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Bennep B. E4 - 3987 
Hepaanoaecna51 TepMOIU!f!aMI!Ka C8epxrrpo80JllllUHX crrnaaoa 8 cHnhHbiX 

MBrHHTHbiX ITOnllX 
B pa6oTe nccnenyeTcl! C8epxrrpoaonHHK c neMarnHTHbiMH rrpnMecllMH 8 rrpE 

nenbHOM · cnyqae Man oil cpenneil nnHHbi c8o6onnoro rrpo6era ( f <<( 0) n cnnhHO 
ro MarnnTnoro rronll ( II .. H c~) • 11crronh3yJOTC51 rrpnnuHITbi <PenoMenonornqec ­
Koil nepaBHOBeCHOil TepMOJlHH8MHKH Jln51 8bl'IHCneHH51 JlHCCHIT8TH8HOH <f>yHKUHH. 
ilnll CB060JlHOi\ 3HeprHH CBepxiTpOBOJlHHK8 ITpHMeHl!eTC51 <f>yHKUHOHBn, H3 KOTOpO ­
ro 8 cnyqae paaHo8ecnll rronyqaeTcll o6o6mennoe ypa8Henn e fnn36ypra -flannay, 
BbiBenennoe MaKn. OnnaKo, BbiPBlKenne nnll rrnoTnocTH ToKa , KO Topoe cnenyeT 
H3 3Toro <f>ynKuHonana , OTnnqaeTC51 oT BbipalKeHnll MaKH rr opl!JlKOM orrepaTopo8. 
Pe3ynhT8Tbi <f>enoMenonornqecKoro paccMoTpeHHll cornacyJOTCll c 3BBHC51LUHM OT 
apeMenn ypa8nenneM fHH36ypra-flannay, rrony'IeHHbiM Hena8HO K aponn n MaKn 
H8 OCHOBe MHKpOCKOITWHeCKOi\ TeopHH . 

Ope npHHT 06be,[IHHeHHOrO HHCTHTyTa H,LiepHb!X HCCJie,[IOBaHHH. 

,ll;y6na, 1968 . 
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Nonequilibrium Thermodyna:nics of Super conducti ng All oys 
in High Mag netic Fields 

A superconductor with nonmagnetic impurit i es is considered i n 
the limiting case of small mean free path ( f « (

0
) and h igh magne­

tic field ( H .. H c~ ) . The principles of the phenomenol ogical non­
equilibrium thermodynamics are applied to the superconductor and the 
dissipation function is c a lculated. F'or the free energy of the super­
conductor a functional is used which leads in the equilibrium case 
to Maki's generalized Ginzburg-Landau equation. However, the cur­
rent density resulting from this functional differs in the order of the 
operators from Maki' s expres sion. The resul ts of the phenomenologi­
cal considerations are in a g reement with the t ime- dep endent Ginzburg 
Landau equation recently obtained by Caroli and Maki from the mic­
roscopic theory. 
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l. Introduction 

We consider a superconductor with nonmagnetic impurities in the limiting oase of small 

mean free path ( l <l:: S 
0 

) and high II!Ognetio field ( H ~ Hc2); the temperature can be 

arbitrary ( O<T<Tc). It is the purpose of this paper to apply the principles of the 

phenomenological nonequilibrium thermodynamics to this superconductor. 

For the free energy of the superconductor we use a functional constructed in such 

a way that the condition for its stationary value is equ1Talent to Yaki's generalized 

Ginzburg-Landau equation 1 • This functional leads to a density of the auperconducting current 

which differs from Maki's current density 1 in the order of the operators. (A reoalcula-

11on from the microscopic theory has Terif1ed our result). By the help of the free energy 

functional and the oonserTation laws we calculate the dissipation function. 

The applicability of the phenomenological nonequilibrium thermodynamics to the 

superconductor in the considered limiting oase is tested by comparison with results 

recently obtained by Caroli and Yaki 2 frcm the microscopic theory. We shall see that 

their t1me-dependent Ginzburg-Landau equation and their current density satisfy in a 

simple way the requirement of nonnegatiTe dissipation function. 

The considered limiting oase is interesting for two reasons. 

