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3 1 d d 1 J3
v = — (8i00 = ) § —— e
0.6 sim0 990 ’ a0 sin? @ 992 (40)

subject to the cordition to be continuous, single-valued and finite

throughout the ranges 0<6<r 0 <_¢ <in and normalized as:

[fa0 Yp (6.8) Y, (6.,4)=8,,8 ., . o (29)

By inserting (39) into (38) we find that ¥(r) satisfies the equation

3

? AP

. V()T =¥ (r) (42)
2m d.r2

for r1@[0,40)and

52 (4D
Vi) 5 Clr) 4 mmomm b,
S el (23

In order to fix our ideas, let us suppose that V(r) have for r > 0
the form given on fig.1. The boundary corditions for (42) are, ac-
cording to the formal scattering theory requests:

P (0)m0 (29)

coming from the fact that ¥(? of (39) must be a finite one at the ori-
gin and
, lar , =1laqr .
V(l')-lc1 e +C’ e (> 0)-, (45)
Now, the current for the three-dimensional problem has a similar de-

finition as for the one-dimensional case, i.e,

- - :
I _l_( - -v) FIY - (46)
¢“_’): 5 d* (I Ch (=g (D To* (P,
where
A i - Tt 19 » 1 d_.
Cmm e Vera gt o 59t o7amT 35" (a9
13



Due to the fact that in this three-dimensional case we are dealing
with surface we must take into account the flux of particles through-~

out a surface §

q)!f.’ ds . (48)

- .
In this definition 45 = 8dS and ? is the unit vector normal to the
surface element 45 and if § is the surface of a r radius sphere
we have d8 --;,.radﬂ a -l’, r?d(cos 0)d¢ . If we calculate the flux

by using (39) and the relations

20?7 2
tplgmi, 1 4=0 (49)

we easily obtain:

3 T, . d¥(n dW*(r)
= Jhgep ta 7 40=- W W (e miy (50)

r 2m dr r )

As a conclusion the flux value is given by calculating the current
for the function ¥ () , -

At the first sight it would seem that the definition for the pe-
netrabilities given in the one-dimensional case could be extrapolated
word by word for the three-dimensional one, This is not the case
at least for the following reasons:

1. In the one-dimensional case the domain or r was (=, +0)
while now it is [0, 4++) and at least asymptotic penetrabilitiés can
not be introduced,

2. Let us look what physical meaning would have a LCOP for
the three-dimensionall case., Supposing that j is at very large distan-
ce we would have, according to (35) and (45):

. 9

.C :

-P - e | A
400, 1 p ! C I (51)

1 11
but, if for the one-dimensional problem the function € aeh" really rep-
resents the particles which have already passed through the barrier,
the term ¢ ; o' of the last problem represents bdth the escaped
particles and the incident particles after their reflection on the bar-

14
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rier. Consequently such a "penetrability” really describes a mixture

between tunnel and reflection effect .
In order to define the penetrabilities for the three-dimensional

problem generally one renounces the scattering-type boundary con-

ditions (44), (45), by replacing them by a new one:

¥ r)-Cae"” (52)
x)
and no cordition at the origin .

This new problem (42), (52) is alike
and consequently LCOP and LGOP applied to it really represent the
tunnel effect, We will call them LCTP and LGTP, .

Besides them there are in the literature other definitions, For

XX, . .
)fhe one-dimensional one

example we can adopt for local penetrability the definition:

?

: C
P m Jo‘l"(l')lr-lHbl _ q,l T l
5.t ’T |'}'( )Ig 2 2 _“p!,' . ﬂlp’)‘
' . C C*e .
T LT ST I E LT J +C, 03
1 u’ (53)
which, in the partial asymptotic case becomes
B |
2 JoWen | e a1 ¢, .
! B ) atp (r54)
tooud 2 2 2 ~21p ¢ Ty
|¥(n} W -
= lcnl +‘Cﬂl +C’:4Cn° M Cll Me ’

x/’I‘he solution of (42), (52) is different from zero a.t the o.ntgmf i?:w
consequently it seems to be meaningles? t::'orr;osrglsn;::elo:?l?n ?h . fra-.

is i nly one of the short comings o e -
C;Vzvsvol:( ooi yWhich we are working, In reality {(42),(52) are th.;:a ioerr:ao.lbdd L
theory equations for the particle spreadu:xg problerr.l that is, 1t‘vr\iuou51y
gorously study the problem of the spreading of parhc!e.s co? ;-h u reféren—
ejected by a particle generator situated at the orlgm.o (12) (52).
ce system we would obtain the same results as solving ’

(20) does

-

xx/ In fact they are identical except the r domain, because
not impose any restrictive conditions on ¥ (r) .

