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I. Introduction 

In the course of develop>nent of the nuclear theory the descrip

tion of nuclear rea ctions has been attempted >nainl y by two appt•oa

c hes. The first of the-n i s characteri zed by a high degree o f gene

r a lity and exactness whi ch is achieved without going into details 

of the internal dyna-n'cs of the many-nucleon system. The main 

of these general theories /l/ is to clari~ the structure and the 

tical properties of the collision matrix. The other, so-called 

aim 

analy

micro-

s c opic, approach starts f rom a more or l ess detailed dynamic al des

cription o f the interacting many-nucleon system and tries to derive 

the S-matrix explicitly in te r ms of wave functions and Hamiltonians. 

As a rule, these microscopic theories of nuclear reactions /2/ con

tain ab ovo so:ne approximations ~ sinc e at the present stage our abi

lity to tackle the many nucleon problem is very limited . In the nuc

lear structure calcul a tions, concerning the low-lying states of n'-tcle i, 

the various microscopic a pprox imations used in the shell model, in 

the pairing model, in the RPA etc. are very well s tudied and their 

validity and accurac y have· often been tested. 

As fa r as the microscopic nucl ear reac tion theori es a re con

cerned the s ituation i s quite different. First, the number of a ctua l 

cal c ulations performed up to now is rather small, mainly becau s e of 

the c umbers ome numerical c o mputations involved. S econd, the c ompa -
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rison of the calculated results with the experimental data does not 

allow definite conclusions to be drawn about the reliability of the appro-

ximations, because in addition to approximations characteristic of 

these theories, we always have to introduce further assumptions of 

more general type e.g. about the form of the interaction potentials, 

about the restriction of the configuration space etc. In the final re

sults of a detailed calculation destined to reproduce some expe

rimental data, the effect of these different approximations are comple

tely mixed up and it is very difficult to decide which of them is res

ponsible for the success or failure of the attempt. Therefore, it s eems 

to us that the effect of the s pecific approximations used in micro-

scopic reaction theories can be studied most conveniently on a mo

del-sy stem, for which an exact solution can be evaluated and can then 

be compared with the results given by the different approxima

tions / 3 /. 

In this paper our aim is to construct such a model and to 

work out an exact solution for it, The results of the numerical cal

culations and the comparison of this exact solution with the solutions 

obtained in different approximations will be reported in a subsequent 

paper. Now, the question arises: what kind of model system should 

be chosen. Of course, it must consist of an incoming particle and a 

target. If we want to go beyond the case of simple potential scatte

ring we have to choose a target with an excitable internal structu

re. The simplest target that meets this requirement is a particle which 

has at least two bound states in a potential, This system is appro

priate for the investigation of resonance effects in elas tic and inelas

tic scattering and pick-up reactions. With a s light modification strip

ping reactions and composite particle elastic scatterin_g can be stu

died as well, The two particles are taken to be equal mass fermions 

but . their spins will not e nte r explicitly since all the interactions 

will be taken spin-independen t and thus the fermion character of 

the p articles will show up only in the symmetry properties of the 

spatial wave functions. In fac t, the calculation can be carried out 

as if the particles were s pinless and disting uis hable, a nd the t wo 
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poss ible spin-states (triple t a nd singulet) and the Pauli-principle (if 
necess ary) can be taken into account afterwards in a simple way. 

Solving the Schrodinger equation of the above described system we 

are essentially confronted with a three-body problem: mathematicallv, 

becaus e the Hamiltonia n contains three interac ti o n terms (the t wo 

sing le -particle potentials and the two-particle inte ractio n) a nd phsrsi

cally, because the single - particle potential , acting on b o th particles 

can be considered as a third particle with infinite mass. As it is 

well known the three-body problem can be solved by F'addeev's 

method lead ing to a s y s tem of coupled inte g ral equations. Faddeev•:J4/ 

method solves all the principal difficulties associated w ith the three

body problem, its practical applicati on, however, i s rather difficult, 

since it leads to coupled, two- variable integra l e quati ons . It was 

realized many yea r s ago that the use of non-local , separabl e poten

tials simplifies the problem very much / 5 /. S ince the main guid e in 

the choice of the model was the mathematical simplicity , a ll tl1e in

teractions e ntering the problem wer e taken to be of s pin-independent, 

non-lo'€al and sep a rable acting onl y in r e lative s-s tates. 'I'he form 

and the parameters of the potentials were chos en to yield t wo s ing le

particle b ound states and one bound state in the two-particle system. 