(i) We haTe an inhomogeneous equilibrium state and a nonlocal free energy functional 

containing spatial deriTatiTes of the superoonduoting order parameter in high order. 

This leads, for example, to the effect that the kinetic coefficient becomes an 

operator. (ii) The high magnetic field reduces appreciably the superconducting order 

parameter. Considering a superconductor containing paramagnetic impurities in a 

concentration near the critical one, Gor'koT and El1aahberg J haTe recently shown, that 

suoh a reduction of the order parameter is necessary for the existence of a time-dependent 

Ginsburg....Landau equation. 

2. Nonegulibrium Thersodznamios 

We apply the usual scheme of the phenomenological nonequ1librium thermodynamics to 

our superconductor x. The superconductor is assumed to be always in a state of local 

equilibrium described by the Tariables ~ ( charge density of the electrons), Eint 

x For the general methods of nonequilibrium thermodynaaios see the monograph by De Groot 

and Mazur 4 • These methods are first applied to liquid He II for temperatures T """ T.._ 

by Pita;yeTsk;r 5 and to the superconductor for temperature• T ~ T
0 

by Schmid 6 • 
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(internal energy density of the superconductor), A' ( vector potential) and ~ 

(complex order parameter of the superconductor). In other words, the elementary 

excitations of the superconductor are assumed to be always in equilibrium With the 

prescribed values of the above mentioned variables. We start from the conservation 

laws for the charge, the entropy and the energy 

os> + d<vJ = 0 
Cit: 

'CiS div r R + = -
()t T 

oE + d<v T" = 0 
()-t 

and the equation of motion for the order parameter, which we write in the form 

..,., 

oLl 
(Jt 

-2'-epiL1 +- h 

J is the current density; S and E are the densities of the entropy and the total 

(l) 

(2) 

(J) 

(4) 

energy ( including the energy of the electromagnetic field)of the system, respectively; 
..,.,,.!" _,..,E J and J are the corresponding current densities; T is the temperature, e the 

charge of the electron. The dissipation function R and the functions Y' ( real) and 

h have to be determined. In (4) we have separated the term -2ceyLl from h for convenien-

ce . 

The densities of the total and the internal energy are connected by 

E E , ... t + ;;,. ( E 2

r HJ -r E,»t (5) 

~ ~ 

E is the electric, H the magnetic field. Ecm is the kinetic energy of the centre of 

mass of the superconductor. Ecm can be neglected ( we use the lattice system as 

reference system), because the ratio of the electron mass and the ion mass is negligibly 

small ( the term arising from Ecm in (J) is for superoonduoting and normal electrons . -~ negligibly small compared With the term j ~ arising from the energy of the electro-

magnetic field) . 

In the framew ork of the phenomenological thermodynamics, the internal energy t:, ... t: 
in a nonequilibrium sta t e is assumed to be the same functional of the thermodynamical 

variables as in equilibrium 

E,.,t E (s A-. Ll ) 
i-.d / 5' J .) l'<(U 

(6) 

We begin with the calculation of the time derivative of the energy density. 

1~. 

' ~ 

aE d E: ,~c 
= 

Cit" d -t 

JE~--t 
-;:y- 0 

+- d E..,t ~ 
d Ll (3 : 

d' / d means the functiot 

thermodynamical relations 

JE,~t 
~ T 

d'S 

JE,.,t: 
= :/ --

d's 

JE~-t: 
erA: = -J 
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supercurrent. 
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T=- 3 

J 2e"'»t. VF 
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of the energy density. 

,J 

oE dE: <~t (E H) 
__,.-

cJ;., .:!_ X j E 
at d t 'f-lT 

JE,_t (),.) d'E,_t ~ d'E,~t o A_, 
+ + 

d'rf 
--

a,S {)t dJ dt at 
(7) 

d'f._t dLl + a E.-t aLl* j£? + di. ver~e"t't.ce.s + 
d'Ll <H d Ll.;. at: 

d'/d' means the functional derivative. For the functional derivatives we have the 

thermodynamical relations 

d'ti_t I 
(e) 

d',s' ) 

d'E<-.,t: ;/'-
(9) 

d's 

ci'E,_t: --;'> (10) 

ciA,' Js 
..,.. 

