














‘formationsxz. This way we come to the loce 0(4) sym—

'y which will be also considered.

Bol the representation of the group of moticns on the
imensional sphere and its reduction to SU(3) or 0(4)

ve the répresentation of the permutation group P2(3>°

8 why this aescription 1s extraordinary convenient for
ystem of th:ee equivalent particles., In the present

we will restrict ourselves to this simple case. In the
al case of arbitrary masses some new features will ap-
only when we expand the amplitudes or the wave functions
e interaotling particles over the basis functions/s/. As
well-known, the boundary of the definition of the func-—
depends on the masses.

Concerning the construction of the basis, a question

¢ whether 1t is necessary to build up the basis with

of K-polynomials of the harmonlc functions of 0(6).
usly, Lf the interaction between the particles 1is

and their motlon dlfferc only slightly from the fr=ae

so this choice of basis functlons will be natural. If,

e contrary, the particles are strongly bounded and form an
t rigid triangle, a basis not obeylng the Laplace equa-

on the six dimensional sphere turns out to be more

“ZLet's turn our attention to a formal analogy with the

r problem. The planetary motion along the elliptical

ctory can be described as the projection of the motion
the great circle on the four dimensional sphere onto its
orial section. Ellipses with equal major axes are cor-
nding to different great circles. After carrying out the
formation of time, we can show,that the Kepler motion will
scribed by the free motion of a point on the four-dimen-

1 sphere. (That 1s the famous Fork symmetry).






II. Choice of Coordinates and Group Properties

The usual way of choosing the coordinates is the fol-
lowing. Let xi(i = 1,243) be the radius-vectors of the three

‘ticles, and fix

X, + X, + X3 =0 . (2.1)

t

The Jacobi coordinates for equal masses will be defined

% '—E(xq*x;) ) (2.2)
7[ P E(X|-x1) ; (2.3)

2 z 2 2 z
N s 2 20 42 XU ex k) = F | (2u0)

We might define similar coordinates in the momentum sTace as
well. Ir that case conditiom (2.1} means that we are in the
center—of-mass frame, and QL is a quantity prorortional to
the energy.

The quadratic form (2.4) can be understood atc an invariant
of the 0(6) group. In fact, we are interested¢ ir the direct
product 0(3) x 0(2), as we have to introducs the total an—
guwlar mementum observables I ani ¥ (group 03)), and
guantur numbers of the thrze—particl

groun 02).



To characterize our three-particle system we need 5
quantum numbers, Thus the 0(6) group is too large for one
purposes and it is convenient to deal with SU(3) symmetry,
in case of which we dispose exactly of the necessary 5 quan—
tum numbers,

Let us introduce the complex vector
2k - in (2.6)

The permutation of two particles leads in terms of these cooxm-
dinates to rotations in the complex & —plane.

nCE) RBMEY) REMET) e
The condition

A 2 3 L 8
§ « -2l - ¢ (2.8)
gives the invariant of the group 8U(3)€0(6). In the following
we will take ? = 1.
The generators of SU(B) we define as usual
L]

. ’ 12" 2
A'k = 2.~ - 12 'D

i3 . - (2.9)

%
k 21
1 SU(3) D> su(2) > U(l) familiar from the theory of

symmetry nf hadrons 1is of no use to us, because it



. going this way we can't introduce
;um numbers. Instead of that, we

) D 0(4) ~ 80(2) x 0(3) and

xls, we have to separate from (2.8)

renerator of the rotation group

(2.10)
2 ¥ _-.*2
k‘32.+|2‘:)—z:" \2,"5;‘;,,)'
irt

(2.11)
-9 z*jl_._sz 3 e

roup of deformations of the triangle
ully isomorphic with the rotation

loe a scalar operator

- - .‘:) 2012
- z._ﬁ?) | (2.12)

=i

stemy, we choose the following

10



KK+ 4) -eigenvalue of the Laplace operator (quadratic
Casimir operator £6r 8U(3)7

L(T +1) -eigenvalue of the square of the angular

momendum operapr 12 =4 > Lik ’ (2.13)
i>k
M —elgenvalue of L3 = 2L12 )
V) -elgenvalue of N ‘

Although the generator (2.12) is not a Casimir operator of
su(3), the representationmight be characterized by means of
its eigenvalue, because, as it can be seen, the eigenvalue
of the Casimir operator of third order can be written as a
combination of K and V . (If the harmonic function
belongs to the representation (p,q) of SU(3), then it is
the eigenfunction of A and N with eigenvalues K(K+4)
and V respectively, where K =p + q and VY = p—-g).