In Section II we describe ' our model i n d etail, in S ection III we 

d e rive the integral equations t o be solved numerically and in Section 

IV the calcultions of the transition matrix elemetnts are discussed. 

II. The Model 

The inves tigated model consists of two parti c les: the first is 

bound in a potential well and the second is s cattered on tile first 

one. This system should be treated essentially as a three-body sys

tem since the potential which acts on both particles can b e consi-

dered as a third particle with infinite mass. 'I'he Hamiltonian is tile 

fo llow ing: 
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H ( 1, 2) t(l) + t(2) + U(l) + U(2) + V(l ,2), (1) 

where t is the kinetic energy operator, U is the single particle 

potential (whic h is assumed to be the same . for both · particles) and 

v (1,2) i s the interaction between the two particles . Since the aim 

of the pres ent work i s not a comparis '>n between certain theoretical 

calcula tions and experimental data but rather a study of the reliabi

lity and accuracv of some approximations used in nuclear reaction 

theories , the choi ce of the potentials U and V was governed mainly 

by mathematical simplicity. Therefore both U and V were taken to 

be non-local, and separable. It is the separapility which s implifies 

the calculation. Also, for the sake of si ·nplicity in both cases we 

restricted ourselves to the s-state interactions only . As WE[ want to 

s tudy not only direct, but a l so inelastic and resonance scattering , the 

potential U must have at least two bound states. The general form of 

the nonlocal separable potential which acts only in relative s-states 

is g iven in momentum representation by 

< t k" 1 v 1 ~ , k , >- s < -p- ; , > I. P v < ld v < k' > • (
2

) 
I :1 I 2 I I I I 

where the total and relative momenta are rfen o ted by P and k , 

respectivelv. It has been proved /6/ that the numbe r of bound states 

of suc h a potential is limited by the number of terms having negative 

strength parameter ( p 1 ) . In our model the two--particle system has 

only one bound state, therefore it is enough to retain one attractive 

term: 

..... .... ..... .... 2 .... ..... 
< k 1 k 2 IV(l,2) I k[k; >=-A 8(p-p')v(k)v(k'). (3) 

The form factor v ( k ) is defined as 

v (k) -
{3:1 + k2 (4) 
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which was introduced at first by Y amagouchi / 5 /. The w a ve function 

of the bound state can be obtained very easily and is g iven by 

¢ (k) 
v(k) 

(5) , 

or in coordinate representation: 

¢ (r) -ar -f3• 
e - e 

) . (6) 

The binding energy c = _ a 2 

and strength (A 2 
) p a rameters: 

m is deter-nined by the r ange <f!> 

a=-{3 +..; 
(7) 

Turning to the single particle potential U firs t of all we note that 

in the expression (2) the factor 8( p-p') expressing the translational 

invariance should be omitted, thus 

<k 1 jU(l)lk'>-'!.p v (k )v (It'). 
I I I I I I I (8) 

La.ter on, we shall need the matrix ele'11ents of the s ing l e particle 

potentia l in the s p ace of two particle states , these can be expres

sed as 

<k 1 knl U (1) J k 'k '>•8(~ -~')'!, p v (k )v (k') (9) 
Q I 2 :1 2 1 I I I I I 

Here the 8 -func tions c lea rly express the one-body cha rac t e r of U. 

