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1. The collective nonrotationa1 states in even-even deformed 

nuclei are studied in a large number of papers. Recently the ener

g ies and the wave functions of the one-photon states have been 

studied on the basis of the microscopic approach of the superfluid 

nuclear model. In these calculations the interactions leading to t!':e 

superconductive pairing correlations and the multipole- multipole in

teractions are taken into account. In papers/
1
-B/ in the framework 

of the approximate second quantization methx:l, the energies of the 

quadrupole one-phonon states and the B(E2) values are calculated 

for a number of even-even deformed nuclei. The mathematical me-

thods for considering the one-phonon states and the experimental 

information about them are i"ummed up in ref./
9
/. The component 

composition of the one-phono~ states is given in ref./
10

/ in the 

form of tables. The properties of the one-phonon states taking into 

t th · d 1 · t t' · t' t · fJ.11• 121 accoun e sp1n-qua rupo e 1n erac 1ons are 1nves 1ga ed 1n re • 

The energies and the B(E A ) values for the quadrupole and oc

tupole states are calculated in papeJ
13

/ ~th the use of the surface 

delta interaction. 
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All the calculations of the one-phonon state characteristics 

are performed up to now with the use of the one-particle energies 

and the wave functions of the Nilsson potentia/
1 4

/. In some cas es 

the accur acy of calculations was restricted by a rough description 

of the one-particle energies and the wave functions of the average 

-field. Besides, the available calculations are carried out for a res

tricted and therefore insufficient number of even-even deformed nuclei. 

In the present paper the characteristics of the one-phonon sta

tes of the quadrupoletype are carried out for a large number of 

even-even deformed nuclei in the region 150': A ; 174. The calcu-

lations are made )n the basis of the approximate second quan-

tization method with the use of the one-particle energies and the 

wave functions of the Woods-Saxon potential calculated in refs/
1 5

•
16

/ 

as well as with the use of the Nilsson potential modified in ref./
17 

/. 

The results of calculations are compared with the corresponding ex

perimental data. 

2. The collective vibrational states are treated by means of 

the approximate second quantization method (random phase appro

ximation). To describe these states we introduce the phonon ope

rators Q
1 

(A 1-') of multipolarity A 1-' 

' ~I , Ap.t + , 
(A/-' ) - ~ ~ I t/1 ,A ( q • q ) - ¢ ,A ( q q ) I . 

qq, q q q q 
Ql 

the operators 

') _1_~ 
A(q,q • ,[2u uaqaaq-u , 

B ( q ' q') • ~ 
(J 

a+ a 
qU q 'u 

4 

1 ~ 
(or:: {2 u a a , 

q(J q (J 

(or • ~ 
(J 

u a+ a 
q-u q 'u 

(1) 

) . (2) 

) . (3) 



are expressed through the quasiparticle operators a q u , q u 

denote the quantum numbers of the average field levels, u =+ 1. 

The wave function of the ground state ·of an even-even nuc

leus is defined as one containing no phonons 

(4) 

and the excited states are treated as one-phonon 

(5) 

Next, we calculate the average value of the Hamiltonian H o operator 

containing the average nuclear field, the interaction leading to pair

ing correlations and the multipole-multipole interactions over the 

sta!e Q~ (,\ p.) 'I' • The energy ~:p. of the state (5) ahd the functi

ons ~~ ~ , , '.q, · 1 , are found .bY means of the variational principle 
qq qq 

(the excited states are lebelled by •1,2,3 ••• in the order of in-

c rease of the excitation energy) 

~,\p. 

8{< Q 1 (,\p.) H
0 

Q 1 (,\p.)+>·- ,-
2
-1- 0:; '<rfi!~l, 

<nl'· 

2 
) - 2 ) I . 