;U is the local chemical potential of the electrons 

supercurrent. 

and J s the density of the 

The functional derivatives of the internal energy with respect to the order para-

meter ar~alculated by the help of the free energy ~ of the superconductor ( the deriva­

tives are the same for all thermodynamical potentials, provided for each potential its na­

tural variables are ohosen): 

For the free energy we use the functional 

F=-

where 

-"> 

D -<-l7-2eA 
--t27T T 

m is the ~ss of the electron, vF the Fermi velocity, T
0 

the critical temperature, 

-y-(:z) = f (:zJ / f{:z) the di-gamma function and "!:" the electron collision time due to 

the impurity scattering ( we consider the impurity scattering to be isotropic). 

For fields H ~ Hc 2 the order parameter L1 is small, and the terms of second 

(11) 

(12) 



order in L1 are sufficient for the thermodynamical considerations . Because we are not 

discussing the boundary of the syst~, the fUnctional ~ cannot be made unique; 

one can add to ~ a surface integral or a volume integral over a divergence. However, 

such a surface integral does not influence the functional derivatives. It is also possible 

to make ~ real by adding a divergence. The functional ~ is simpl~ 

chosen in such a way that 

JT 
d/1. 

35' • [k; + -y-{f)- t(f + DQ'")j LJ 
(lJ) 

0= 

coincides ( concerning first order terms in L1 ) with the generalized GinZburg-

Landau equation derived by Kaki 1 • 

The functional ~ leads to the density of the supercurrent ( in the processes 

of partial integration the charge density 
..,.... d~ 

s can be considered as constant) 

) = - --= , d'A 

= 
oO ~ -'1\ 

r S' " (o • + Q ) -1 -t· 
'f-TT T '»1. L_ -t 2 '?1. 1- ..::!.. +* D f/4 ., ---- - ~., 

'l'l= 0 z ., 
Ll: L1,{ ' ~ >C< 

This result for the supercurrent differs from Mak1's 1 result in the order of the 

operators ( in llak:i 's result the operator 2'i; .. -t- 0:. stands at the right). A recalcu­

lation of the supercurrent from the microscopic theory has verified our result(l4). 

We return to the calculation of 

JE._ .. "aLl cr E ·-t: ClL1 4 

--- + 
JLl 'dt J Ll. at: 

y> d·v r h J:?- h .. J~ 
+- -- + 

d'Ll J Ll. 

where we have used equation• (4), (11) and the identity 

2<e {Ll"" d''T 
d'Ll."" 

L1 d''r l 
c1Ll J 

~ 

d<--v J..s 

. ) 

We insert equations (1) , (2), (8-10) and (15) into (7) and get 

oE 
at: 

R +- ;srvr- (}- f)(E'- ~ ~) 

,; 

+ 

(14) 

(15) 

(16) 

(17) 

+('1-'f'-i:,«}d.<-v ]-;' 

Defining the density of 

~ ~ 

J,,_ = J -

and comparing (17) with the e: 

function 

R = -JYr;r +-

+('f'+i,u-r 

The term ('f+ ~~)d~v 

disappear from R. Accordingly 

JO = y>+ 

There are additional terms pos 

but such terms may be included 

Thus we arrive at the fins 

and 

ClLl 
ot-

R 

+ 2< {e'f' + /' 

-r,J' v r 

h d J:"" 
d'Ll 
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(15) 

(16) 

get 

) + 

(17) 

Defining the densit;y of the nora&! ourrent through the relation 

~ ---:--? 

= J - J 
5 

and comparing (17) with the eneru oonaerT&tion law (J) we get for the diSsipation 

function 

R = -? VT -r J: (E'- f ~) 

The term ( 'f + ~ ,M) d .:v J; has a nondefinite sign and therefore, has to 

disappear from R. AcoordinglT we choose 

C1s) 

(19) 

(20) 

There are additional terms possible in (20)(for example a tera proportional to cl • ..,J.,... ) 
j ) 

but such terms mar be included into h. 

