




















s = Ena+En‘+5E and the sum extends only over such sta-

n ., n, which are unoccupied in the unperturbed system
zleons. The quantity d E is the excitation energy of the un-

bed system, the rule for the explicit form of which is given

Nith the help of the reaction matrix, the energy E of the sys -

\n be written in the form

E=E + YA,

0 i=1

E, is the ground-state energy of the unperturbed system and
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n these expressions for AE® and AE® , as well as in those
(see below), the states denoted by the upper

0 are occupied, while the remaining states are unoccupied,

(1)
e that 8E = 0 in all the t-matrix elements appearing in AE

@






The explicit expression for p ., can easily be derived. If

we limit ourselves to the zero-th and first order term in t , we g~t
_ @ m
Plab =P Lab lab
0) 1 0 - - 0)
P b (1’)=T 2(‘.0)(nl|x)(x|n’ )3_1-" (1.9)
l?ll 2
(@] 1
P () = 2Re | 2~ 3 ] 8 d x
lab y/ a9, 0%n %2% §r, 1,

x 1

> Method of the Solution

essary to simplify the equation for the reaction
tities, we are going to calculate, we need only

1-(1.2), in which both = and », are occupied

3

cle states in the equation (1.2) we pass to the
ich the spins and isospins are coupled to the

>spin T and the angular momenta of both particles



We denote the unperturbed coupled two-particle states in this rep-

resentation by

Il:ll n ) = ‘plei pj(&jﬂ“ m“SSzTTz).

Since the potential v depends only on the relative coordinates,
it is convenient to use the certer-of-mass system. The transforma-—

tion reads

v2Zo v

Denoting by f the angular mometum of the relative motion and by
L the angular momentum of the center-of-mass motion of the nucle-
on pair, we are led to the following coupling:

-

E+E =A =10 , m+M = g =m

i 1

On the other hand, the most convenient representation for the po-

1 -
tential v is that, in which £ and s are coupled, ie.
P37, maes =

For connecting these two coupling, we introduce the "total" angular

momentum J and its projection J = by
-j = ¢ + L+S , J =m + M +8S .
z z

The corresponding two-particle states are denoted by

|(p € ,PLYA,S, JI, ,TT_).
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10
With the help of Clebsh~Gordan coefficients and Moshinsky bracketé /

<pl ,PL ,Alp, 0, 0,0, A D>

for the transition between the laboratory and the CM-system, we

obtain

ln,n V=2 (l“Sm” Sz\JJZ)<pf,PL,E”|p‘Z’,pj21, lu > %

-tr?
(2.1)
Xam,+s , 8n+N.G +C l(Pe'PL)eus'”z TT, )
§ z z i b
where
n=2p + [, N=2P+L,G‘=2p’+e‘ , G,-=2p’+ej

It is obvious that the wvector (nlnz\ in eq.(1.2) can be replaced

by the vector  ({ pf? ,PL) £45,.,8,11, ,TT,| . For the kernel,

and otherwise if necessary, we have to use the expansion (2.1). The

inhomogeneous term in eq. (1.2) then becomes:

o} o}
((pg ,PLE,, S,JJ, ,TT |v|ngn )=
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. In this way

x)

ystem (2,5) can be converted to a finite algebraic system,

se the expansion of the kernel is convergent

In the present calculation it is shown that the cut-off P<P=6
ficiently accurate, but the cut-off v SV =126 is too low,
The solution of the system (2.5) with the cuts P < P, v <v
een obtained by an iterative perturbation method, in which the

th approximation is taken as decoupled in the center-of-mass
(v,&*)

, i itted.
pf PL ,p 0 P'L’, A s omt

n, i.e. the term containing f

III, Results

4
The computed nuclear characteristics of He are dependent
e frequency @ . We have considered two values correspon-
to the one-particle shell model:

fTw = 21,32 MeV X o= 2510 MeV.

Hamada-Johnston pote ntial is used and considered as acting in

S, P and D states only.
In Table 1 we find the unperturbed energy E - —2—11 o , the

scrions A E® |, AE® , the "Coulomb energy" E_, , the

should be noted that the treatment of the hard-core part of v
s slightly from that of ref./5/. The cut-off in the kernel app]ies
v only to the regular part of v, while the hard-core part is

ed exactly, in the same way as in ref. /4/ Since the regular

of v gives the binding , this approach may be expected to
r the absolute value of the binding energy.






Table 11

3 ) )
EO—-Z-ﬁw AE AE E E . (rom.s)g,,
0 112,96 -139.32 -1,2112 0.8233 -26.748 1.448
32 95,94 -118,60 -0.,3409 0,7762 -22,225 1.518

The computed values should be compared with the experimen-

data for ‘He

E,. =-28.295 MeV, r.m.s. =1,65 f,

4
The He charge distribution pcu(') calculated for the

~off values v =26, P =6 and for the above values of @ are
tted in fig.,1 together with the experimental cur’ve/ls/.
Similarly, fig.2 shows the ‘He charge from factor F(qz) which

given in the first Born approximation for the spherical charge

tribution p (r) by
+o0 i
Flqg?) = 4n S p ) At r2dr .
o qr
. a3/ . .
e "experimental"” curve from ref, is given by
R
F (qz)n[l—(aaqz)ole h a = 0,316 f
axp
b = 0,681 f,
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IV, Discussion

The performed calculations were primarily intended to give
information about the plausibility of the approximations involve
cut-offs for P and v ) and about the dependence of the 1
on the oscillator frequency @

The results may be summarized as follows:

1, The accuracy of our approximations does not depend
(therefore only the results for @ =25,1 are shown in deta

2, The difference of the order 00,1 between the compute
lues for P =5 and P =6 indicates that the use of the cut-o
is legitimate., On the other hand, when comparing the data for
and P =0 in Table I, we see considerable differences. The
caused by the influence of the center-off-mass motion of the m

pair on the corresponding t-matrix,

3. The absolute value of the binding energy ([Elut [ ) i
ses with the increasing cut-off v and the value of the r.m.,s
decreases., This dependence is qualitatively correct (cf. the fc
on p.12) but is too strong for E ., . It is necessary to t
larger value of Vv , )Unfortunately, this exceeds the limitec
rage capacity of the computer we have used). In addition., th
of the same cut-off both for the regular and hard-core part .
/5/

kernel may improve convergence,

4. The calculated charge distribution and charge form

display all the qualitative features of the experimental curves,
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