Since · in our mod e l w e want t o have two s ing l e p a rti c l e b o und 

states , the potentia l rn u s t conta in, a t l eas t, t w o te r •ns: 
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~-+ -+-+ -+-+ 2 
< 1c 1c I u < 1 l I 1c, 1c, > = -o < 1c - 1c , l I 

I 2 I 2 2 2 l=l 

2 
.\

1 
v

1
(k 1lv

1 
(k~ l (10) 

For bound states the Schrodinger equation reads 

-+ 2 
Jc

2
¢ (k 1)- IA1 v 1 (k 1 l JA 1 v 1 (k~l¢ 11(k~)dk~ =-a~¢z}k~l,(11) 

II 1=1 

where F. =-~ a 2 
is the 

v 1i 2 v 
11-th energy eig envalue ( v=0,1) andA 1 

i s defined a s v 2~~ -\ • The wave function c a n be obtained directly 

as 

¢ ( k-+1 ) 
v k 2 

I 
+ a 2 

v 

2 

IA1 v 1 (k 1lN 1(a l 
1=1 v 

-+ -+ 
N 1 (a v l = fA 1 v 1 ( k 1 l ¢ 11 ( k 1 l d k 1 

(12) 

(13) 

Thus the coefficients N 1 (a a l a r e the solutions of the f o llowing ho

mogenuous equati ons : 

2 
I Ml 

1 
(a v) N 

1 
(a 11 ) z 0, 

1=1 

where the s v mmetric matrix M (a l 
jl II 

M (a l=o -4rrA A f 
jl II jl I l 

is defined as 

v (k llv ,<kll k2 d k 
l I 

k 2 + a 2 
I II 

The equation (14) has nontrivial solutions only if ' 

det ( M ll (avll = 0. 

(14) 

(15) 

(16) 

This is a n a l gebraic equation f o r the determination of the energy 

e igenvalues. The rncx:lel is completely s pecifier.! by the explicit defi

nition of the form factors w hich are g iven by: 

v ( k) 
I 

1 

k2+f3~ 

8 
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v ( lc ) 
2 

r 
(18) 

In this case the matrix M (a,) 
l I v 

c a n be e x pressed explicitely in 

terms of the potential para meters as follows: 

M 
11 

(a v) = 1 - 2 11 
2 A 2

1 
(19a) 

z r r a (19b) 
+ 

( Y 2 + {32) ( Y 2 + av) ( f3 2 +a v) 

M (a l=-21T 2 A A I 
12 V I 2 

(19c ) 

r 

<{3 +Y Hf3 +a )(y +a) 
I 2 1 J.l 2 V 

This choice of the form factors can be motivated by the following 

consideration. The bound state are orthogonal to each other and 

both of them have zero orbital angular momentum, consequently they 

-nust have different number of nodes. A separable nonlocal potential 

characterized by the form factors ( 17) and ( 18) leads to a bound 1 s 

state if A 2=0 a nd to a 2 s s ta t e if A 1 =0 
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Therefore it i s expected , that in the case when both A 1 and A 2 a r e 

different fro"Tl zer o , we get two bound states. It i s worth while to me n

tion tha t in the s pecia l case when b o th v1 (k) and v
2 

(k) a r e of Y a 

"Tlagu c hi type , tha t is [' = 0 , w e get t wo solutions w ith n egative ener

gy e i genva lues but these can not be inte rpre ter! as proper bound 

states, s ince one of the wave functions has wrong asympto tic beha

vi o ur, 

e -cvr 
namely it decays more s low !\· in the asvmptoti c r egi on than 

This difficulty, however, does not a rise if [' f, 0 anrl in this 

case it is possible t o prove tha t with a pro p e r choice of the parame-

ters \ . A 2 • 1 . f3 1 • f3 2 • Y 2 , the e igenvalue equation (16) has 

two positive r oots a 1 and a 2 so that 

max (a 
1

, a 
2 

) < '1'1in ( f3 
1

, {3
2 

, y
2 

l 

This condition guarantees the correct assymptotic behaviour of the 

bound state wave fuoctions, Besides the roots a 1 and a 2 there 

exist two negative roots and a pair of complex roots which can 

g ive rise to a "potential resonance", 

The main features of the '1'1odel are su'1'1 narised in the Fig,l, 

which shows the energ y spectru'11 of the svste"TT an--1 the threshol--ls 

of the various processes, 

III. Integral Equations for the Wave Function 

The Schrooinger equation in "Tlomentu-n space is the following: 