15



Those definitions are currently used by Wigner’'s group/10'16/ and
for this reason they will be called LWTP and AWTP, respectively,
Both definitions have a peculiar surprising feature: according
to them the penetrability has the dimension (length)" 1,. contrary to
the other reviewed defintions which are dimensionless,
In order to avoid this, Lane and Thomas/17/ have used the
definition:

J
m e OW(')""H.I

3
it K W (n)?

r-r‘ (55)

fer local penetrability (LL/TP) and

J
P LY oW |t a4o (56)

*ot %) |?
f.fl

for the asymptotic one .x). Both (55), (56) are dimensionless,

Finally, it is worthwhile to point out again that for the three-di-
mensional scattering problem all the penetrability definitions are
coming not from the scattering equation (42), (14), (45), but from the

ad hoc equation (42), (52),

4, Comparison between Various Definitions of the Penetrabilities

As we have already shown the Schroedinger equation yielding
formulae for penetrabilities are the same for one-dimensional and
three-dimensional problems except the domain of r |,

We put down again this equation:

P 2
d ¥(r)
L A Y (neewi (57)
2m dr?
with the condition tqr
P(t)mg, e (r>>0) (58)

x)

The same definition is used by Vogt/ls/.

16
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and choose as a potential the function

- 0 r ' ry
Vi) = |y rp <r<ry (59)
\] . r’< r ‘
(See the fig.5).
Ver) A
at | ur

V, bmm ===

€

Vo[ "= =~ 1~= "~ ,
Y % v
Fig.5

a) Exact Calculation Formulae

According to this form of the potential we solve the Schroe-
dinger equation within each of the domains I, I, Il , as on the
fig.5, and after that we connect the solutions at the joining points

r and L If we denote:

T 1 oo 1. v )
p-—--—Il \/zm, . m-—iv2m(v:€), q--‘:-v2m(( ‘Vu) (60)
we find:
-1
"(r)-Clle“” +C:e pr r Gl (61)
1 -
"(r)-C:low' +Cl’ e 0)-' e &I (62)
) m far - - fiqr
’(r)-cl e +C, e r @ I (63)

Using the boundary condition (58) we obtain (64)
tr m .
c, - C. N C’ = 0,

17



We now connect (61), (62), (63) by requiring that at the joining points
r, and r, the functions and their first derivative be equal, So,we

have at the r, joining point:

1 Ipl»l 1 —Ipr, 11 w_', Il =Wry
Cle +C2e -Cle +C’e (65)
1 lery 1 ~leny n o N -y
- - — l
ipCIe ipCae wCIe mC’e (66)
and at the r, joining point
n or L1 —or 1
C, e 2 +C, e 2 =C,e " (67)
I Wry u "er, larg
wCle -wCae -iqCae . (68)
By introducing the notations :
C 1 C" c 1 C
Bl - 2[ y Aﬂ- Il Yy B2 - -——’—l— . AB - -——;— (69)
CI c 1 cl cl
the equations (65), (66), (67) and (68) constitute the system:
..lprl wrl "'"l |p,|
B e -A e - B e - —e
1 2 2
~lpr, wr, ~wry Ipry
-ipBle -—wAae +wB,e «ipe
(70)
an, -0 P lqr
A 2€ + B2 e 1. P L 0
wr -wr Iqr,
wAae —ane ~iqA e =0,

As we can see, in order to estimate the penetrabilities, only A,
and B; must be calculated. After easy but rather long calculation by

means of the determinantal method we obtain from (70):

1 ~1lqr
A= dipwe 1 o O
8
g @Wlrg=r)) —w(rg~r Wln=r) —w(y-r Wirgr) ~=w(p,~r,)
w (e e 2 ’))-i(p+q)w(e T 4o ¥ ~—qp(e 4“l-e R

(72)

e B el L bt

W(m=r) =w( (g~ ) =w(g~2r) W{(g~r)
Ipr, P P T’l;ﬁ(p-—q)w(e E :-l’e b 'i+qp(e LI e-m('r")_;
—e

BI-

@(ry=r) =0 (g1 @(g~r) =w(r -1 W(re—r) -
w (e —e J=i(p+qlw (e K ie ) N by
(72)

~qpite -e
If the involved barrier is thick enough (i.e., for example @ (r, ~r 1>10)
the term o« 3710 g very small as compared with (%" | By
supposing that this happens for our barrier, we will neglect e-m"-")’
and with this fine approximation,

4ip w ipry =lqrg -lu(t’—rl)
A a = — e e
Y (w-ip)w-iq) (73)
B @+ ip 1pr,
1 -- ®~ip e (74)

Now, because for the chosen potential the regions bordering the

barrier are just asymptotical, the asymptotic penetrabilities will be
equal to the local penetrabilities.