When the diagonal matrix elements are absent (i.e. for gam'Tla and 

octupole vibrations) the secular equation is of the form: 

Au. 2 2 

( '> ( ( ..- ( q q ' . ) u q q , ( ( ( q) + f( q ') ) 
A ~ 

- 2 I( ~, ---------..----.-----..---
qq (f(q) + dq'f -<wfP. )::1 

(7) 

Here K <A> is the interaction constant of multi polarity A in this ca-

se it is assumed ~e<A> = K <A> = K <A> = K <A> , fAp. ( q q ' ) is the matrix 
pp DD Dp 

element of the multipole moment operator ,\ p. 
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( q) v c2 + ! F: < q l - .\ l . u 
QQ 

u v 4 u ,y 
Q Q Q Q 

2 2 
in this case U + v = 1 

Q Q 
U

2
= Y. !l + 

' Q 

E( q) -.\ 

( ( q ) 
l. where C is 

the correlation function, .\ is the chemical potential, E ( ql are the 

energies of the average field one-particle levels . 

The function U q q, defines the predominant intera ction pa rticle

hole as compare d to the intera ctions p a rticle-hole a nd h o l e-hole. 

U sing the normalization c onditi o n i t i s easy t o find 

t/1 ¥~ 
QQ 

rAf.L (qq 'l Uqq' 
(8) 

.. ,;-2 Jyl<il.ftl ( < q ' + ( < q ,, - w xf.L 
I 

cp 
i\f!l 

Af.L , l U 
f ( q q QQ 

Af.L w 
I 

.,j Y 1 (Af.Ll (9) y2 QQ dql+dq'l+ 

I 
y ( Af.L l • }; 

QQ 

¥ 2 2 ¥ 
<r (qq 'll uqq'cu 1 (f(ql+dq'll 

, 2 Af.L 2 2 
[(dql +dq )) - (cu 

1 
) ] 

. (10) 

In this trea tment the collective nonrotational excited states 

are considered side by side with the two- quasiparticle excited 

states. The wave functions of the collective nonrotational states 

are a superposition of the two-quasiparticle states. 

The collecti ve K" "' 0 + states contain both the nondiagonal 

and diagona l ma trix ele ments o f the qua drupole moment operator. 
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• K
17 o+ ( ) S1nce among the = states there is one redundant spurious 

state then the corresponding secular eq~:~ation is found simultane

ously with the exclusion of the sp'jrious state, To ihis end the 

method suggested by Baranger/
18 

is used. The explicit form of 

these equations is given, e.g. in ref, /
3

/ their particularities a re 

studied in ref./
6

/. 

To improve the accuracy of c a lculations in ref ./
6

/ a sirnpli

fied method of taking into account the blocking effect was sugges

ted, It consis ts in the following: firstly, the chemical potentials A n 

and A P for the one-phonon states are determined from the condi

tions of conservation, on the average, of the number of photons 

and neutrons, which have the form 

N "' < Q 
1 

( AIL ) I. a+ 
~a ea 

+ 
a Q ( AIL l > , 

eU I 
(11) 

+ + 
a a Q (AIL)>; 

VU VU I 

secondly, the quantities £ ( q ) + f ( q ' ) are replaced by [i, (qq ')- [i, 
0 

i,e, by the difference of the energies of the twcr-quasiparticle and 

g round state calculated with the account of the blocking effect. 

This improveme nt is used in papers/
6

-
10

/ in calculating the energi-
·• 

es of the one-phonon states. 

We note the particularities of the solution of the secular equ-

ation (7) . When an 

the first root wAIL 
I 

this case a small 

one-phonon state is a s trongly collectivized one; 

is lowered much below the first pole in (7). In 
(A> 

change of K leads to a noticea ble cha n g e of 

the collective s ta tes energy. To improve the accuracy of calcula

tions in this case it is necessa ry to go beyond the framework of 

the quasiboson a pprox ima tion, If the value of the root is close to 

that of the pole then the state becomes close to the two-quas ipa r-
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ticle one and the accuracy of calculn l ions is mainly restricted by 

the rough description of the average field levels. 

3, The calculations of the characteristics of the one-phonon 

states are performed with the following two schemes of the one-par

ticle energies and the corresponding ·wave functions: the modified 

Nilsson potential and the Woods-Saxon potential. 