~ 2 - ...... 
(k 1 + L~ + U(ll+U(2l+V(l,2l-e)'l'(k

1
kJ•O, (20) 

\lllhere e "' : ;' E arrl E is the total energy, and the tilda means 

-nultiplication by ~- • In order to solvco this equation the F'udrle

Pv ftt/ ~1e tf1od s hould be u s Ad in whic h th e wave func ti o n 'V i s ' Vrit

ten as a s u ·n of lht·ee tet·,n,; a nri a sys tem of c ottp l erl integral equ a-

ti o n s j;3 obl.dincd foe lhPse t.-.cm"- : 

... ..... t .... -· 2 -) ... 1J -+ -· 
lp ( It: t k 2 ) = q• ( k. t ' k 2 ) ~ \jl ( ~ t • k 2 l + l[l ( k t k 2 ( ;.> I , -, ) 

1_() 



Energy 

0 Threshold of the two free particle 
continuum 

Tht·eshold o f the pick up. 

E Threshol d of the ine lastic scatte ring , 

E
1
+E

1
+,

11 Resonance i n the e lastic scattering . 

Eo Threshold of the one padicl e continuum. 

E I+ Eo + 'Ia 

E + E + ' Two excited states. 
0 0 I 

E + E +' 
0 0 00 Ground state, 

Pig, 1, The poss ible states of the Model System, 

E a nd E are the bound state energ ies in the sing le par
tic'le potenbal, ' is the binding energ y of the t w o pa.dicle 

sys t em, f 0 0 , f 0 1 • 11 and , are the energy correc -
tions t o the "unperturbed" energ ies of U prorluc ed by the 
in~eraction V( 12). 
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(
·;,) = I :~-:a) + G0 (:2 :

1 

::) (: :,) ( 2 ~b) 
lJ! 12 

0 T T 0 IJI 
12 12 

Here G 0 i s the Green-operator of the non-interacting system ; in 

the •no mentum r e presentatio n: 

< k k I G 
I 2 0 

........ 
k , k, > 

I 2 

a (k 1 - i:; > .s < k":~ - k" '
2 

> 
(22) 

k 2 k 2 . e-1-2+1TJ 

I 
'I'he tl> .... k 

o a 
is the W"<Ave function of the initial state, in which the 

firs t particle is in the bound groun--l state (inrl icated b v the s uper

script 1 a nd s ubs cript 0) and the secon--l particle is d e scribed by 

an inci--lent plane wav e with mome ntu01 k a • 'I'he operators 'I' ~,'I' 
2 

and 'I' ~ 2 are the 'I'-operators of two-body problems anrl tl:1 ey sa

tisfy the equa ti o ns: 

T
1 

=U0)+U(l)G
0

T
1 

T:~ = U(2) + u (2)G 0 T2 
(23) 

T 12 - V (1,2) + V (1,2)G 0 T 12 

'I'he first task is to solve the equations ( 23). Using formulae (3) and 

(~O),, after some straight-forward calculations we obtain the matrix ele-

1ents of the 'I'-operators in 'Tiomentu '"Tl r epresentation : 
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where the notations \ = v 2"h~ •\, a nd "= - k:: were u sed and M - 1 de

notes the inverse of the matrix M defined in (16). A s imilar expr-es

sion hold s for the matrix ele 1ent of T 
2 

only the indices 1 a nd 2 

must b e interchanged on the rig ht hand si ~le o f ( 24). The matrix e l e 

ment of T 
12 

i s the follmving: 

where again A=v 2

11~ A, e=- ~2 
a nd the total anrl relative 'Tlomenla were 

used. The quantity M ( x l i s th e fo llow ing 

M (X) 

1 -

S ubstituting (24) a n i (2 '>) into (21b) we get the following expressi ons: 

(27a) 

(27-b) 

(27c) 

On the rig ht hand side of (27c) the total anrl relative 'TlO'nenta were 

introduced. The unknown quantities 

foll owi ng equations: 

13 
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... 
where k a 

M(y'x 2 +2k~ 
12 ... 1 ... ... ....... 