Using (73), (74) we obtain the following formulae:

ACOP, LCOP b Y 16 pw’q “Jaly-rp) (25)
e B i e et @
LCTP roame P8 (@? +pw P44
AGOP, LGOP b VL l6pTn? =it mrp 6
LGTP roome s (w3+p?Nw i+ ¢ 3
‘I}\Aa "
AWTP, LWTP P, = -
' : 2 =aipr, 21pr
1+|B, |” + Bje BY e
2 3 -1 (r’— r l) (77)
8 -
- e e (length)

(@ ’,+ p’ )(0’ +q ’)(l— cos 2[p(r 1 )+nrcl§p—])
w

19
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2 3 2
ALTP, LLTP P = 8qw pr, ety B =e e (83)
m!
w2 +p ’)(m’+q ’)(l—cosZ[p (r l—r' )+ arctg-R]) (78)
© \
‘The penetrabilities:
ACOP, LCOP q 2 mIelrgmry
b) JWKB Formulae ' P el B L (84)
. ‘ LCTP toymm P8 :
As is well know the solution of the equation (57) with the
boundary condition (58), is, in the JWKB approximaﬁon/lg/
r 2 -3 (r ~r,)
» 1fdcEral m AGOP, LGOP P =lA | = foe T
-t i ] ‘— LGTP 400, —o0 q (85)
¢ (r) e e >
7 t>r, (29)
W) - - debraf P ~20(,-1) 4
$ (e P << AWTP, LWTP Pows = e (length) (86)
) fq&(f)af . 3 ' 2(11—cosz[p(r’—r,)+f—])
- . .
24 (e - mietngmy)
cosl [ (§rag - 2] r<r, ALTP, LUTP P - AL e T (87)
where +ooud

2(1- cos 2[plr s )+-Z—])
D)@ eme / 2m |V (r) e
Some final remarks:

1, The formula (84), having unity as preexponential factor cor-

responds only to ACOP, LCOP, LCTP, in the frame of the JWKB

andr,, r, are the inner and outer turning points, i,e. the roots

of the equation V(r) ~ ¢=20, For our potential i i - i : ]
p we immediately obtain approach and can not be used for estimating other penetrabilities

[ ”

q-“e'-‘. “lamy  ar as Poggenburg dia/20/,
€ e r> . ! .

2. Gamow and Crichfield/g/, using the JWKB approa}ch, have

% ey —wr obtained for AGOP the formula

a e e

r, <|'<|'a (81)

¥(r) = ~2w(ry—r)) (88)

+ 00 , oo

P a4 -—-p e
~% l% w(rg~r) ~ipry ipr q
|4 e € [ e +

-% “‘L:‘ @rg=r) for,  ~ipr The appearance of the factor 4 is due to the fact that they connect

+ P e e e

\ © T the JWKB functions at the turning points, that is to say exactly

: . where they do not hold, The rigorous treatment by F‘rb'man/ 19/ leads
By inspecting this formula we get Ay and By : to the formula (85)

3. The discrepancies between excat and JWKB penetrabilities

p % fpe =1ar, ~weg=r)
Ay slmms) e ' e (82)

are embodied wighin the funct‘;on s 2

[As%swxn p @pH +g?) @ 1)B %) (89)
- L =f(a ,B ),

q 16p? w? 16af

f(p,0,q)=

2
A a| EXACT
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where

(90)

E\‘he fig .6 presents {(a,8) for a>1 and several B21 , The other

values are ecasily derived from this fisure if we note that

fla,Brafla,L)ar(Ll Brar(l _L,
B a a )

The s . .
1@  conclusion is the JWKB approximation underestimates the pe-

netrabilities if a and B8 are about unity and overestimates them
fora and B strongly clifferent of 1.

5. It is perhaps a shocking fact that the denominator of Wigner

and Lane~Thomas penetrabilities becomes vanishing for certain va

lues of Ty + Generally, in the concrete problems, these penetrabi-

lities ar &
are to be calculated at l‘"s where ‘W(r,)lz is maximum,

22

6. The penetrabilities can not be experimentally measured be-
cause the problems (19), (20), (21) and (42), (52) yielding penetrabili~
ties are corresponding to the one-dimensional scattering and three-
dimensional particle spreading processes which are, obviously, non-

experimental ones,
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