In ref./
17/ an additional term proportional r-to <f3 >. N(N;a) 

was introduced in the Nilsson potential. The account of this term 

permitted to c ons tt·uct the one-particle level scheme for nuclei 

in the actinite r 2 g ion w ith the same v a lues of the parameters ll 

and K. and to decrease as compared to the popula r scheme given 

in /lg/ the number of shifts of the s ubshells a nd the number of 

parameters for nuclei in the reg ion FiO <A < 190, Some improve

ment of the paramete r s of the modified !'Jilsson potential is made 

in ref/
20

/. A s a result, a r athe r good description of the one-par

ticle average field l evels .is obta ined. 

In r e f./
1 5

/ a n a pproxima te meth:x:i of find ing the eig envalues 

of the ene r g ies a.nd the wave function o f the Woods -Saxon poten

tial was suggested which turned out to be very effective. We have 

.used the one-particle energies and the wave functions calculated 

by this method in /
16

/. However it was necessary to improve slight

ly the Woods-Saxon ~tential parameters. In the scheme of neut -

ron levels given in re~/16/ the sequence of the one-particle 633 t 

and 521 ~ levels is not correct. To elimina te this shortcoming in 

the spherical basis the following subshells were shifted up as fol

lows: 2£ 7/2 by 0,07 MeV, lb 0 / 2 by 0,13 MeV and 3p 1; 2 by 0,5 MeV. 

This shift can be made by the two ways: either by changing the 

spin-orbital interaction constant by 10°/o or by cha n g ing the para 

meter r 
0 

by 0,0 1 (in units 10-
13 

em). 
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I n the c a lcula tions bas e d on the Woods-Saxon potential the 

r egio n of deformed nuclei 150 < A < 1 90 was divid e d int o three 

zon es: A= 155,A = 165 a nd A= 181 and the c a lcula tions of the one 

particle energi es and the wave functi on in ref/
1 6

/ were per forme d 

for these values o f A. T he r esults o f calculations in the zone 

A = 181 a r e published 3epa r atel)
2 1

/ . In the pres ent c a lcula tions for 

the neutro n s ystem a n a d d itional zone w ith A= 17 3 i s introduc ed. 

The calcu latio ns i n the z ones A= 155 and A=-165 a re perfor

med for the deforma tions f3 0 = 0.31 a nd in the zone A= 17 3 for f3 
0 
= 

= 0 . 26. 

The levels of the low est shells in the neutron sys tem up to 

N = 3, in the proton one up to N = 2 were not taken into account. 

T hus, in solving the secular equations 43 neutron and 40 proton 

levels w e r e calcula ted. All the matrix elements of the quadrupole 

moment operators between th e one-particle states were taken into 

account. To· this end the program of calculations with the electr~ 

nic c o mputer· r BESM-4 was improved, as compared with the cal

culations in /
6

-
10

/, so that it became possible to solve secular 

equations containing up to 5 0 0 different matrix elements. The mat

rix elements of the multipole moment operators by the wave functi -

ons of the Woods-Saxon potential were calculated using an ALGOL 

program. 

O wing t o the absence of common rules it is very difficult to 

compare the matrix elements o f the operators r .\. Y ).p. calculated 

with the wave functions of the 'IVoods-Saxon and Nilsson potentia ls. 

It may be said that the matrix elements allowed by the asymptotic 

quantum number selection rules are rather close to one another 

a nd the remaining ones may differ by a factor of several times. 

However the following rough relations between the matrix elements 
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calculated with the wave functions of the Woods-Saxon and Nilsson 

potentials may be given : a) matrix elements of the type 

A 
< N, n , A I r Y, I N + 2 ,n ' , A ' > · 

z "P. - z 

are close to one another if 
, 

nz • nz ; if n z differs strongly from n 'z 

the Nilsson matrix elements are very small they are by two orders 

smaller than those calcUlated with the wave functions of the ·Woods

Saxon potential; b) matrix elements of the type<N,nz,AirAYA 0jN,<.~ 
are close to one another if n = n' and if n Ia n' they may differ z z z z 

by a factor of several times, c) matrix elements of the type 

< N n A I r Ay, I N ' n ' A ' > are close · to one another for n .. n' , 
, z 1\1' ' z t z z 

in the remaining cases the difference fluctuates strongly. 