F (x)= :\v(- x-k )</> (x-k )+ 
2 a 0 a 

... .... 1 .... :a .... ] ... 
;\.~ fD 1(x , y)[ F 1 (y)+ F 1 (y) dy 

I 

1 .... .... 12 ... .... 
~ M ( y' X 2+ k 2 ) F (X)= A f D (X • y) F (y) d y + 
1 II 0 I 1 

.... .... 2 -1: ... 
~ A 1 v 1 ( x ) J A 1 (x, y ) F 1 ( y I d y 
I 

2 2 2 ... ... 
~ M 

11 
( y' x + k 0 ) F 

1 
( x ) = A 

1 
v 

1 
( k a) ¢

0 
( x ) + 

.... ' 1~ ... ... A(B
1

(x,y1F (y)dy+ 

(28a) 

(2'8b) 

(28c) 
~ A 

1 
v 

1 
< x ) r A 1 < ; • ; ) F/ <;) d y .... 

I 

is the momentum vector of the incident particle and the 

following energ y equation holris: E = E 0 + 11
2 

2
k a

2 
, ¢ (:) is the 

m o 

ground state wave function of the bound particle. Further, the nota-

tions: 

B
1
(;,;laA

1 

A 1 (;,;>=A
1 

... .... ... 1 .... 
vI (y - X ) v ( X - T y ) 

k~+ x2 +(y--; )2 

v ( y ) 
,..L..:.,_ ---;;--+ X 2 + y ll 

1 ·1 

(2 9) 



were used. Thus we got a system of coupled integral equations for 
• I _. 2 _. 12 -. 

the 5 unknoV'm functions F 1 ( x), F1 ( x ) , F ( x) • Each of them de-

pends on a vector variable and therefore all the integrals in (1.4) 

are three-fold. In order to get one-variable integral equations we 

expand the F-s as follows : 

(30) 

The kernel B 1 (-; ,yl can also be expande'i making use of the fact 

that it depends only on the relative angle between 
.. 
x and 

... 
y : 

(31.) 

The A1 (x .. ,;) need not be expanded because it is independent of the 

angles of :. and ; To complete the expansion procedure we have 

to expand the first term on the right hand side of (28a): 

v(-1- ;_; l<P (;-k ). I.·/ (x,lt lYa ({} lY.*({l 
2 a V a &., V a Lm a Lm x 

(32) 

here the in-lex v can be either 0 or 1. according to the two boun-:1 

states of the potential U • In the initial wave function., the particle 1.. 

is in the . ground state, therefore v - 0 • If we asssme - an~l that 

can be 'ione without loss of generality - that the momentum of the 

inci'ient particle is directed along the z- axis, then the expansion 

(32) takes the following form: 

(32a) 

Substituting the expressions (30) , (31.) and (32a) into equations 

(28), performing the integrations over the soli'i angle and using the 

orthonor·nality of the spherical harmonics, finally we get the following 

set of one-variable integral equations: 
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ll Ill 
M(yx +2k

0
)Ffm (x) v H +1 

"" 
f 

8 X (x,k ) + 
m 0 0 a 

f I 2 ) ll +A!. f B 1 (y ,x)[F 0 (y)+ F 
0 

(y) y dy 
l jLm jLm 

f 12 ll 
:'EM (yx

11
+k 2 >F! (x)=Afn

1 
(x,y)F

0 
(y)y dy+ 

lJ a lt.m r. m 

2 2 
+4rr8 0 8 !.A1 v 1(xlJA

1
(x,y)F

1
en,(y)y dy 

L0 mO j 

2 2 2 f 12 
:'EM (yx +k 0 )F 0 (x)=AfB (x,y)F

0 
(y)dy+ 

j lj jLm I L m 

1 2 
+ " " [) fo [) m 0 r A l v l ( X ) f A I (X • y ) F l f m ( y ) y d y + 

+ y " 1T [) fo [) m 0 V I ( k a ) cp 0 ( X ) ' 

(33a) 

(33b) 

'(33c) 

The equations (33) are uncouple'i in the quantum numbers f 

an'i m • This is -lue to the separability of the potentials, that is to 

the fact, that in expansions (16) we could introduce f arrl m in 

such a way, that in the total wave function they turn out to be the 

total orbital angular momentum quantum numbers. This can be seen 

imme'iiately if one substitutes the expr essi o ns (27) and (30) into (21a). 