Thus we arrive at the final equations 

h 
(21) 

R -r,.r f7 r +- J~ (E'- 1~) 
"" e 

(22) 

Equation (21) is the time-dependent GinZburg-Landau equation. !he superconduotor is 

described b;y the fluxes ? , r , h and h~ and the corresponding theraodrnamical 

T E~- "17 d"~ ... d~ 
forces- V , ~ ~ J - oLJ and - d"L}+ • The first and the second term 1n (22) 

give the entrop;y production connected with the heat conduotivit;y and the noraal 

conductiTit;y, respectivel;y. The last two teras describe the entrop;y production connected 

with the transformation of superconduoting into noraal electrons and reversel;y. 
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J . Comparison with Results from the !Ucrosoopic Theory 

Recently, Caroli and Maki 2 considering also the 11llliting oase of 1 ~ So 
andH = Bc2 have derived from the microscopic theory the time-dependent Ginzburg-

Landau equation 

' -·J(a f "f{ f -rDQ o-t --r2'-e't' Ll 
e.t 

4- rr r(-tn; + yfi)- y:(f+DG'JjL1. (2J) 

We have expanded their result in first order w1 th respect to lL + 2i. e ~ . y-
-et e•t J 

is the derivative of ')V. 

Equation (2J) describes the reaction of the superconductor to an externally applied 

potential y:;,.-t • As already mentioned, the reduction of the order parameter by the 

high magnetic field is necessary for the validity of the equation (2J). The situation 

is siailar to the case of e superconductor containing varamagnetic impurities with a 

oonoentration near the critical one (compare J ). 

The 

(i) 

comparison of (2J) with (21) shows the following. 
d~ 

his proportional to - orLl ~ J the role of the kinetic coefficient plays 

a hermitean positive operator: 

h = 6rr T ~ {'f(f -t-DQ ' ) j _ _, (- :-: .. ) (24 ) 
e1-'H. V F 2. 

This operator reflects the inhomogeneity of the equilibrium states . Equation (24) 

satis fies in a simple way the requirement of real and nonnegative R.From the general point 

of view there would a l s o be possible a complex kinetic coefficient, and the vector 

force E- f ~ could contribute to h ( Curie's principle does not hold, because 

the equilibrium state is anisotropic). 

(ii) On the left hand side of equation (2J) we have e~ 
e.t: 

instead of ef(' +-?-< 

in equation (21) . Besides the external potential , whicb does not show the periodicity 

of the order parameter, Y' contains also an internal potential Y:.~t 

( 'f' = ~~t +- ~.-t- ) showing t he periodicity of the order parameter . For the case 

of the reaction of the superc onduct or to an external potential the comparison of (2J) 

with (21) leads then to 

e'f. ..... t: +-~ 0 

B 

(25) 

(Setting e~~t +-/" equal to zerc 

is t1llle-independent in equUibrium). P!: 

of the system concerning changeS in e 

um oase. This picture oan be also verU 
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~ic theory the time-dependent Ginzburg-

(2J) 

th respect to E.... + 2<e w 
0 

'Ot 'e.t ) 

e superconductor to an externall7 applied 

reduction of the order parameter by the 

ty of the equation (2J). The situation 

ning paramagnetic impurities with a 

). 

following. 

te of the kinetic coefficient plays 

(24 ) 

equilibrium states . Equation (24) 

0 and nonnegative R. From the general point 
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of the order parameter . For the case 

rnal potential the comparison of (2J) 
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(Setting ey;..,-t +-/" equal to zero we haTe fixed the gauge in such a wa7 that L1 

is time-independent in equUibrium). l'hysioal17 equation (25) means that the behaviour 

of the s7s tem concerning changes 1n e'f.: ... c and is the same as in the e quilibri-

um case. This picture can be also verified by microscopic calculations. 

For the normal current we have only the force 

if we restrict the considerations to T ~ const. : 

r o(ilJ ( E' - ; [7/' ) 

where rJ {it) is the oonduotiv1t,- tensor. The ourren~ dens1t7 is J = J -t- J 
~ ~ s 

with J: giTea b7 (14). Using for r:T(H) the oonduotivit,- of the normal state the 
~ 2 

resulting J coincides With the expression far the ourrent of Caroli and llak1 • 

The author is indebted to the late Dr.S.V.T,-ablikOT and to Dr.D.H.Zubarev and 

Dr.G.M.Eliashberg for valuable discussions. 
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