'I'he p airing interaction constants G N and G z w2re chosen so 

that to obtain correct values of the pairing energies. In this case 

the correlation functions turned 'O>ut to be close to those given ·in 

ref./
20

/. 'I'he quadrupole-quadrupole interaction constant were cho

sen so that to describe in a best manner the first K 
17 = 2+ state 

energies. It is taken to be equal to 

(2) -4/8 MeV 
K = ( 2,5 - 2, 6) A --r 

em 

in calculations with the Woods-Saxon potential and equal to 

(2} -4/8 
K = 6,7 A 

0 
hw 

0 

in calculations with the Nilsson potential. 

(12) 

(12') 

4 . We have calculated the energies and the wave functions 
17 + + of the first and second K = 0 and 2 statoes and the correspond-

ing B(E2) for even-even nuclei in the region 150:;: A 'S_174. 

A large amount of new information on the energies of the 

• 17 + ( ) ftrst K = 2 states and on the B E2 for them has been recently 

10 



obtained/
22

• 
23

/ • In the region of nuclei considered by us this 

information is complete enough. On the basis of the experimental 

data the K ~:: values are calculated which correspond to the ener

gies of the first K" = 2+ states measured experimentally. Fig.1 gi

ves the K (:1) values for nuclei in the region 150 S A "S_ 186 includ-
exp / / 

ing the results calculated in ref. 
21 

• These calculations were. per-

formed with the energies and the wave functions of the Woods-Saxon 
• • (:1) 4/8 

potential. It is seen from thts ftgure that K expA value is about 

consta.nt; it is practically constant for nuclei f~:"om 15 'N d to 188 Er 

then it fluctuates weakly and for nuclei from 
176

Yb to 
18

(0sis practically 

constant which is by (10-15°/o) sma.ijer than the corresponding va

lue in the beginning of the deformation region. It should . be noted 

that the introduction of a new zone A= 173 leads 'to a noticeable dec

reases of the fluctua tion of K <2 > A •/a for nuclei in the region A= 168-
exp 

17 2. In calculating the first K" = 2 + state energies with the Nilsson 

potential wave functions the obtained K :
2;.f ~18 values deflect strong

l y from the cons tant as compared to the results of Fig.l. 

According to/
24

/ K< 2> is proportional to A - 7
/

8
• In the calculati

ons with the Nilsson potential wave functions the dimensionless 

matrix elements are proportional to A-t/a • Therefore K (:1) (in Mev) 
-6/8 

is proportional to A • In the calculations with the Woods-Saxon 

potential wave functions the matrix elements are independent of A. 

Fig.1 gives the K<'lJA
7

/
8 

va)ues which fluctuate about the constant. 

f 
(2) -7 /a . 

Apparently the decrease o K as A ts too large and the de-

pendence A -4/a seems to be preferable. However, in the region 

15 0 <A < 1 90 both dependences K <2 > on A do not contradict the 

experimental data. 

A small part of the obtained results is g l.ven in T a ble 1. The 

e n erg ies of th e first K 
17 

= 2+ states and the B(E2) a re calculated 

with the one-particle v alues o f the energ ies a nd the w ave func tions 

11 



of the Woods-Saxon and Nilsson potential for the same values 

of the constants K <
2

> • All B(E2) in one-particle units B ( E 2) a.p. 

3.A 
4

/
8 

e 2 1o-
68 

em 
4

, are calculated with the effective charge value 

e <
2

> =0,2, i.e. for protons e =1,2 , for neutrons e =0,2 • It is seen 
eff P n 

from Table 1 that the calculated first K17 = 2 + state energies and 

. ( \ (2) 4/8 (2) 
the correspondtng B E2.!. calculated for the same K J\ and e eff 

values are in rather good agreement with experimental data. It 

should be noted that a part of the obtained results is given 

in the report by Voge/
2 5

/. 