The total wave function can be written a s a sum over terms with 

different angular momentum and each term consists of three parts: in 

the first part particle 1. has zero angular momentum and particle 2. 

caries the whol e angular momentum f , the second part has the 

same structure as the first, only the roles of the particles 1.and 2. are 

interchanged; in the third part the relative motion of the two particles 

has zero angular momentum, while the center-of-mass motion carries 

the toto.I angular momentum f 

There is an other feature of the solutions of eq. (33) that we 

can discover on the base of sym"Tletry considerations. The whole 
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problem possesses an axial symmetry around the z - a.xis since the 

momentum vector of the incident particle is directed a long the z-axis. 

This means that the wave function can not depend on the azimuthal 

angle. Thus in the expansions (30) only the term with m = 0 should 

be retained, that is the quantities F f m are p roportional to 8 mo 

TV. Transi tion Matrix E lements 

In the preceding section an exact s olution was obtained for 

the wave function 'I' a ( k 1 ~ l of the scattering problem (there the 

subscript a indicates the initial state, descri bed by II! 4 , s e e (21)) . 
o k a 

Our next task is to calc ulate the transition matr ix e l e me nts 

T =< <1> I v I 'I' > 
b a b b a (34) 

which a re connecte d w ith the observable c r oss - s e c tions in a s imple 

way. In (34) the <1> b is the final s tate wave function a nd V b , is 

the part of the total intera c tion which is "no t c ontaine d" in ll>b 

More pre cis ely this mea n s , if 'P a satisfies the equation 

HIP 
(35) 

the n <1> b mus t satisfy 

(H - V l<l> .. 
b b 

E II> 
a b (36) 

To c a lcula te the ma trix ele m e nt (3 4) w e have to c ons truct first of 

all the possible fi nal s tates <l>b • T h e re are three basic types of 

final states: 

a ) S i •n ple s catte ring : p a rticle 1 . r e m a ins in one of the bound 

states while the particle 2 . is scattere d into another free state, 

cha racteri z ed by momentum kb .. The wave function of su~h a fi

nal s ta t e i s : 
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~ ... 1 ~ ... ... ... 
<I> (Jc 1c l=<l> -.(Jc lc l=¢ (lc lB(Jc -lc l, 

b I 2 Ilk I 2 II I 2 b 
b (37) 

where the index v refers to the bound state, and the superscript 1. 

indicates that in this wave function the particle 1. is bound. The vee-

tor rb must satisfy the energy equation: 

2 2m ( ) 1c = -- E-F.
11 

> 0, 
b h 2 (38) 

where E v and E are the energy of the 

total energ y, respectively. In this case: 
11 -th bound state and the 

V =cU(2l+V(l,2) . 
b 

(39) 

b) Exchang e s c attering: particle 1 . flies out with momentum k b 

a.nd p a rticle 2. rema ins bound. The wave functio:'l: 

... ... 2 ... ... ... ... ( ) 
<I> ( lc lc ) = <I> -+ ( lc lc ) = </> ( lc ) 8 ( lc -lc ) . 4 0 

b I 2 Vkb I 2 II 2 I b 

The energ y equation c oincides with (3 8). The remaining interac tion 

has the form: 

Vb = U(l)+ V(l,2) (4 1) 

c) "Pick-up" reac tion: particles 1. and 2 . form a bound sta te 

and together fly out with total momentum tb . The w ave function: 

... ... 12 ... ... .... ... 
<J> (lc 1 kn)=<f>k-+(lc lc l~</>(lc) 8 (p-Jc ), 

b ~ b I 2 b (42) 

where P and It" are the total and relative momenta and </> (lc) is the 

wave func tion of the bound state of potential V ( 12 l 

The energ y e qua tion is now : 

In thi s c ase 

k2 
2 b 

= ~(F.- £) > o. 
hll 

V =U (ll+U( 2 l. 
b 

1 8 

(43) 

( 114) 



A final state with both particles 1. and 2, in free states can not 

occure since w e have r e stricted ourselves to negative E v a lues only. 