The f£fifth quantum number is not included in any of the
considered subgroups, we have to take it from 0(6)., We define
it as the eigenvalue of

1

This ocubic generator was first introduced by Racah/s/. Its
physical meaning we will disouss later.
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1etrization of a Complex Sphere

1g with a 3 particle system, we have to in
5 which refer explicitely to the moving ax

s5ible parametrizations of the vectors 2

wing:

";'} & s ol

Tilosg d vasind L) (
i :

Ll(oos%(_ {‘-usm%l,_) , (
f2* =1 (3
z

2 :1 ) {‘(l =O M (

orthogonal unit vectors {l s (L and |-

oving system of coordinates. Thelr orlente
red coordinate system can be desoribed wit:

iler anges \ » e, \&.

'.in\().sinﬂcosei - CoSpsing, -Sinpcosgcosd | simashé% K
;osxflsim?lcnse ; —sm\ﬁsin\?zﬂog\ﬁ@gf{,sa ’ -ms‘ﬁs;ng i !
cosq),_sine‘, (,ose§
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vect
this
tion

angli

where

& = q% (4, +14,)

(3.10)
{~ =—\;—i({(-|‘{z>
The vectors {f ’ {‘ have the obvious properties
L=t -0 (3.11)
(0 = {4’ Y,e- = '-l.(
A=A C-q

Let's turn our attention to the fact, that the components

of {_ and {_. may be expressed through the Wigner D-func-

tions, defined as

¢ ~ilmyp +ng, ) § \
D, Ly, @‘\DJ SIS P {cesh) (3.12)
¥ i M
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where

No

of the

an expo

exp2iM

the two

Y &

Tirst D-iunction too, 1f we put D;'H(()lq‘—z\f,). Later on we
will use a new variable ..Q3 (in the co-moving system), and
the Euler angles in the first D-function will be written as
A, a » =282, . Thus, the angle Lﬁ (or 2; ) plays a
double role as an Euler angle 1in two spaces simultaneously,

IV. _The Laplace Operator

VWe have now to write down the operators, the eigenvalues
of which we are looking for. First let us construct the Lap-
lace operator. We could do that by a straightforward calcula-

i 2
tion of A - lA(k\ 5 but we choose a simpler way. We
calculate

dz <« —%zd) + -Z'La'm({xz‘)a(q -~ (dwxz) . (4.1)









Expressing (4.7) in terms of the Euler angles, we get the
Laplace operator in the form obtained :Ln/4/:

] 2

. - PR ~ 2 -
4 Aﬂ\ {-103 t 2 Cosal <Ae ?\P‘)
_ sin P i (4. 10)
Z—A-up%q [Losz‘f,( Ag t 7‘?. + 2= ?6’—> +
+sin2\9,(____”°°‘19.3_ -206 3

Sintd a\{J' Sln 3 3\{) &163\6‘39 7\«9 'aa:&?g‘)] ,

._i (2
A, pd +d’c$a Sk (D—AZ +('059}2-Q3 q J_Qz) (4.11)

+d-ﬁ6 Sm”e( G —Zws-%ﬁl+7\f>

(4.12)

Formally, substituting

%1 VZ sin (\{’ )[ d39 o i, }'Fr(,os(\‘,) +-_)—%-

(4.13)

3'X ”U—Z—(,OS(\{’l-tl)[ C"Cie-——z Aoy §|n9 g\f] +Esln(‘€1+£>%
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_ {+sing () 2 iR
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Acting in the space of polynomials of 8, there exist
following operatorial identity:

{-sing 2 . 2
. Cosa m‘ m,_ . (

(Naturally, functionally that is not true). Thus, in
space of polynomilals of § Bik might be written as

By = Zék’“ /Jq'(~\ma 2.
ik e s * o l o By Zd'r,q.)_ﬁsj
(ik)
- itsing 2 =] ¢
{’“[ e M *':E‘-&}“msj +
) ~, N >
+l£|sg—o’i-f Bﬁl 4——2% Jlk .

This remarkable feature of Bik is due to the fact, t
are dealing with a system of just three (and not mor
particles. Indeed, the three particles form a trieng
so that the deformations take place on 2 plane, whil
and 2 act in the three-dimensional space.

302,

For the sake of completeness let's write down ¢

autation relations
