. I 6 I f . < 2 >A 4 I 8 t f" K " 2+ . As tn ref. or a gtven K he trst = states tn 
17 2 17 4 • rt• 

Yb and H£ are actually two-quastpa tcle ones and the second 

K 17 = 2+ states collective ones. The energies of the second K 17 = 2+ 
. 172 174 ( 

states calculated m Yb and H£ are 1,8 and 1, 9 the B E2) are 

1,8 and 1,6 respectively. A small increase of the constant K <
2

> 

results in that for these f)uclei the first solutions of (7) become 

collective, and the second - two-quasiparticle ones. As is shown 

in ref./
261 the same effect takes place when one introduces the 

spin-quadrupole interaction. In other cases the spin-quadrupole 

interaction effect on the first K 
17 = 2 + states is small and on the 

K 17 = 0 + states it is fairly essential. 

The calculated characteristics of the second K 
17 

= 2+ states 

point out that they are collectivized more weakly than the first 

one. The quantities Y 2 (22) showing the degree of collectivization 

are by abot.,~t two-three orders larger than Y 1 (22). The B(E2) for 

the sec-ond 

t.:cle units. 

" + K = 2 states assume the values 0 ,02-0.03 one-par-

The behaviour of the obtained energies of the first 0+ states 

reproduces to a large extent the results given in refs/
6

• 
91. So the 

energies of the first 0 + states are lowered rather strongly in the 

12 



beginning of the region of deformed nuclei (0,7 MeV for nuclei 

with N= 90) then they increase with increasing A, In nuclei 

160 
-

164 Dy , 162 - 168 Er the energies of the first 0+ states exceed 

the energies of the first 2+ states, Most of the first beta-vibratio

nal states are collective ones. 

Since th~ excited K "=0+ states have different structure 

(among them the two-phonon states are possible) it is difficult to 

compare the calculated energies and the B(E2) for excited I"K .. 2+0 

states with the corresponding experi>nental data. If we assume that 

the experimentally observed first 0+ states are beta-vibrational and 
( ) (2) 4/8 

calculate K 
2 then the value of K A differs noticeably from 

exp exp 

the constant for the nuclei of the considered regio·n. The value of 

K '
2

' A 
4

/
8 

is somewhat smaller than the corresponding values in 
exp 

Fig.l. in the region of Sm and Gd isotopes and increases notice

ably in the region of the Er and Yb isotopes. To describe cor

rectly some lowest K" =-0+ excited states further investigations are 

needed, 

5, In the microscopic treatment the collective non- rotational 

states are considered side by side with the two-quasiparticle ones. 

The wave functions of the one-phonon states are a superposition 

of the two-quasiparticle states. The investigations performed showed 

that the majority of the first excited states with K" =0+ and 2+ 

have clearly expressed collective properties and a large number 

of the two-quasiparticle states contribute to their wave functions. 

Information on the component composition of the one-phonon 

states can be obtained from some experimental data. They include 

beta decays to one-phonon states, cross sections for direct one

nucleon transfer reactions with the excitation of these states and 

gamma transitions from higher states to one-phonon states, The 

13 



experimental methcxis of determination of the one-phonon state com

ponents are sum'l'led up in ref./
27

/. 

In ref/
28

/ one has attempted to determine the quantities t/J 22 ! 
qq 

from the (dp) reaction cross sections normalized to the cross sec-

tions for the two-quasiparticle state excitation. Table 2 gives the 

o/ :: ~ calculated with the Nilsson potential wave functions as 

. flo/ d . t /28/ well as calculated n1 -· . an In the presen paper. In ref. the 

cross sections calculated with the o/ ::! values g iven .in 'I'able 2 

are compared with the corresponding experimental data. 'I'he results 

of calculations are in gocxi a greement with experiment where t/1 ::] 

are large and the cross sections are a lso large. Wher~ the cross 

sections are not large the calculations give somewhat underestima

ted values ofo/ 22 ~ if it is assumed that the contribution to the 
qq 

cross section is given by only one two-quasiparticlecomponent. In 

the latter case it i s necessary to analyse the contribution of other 

two-quasiparticle components. 