Forming matrix elements (3 4) with the final state wave functions of 

these three types , w e can evaluate the cross-section for a ny ener

getically possible process , Up to this point we treated the p a rticles 1, 

arrl 2, as disting uishable, but it can be shown, that in a s ymmetrized 

treatment the cross- section c a n be expressed in terms of the same 

matrix elements. In order to calculate matrix elements (1) it is con-

venient to use the following iden tities: 

u ( 1) 'I' 
a 

= (E- H ) 'I'' 
0 

( 'I' ( ..,2 U 2 ) a • E - H0 ) ..-

12 

V (1,2l'l'a = (E -H
0
l'l' 

(45) 

These formula e can be obtained from equations (21) a nd (23) using 

some operator alg ebra, W ith the help of these equations the three 

types of matrix elements (34) can be easily evalua ted, The results 

are the following: 

Simple S c attering: 

D -+ -+ D 
T ( " It b • 0 It a ) - I T e ( II It b • 0 It a ) p e ( cos (} ) (46) 

where the arg ume nts of the transition matrix elements indicate the 

initial and final s tates., and () is the s cattering angle (the ang l e 

between vectors It a and 

w ith 

D 
ltb ), The meaning of T f 

19 

is the following: 

and (.!J e) 



12 f 12 2 
I •f-x (x ,k lFf (xlx dx 
fv v b ( 4 '1) 

Exch ange Scatte ring: 

E -+ -+ E ( ) 
T ( v k: , o k: l = I Te ( v It , o It l pf (cos 6 l 50 

b a e b a 

here the notations are the same as in th ::o pre cerl ing c ase. 

E b
2 

- 2 2 2 
Tl (vlt ,o lt l=--y'2f+I [80 ((lt

0
+1t +ltbl¢..( 1tl¢ (kbl+ 

b a 2 m LO a ... a a 

(5 1) 

-... II 12 + v' 4 , 4 A I vI (It b ) I II/ + A I 
1 e " 

P i ck-up Reacti o n 

p- - l: 
T (kb ,oka) • l 

p -+ -+ 

T f ( k b , ok •) P f (cos 8 ) (52) 

p h 
2 

2( +I I 2 
T <Jtb ,olt J,._ --rw.n . It l+v'-l:A

1
<R

1
e+R

1
ell , (53) f a 2m t b a 4 1T I 

w here the quantities w f ( k b , k a) and R a 
1( are defined a s follows : 

1 ... -+ -+ -+ 2 2 2 
¢ ( 2 k b - k.l¢ 0 (kb-ka)(k 0 + Ita+ (kb-ka) ) - (54) 

-r w f ( " • • " b ) p f ( cos ,e ) 

and 

a 1 a 
2 R 1l • f'l l (It b ,x lF

1
f (xlx dx • 

(5 5) 
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I 
The definition of the "e (X. y ) is the following: 

In eqs. (54) and (56) ¢ (x l denotes the wave function of the bound 

state of the potential V 02 l 

It is well known that the transition ·matrix is diagonal in total 

ang ular mo men tum quantum number, but since we have used as initial 

and final states not angular momentum eig en state s., our transition 

ma trix e lements (46a), ( 5 0) and (5 2) do not correspond to a defin ite 

ang ula r momentum • But the diagonal 

operator, corres ponding to a definite 

ly just from equations (46), (50) and 

of P f ( cos8) in these equations • 

matrix elements of the transition 

f can be extracted immedia te

( 5 2): they are the coeffieie nts 

We are indebted to Dr. ~V.N. Efimov .. and Dr. V.F'.Kharchenko 

for valuable discussions. 
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