The quantities t/1 22! calculated on the basis of the Wocxis-
qq . 

Saxon potential are somewhat larger than those obtained earlier. 

However, they do not contradict the available data on the cross 

sections. From the analysis given in Table 2 it follows that the 

calcula tions based on the a pproximate second quantization methcxi 

with the use of the multipole-multipole interaction describe correctly 

the l a rges t components of the first K rr "'~+ states. 

6. 'I'he following conclusions may be drawn on the basis of 

the performed investigations· 

. 1) In calculating the first K" "'2 + one-phonon states the most 

important part (defining the properties of those states) of the nuclear 

forces is taken into account. Therefore for the overwhelming ma

jority of nuclei the experimental energ ies and the B(E 2) of the 

first K"=2+ states with the one v a lue of the constant K<2 >A 4/ 8 

14 



and with the one effective charge value e ~~, are well described, 

2) The calculated energies w~ 2 and the B(E2) which are the 

integral characterictics of the one-phonon states depend weakly 

on the details of the radial dependence of nuclear residual interac

tions and on the radial parts of the wave functions describing the 

average field one- particle states, So, the calculated w2
1
2 and B(E2) 

with quadrupole-quadrupole forces and surface delta interactions 

(for the same energies and the wave functions of the Nilsson po

tential) equally well agree with the correponding experimental data, 

Further if the sequence of the one-particles states is chosen to 

be identical then the calculations of w
1
22 and B(E2) with the wave 

function of the Nilsson and Woods-Saxon potentials give compara

tively close results, Thus, the energies of the first K" = 2+ states 

and B(E2) are defined by the general properties of residual inte

ractions and the average field potentials, These quantities depend 

mainly on the sum of the average values of the corresponding mat

rix elements. 

3) The calculations in which the eigenvalues of the energies 

and the wave functions of the Woods-Saxon potential are used 

have some a dvantages as compared to the calculations based on 

the Nilsson potential. The Wood s -Saxon potential describes more 

correctly the average nuclear field than the Nilsson potential: it 

is finite, takes into account the diffusness of the nuclear bounda

ries, and changes in the behaviour of the energies and the wave 

functions depending on the mass number A and so on. All this 

leads to more correct description o f the matrix elements. Besides, 

in order to g et a correct sequence of the Nilsson potential l evels 

it is necessary to make a number of arb itr:try shifts of the s ub

shells a nd in some cases of some levels . Therefore to decrease 

15 



the arbitrariness in the calculations/
6-lO/ the identical values of 

the one-particle energies were used and thereby changes in the 

equilibrium deformations of different nuclei were not taken into 

account, In the 'Calculations based on the Woods-Saxon potential 

the correct sequence of the one-particles levels is provided by 

making the potential parameters more accurate. In this case the 

calculation can be performed at deformations ' Corresponding to the 

equilibrium form of each nucleus, 

4). The obtained energies and the wave functions of the one

phonon states allow to make the following calculations of the de

formed nuclear properties: a) to study non-rotational states in odd

mass deformed nuclei taking . into account the interactions of quasi

particles with phonons; b) to find the two-phonon state admixture to 

the one-phonon states; c) to study the complication of the structure 

of the deformed nuclear states with increasing ex"citation energy 

(this is seen from examples in ref.f
29

/); d) to take into account the 

relationship of the internal motion with rotation and the connection 

of different types of oscillations among them. 

Thus, the calculations of the one-particle · energies and the 

wave functions of the Woods-Saxon potential, the account of the 

superconducting pairing correlations and the calculations of the 

characteristics of the one-phonon states serve as a basis for fur

ther study of the structure of deformed nuclei. 

In conclusion we express our gratitude to H.J.Wiebicke, 

F.A.Gareev, K.M.Zheliznova, S.P.Ivanova, P,Vogel and R.Sheline 

for the help and discussions. 
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T a b 1 e I. Energies of the first K~ =2+ states (in MeV) 
and the B(E2)/B(E2) values. For nuclei in 
the region 150 ~ A S.£_ 174 

=== ::::.;;;-:.==========..::===:-~La• -••:u•"S• --~~z==== ===== === = === === = ===== 

Nuclei 
Energies of K" = 2• stales (in Mev) B(E2)/B(E2)~ 

c 
0 

ca.Icui':'l)y"--~aiCul:Oy--'Calcui:'6y 
Exper. W al il u~y Nilsson Exp. Woods-saxon Nilsson 

gangmeaxon Scheme scheme scheme ==== === c:::: :::z === = === ===== ==::.========================================= 

l .. s. 
1usm 

"•cd 
l&e Gd 

168
Gd 

u oGd 

""or 
""or 
IOODr 

'""or 

u• Dr 

UOEr 

11:1Er 

184 Er 

111 Er 

118 Er 

no Er 

too Yb 

1.060 
1.088 
1.4J7 

0.998 
1.155 
1.185 
o.988 
0.890 
0.948 
0.966 
0.890 
0.761 

0.897 
0.858 
0.786 
0.821 
0.9)1 

IU Yb 0.986 
ITO Yb lol40 
ITO Yb 1.486 
u•Yb 1.6JO 
ITO Yb 1.254 
ITO HI 

112 RI 

IT< H I 

1.0 
1.1 

1.1 

1.0 
1.1 

1.1 

1.0 
0.95 
0.98 
0.87 
0.94 
0.78 
0.78 
0.95 
0.95 
o.8o 
0.78 
1.0 
l.J 
l.J 
0.96 
1.5 
1.5 
1.5 
1.0 
1.0 
1.5-
1.5 

1.1 

1.1 
1.4 
1.4 
0.9 
1.2 
1.2 
1.2 

0.84 
0.87 
o.8J 
0.67 
0.96 
0.98 
0.96 
0.79 
1.1 

1.4 

J.4 
2.7 

4.7 
4 
2.7 
2.8 
8.7 
6.J 
5.7 
4.8 
4.4 

7.1 
7.1 
5.8 
5.8 
4.0 

4.5 
2.8 
l.J 
1.4 
2.1 

4.7 
4.1 
J.9 
J.8 
4.4 
4.2 
4.1 
J.6 
5.0 
4.7 
4.9 
4.7 
,.5 
4.4 
4.2 
4.1 
J.J 
J.8 
2.9 
1.5 
2.9 
2.0 

1.6 
1.8 
2.5 
1,8 

9.2 
9.7 
7.8 
6.8 

12.7 
9.8 
8.6 
8.0 

1).6 

12.1 
ll.J 

11.9 
12.7 
ll.J 

10.5 
10.6 
8.J 
5.8 

== == ==== = === == == == = = ============z:=•==================~========== 
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T a b 1 e 2. Calculated~281 cross sections far 65° excita- ~ ~ , 
tions of K = 2+ state! in (dp) reactions ~-
and the calculated ~/' values 

======================a=z========•=•==•==================zDm= 
Final drs /d~ Initial Calculated I *H' I 
nuclei states Configuration in ref.1n ref.In the 

[JtC,/st>) /28/ /10/ present 
-------~~------- -- ---- --

paper 

156Gd 21.6 521 521 + 521 0.41 0.44 0.70 
158Gd J2.5 521 521 + 521 0.52 0.60 0,82 
162D;r 1.8 642 642 ·- 640 0.10 0.11 

642 - 660 0.28 o.Jl 

164Dy 18.1 52J 52J - 521 0.52 0.71 0.80 

16~r 0.5 6JJ 6JJ - 6Jl 0.12 
6JJ - 651 - 0.16 o.J4 

174Yb J5.6 512 512 - 510 0.56 1.1 1.0 

======·==··=========================·=·=··=··=~========·=·==== 
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