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I.

The existence of deformed nuclei in the range 50< Z <82,
50< N< 82 was first discovered experimentally in ref, /1] and then
proved in r'ef./2/. In ref./3/ the nuclear equilibrium deformations in
this region were calculated for positive deformation only and with
no account of pairing correlations, without explicit introduction of
the Coulomb energy. In ref./4/ the equilibrium deformations of the
ground states of nuclei in this region were investigated in the frame-
work of the model taking into account supercornducting pairing corre-
lations and the quadrupole-quadrupole interactions. It was shown
that a number of the Ba isotopes may have negative equilibrium de-
formation. The present paper aims to calculate the equilibrium defor-
mations for the ground states of even-even nuclei in the range
50 < Z< 82 ard 50< N< 82 and to investigate the dependence of
the results on the methods of calculation and the choice of parame-

ters.

il,

The energies &,(B.y) of the ground states of even-even nuclei

were calculated for the B —values from O to 0.5 and for the ¥ va-



lues from 0° to 60° in the same way as in ref./5/ by the Bes-Szy-
manski method /6/ improved in ref,/7/ and by the Strutinsky method/8/-

In the calculations by the Strutinsky method /8] the total ener-
gy of the ground state of an even-even nucleus is divided
two parts

into the

Eot B.y) =&, (B,y)+AE(B, y), (1)

where 5dmp (B.,y) is the energy in the liquide drop model, its pa-
rameters are determined from the experimental data on nuclear mas—

ses, The shell correction

AE(B,y) = AE(Z) + AE (W) (2
consists of the proton and neutron parts and

A@(Z)-gp - &wy, 3)

where & is determined below in (6), the averaged energy

- A
E(Z) = fE g(EVJE (@)
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and A is the chemical potential determined from the implicit equati-

on Z= [g(E)dE ., The parameter ¥ is close to the energy differen-

ce bet-\:een shells, ’
In calculating by the Bes-Szymanski method the total energy

may be represented in the form
6o(ﬁ'y) -gp +gn +go ’ (5)

where &, , &, are the energies of the proton and neutron s'ystems,

& is the Coulomb energy of a uniformly charged ellipsoid. The
L]
energy of the proton system is
\ 3
3 C
&, =SE(I2v - B, ©)

where the summation is performed over the average field one-
particle levels, E(v) is the one-particle energy, G,

of pairing interactions in the proton system, C, is the correlation

function, 2"3 is the proton density in the v state,
For an axial-symmetric ellipsoid the Coulomb energy can be

is the constant

written in the form/9/

gc( €) = 60(0) 8( 9, (7)

2 .
where 50(0) = 06 —Z“e—- is the Coulomb energy of an uniformly charged

sphere, and
(1 - 28?415 /e R 1-2/3 ¢ @)
8( €) =
V2e-1/38¢? 1+1/3¢ —V2e~-1/8¢2

for ¢ >0 and

2 ' .
(1-2/8 ¢ )/ (1+1/3¢ e g VY3 -2 (&)

g(() -

V1/8 €? -2¢ 1+1/3¢

s s . 10/
for €<0 . The deformation parameter ¢ Is introduced in ref./ /. it

is connected with the usually employed parameter B as follows

3/2 V 55— B

1 4127 =B

~0.95 B(1-0328).

€ m

The quadrupole moment for the ground state is

3
Qo'%“vv 29 . (9)
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where gq,,, is the diagonal matrix element of the quadrupole moment ‘

operator.

I,

Let us consider the parameters used, This problem is of espe-
cial importance since the calculations of the properties of nuclei of
the transition region are very sensitive to the choice of the parame -
ters. The calculations are based on the one-particle levels of the
Newton potential 11/ which at y = 0° transforms into the Nilsson po-

tential with <£?> term, In all our calculations for protons in the i
range 50 < Z <82 we use the same scheme of levels which aty=0° ,:5;

turns into the scheme suggested in ref./12/ for the rare-earth region
and on which calculations made in ref./13/ are based,
For neurtons in the region 50< N <82 we use three different

schemes: Scheme I, at y = 0° transforms into the scheme suggested

in ref. /12/ for the rare-earth region.

The scheme 2 at y=0° transforms into the scheme used in

ref./13/ for the calculation of the nuclear properties with the number

of neutrons 58< N < 136.

The extrapolation scheme for which the parameters were cho-
sen“as follows: we took the potential parameters x andpg given in
ref, /12 first for the region 126 < N < 184 with the centre N= 155, then
the parameters for the region 82 <N <126 with the centre N=103 and
extrapolated them linearly to the centre N=65 in the region 50 < N <82,
As a result we obtained -O.v0638 ard ¢ =0,49,

The pairing correlation constants Gy and G, were taken from
ref./ 13/, their values were renormalized since the calculation was
made with 24 one-particle levels (GxA =25 MeV, G, A =285 MeV),
The stability of the results against small changes inGy and ¢, is
investigated, It is shown that the changes in 6, and G ., within
(5-10)% do not lead to a noticeable change of the equilibrium defor-
mation parameters:,
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For the ground states of even-even nuclei in the region
0<7<82, 50<N<82 the total energies 50(6,}') are calculated as functi-
5 ’ eqe » —
ns of the deformation parameters B and ¥y and the equilibrium de
© are found. The calculations by the Bes-Szy-

formations, B , » Y, .
ki method are made for schemes 1,2 ard 3, the calculations by
mans

‘the Strutinsky method are made for scheme I. The results obtained
e

‘th and without the account of the Coulomb energy are analysed.
wi . )
Figs. 1-6 give the results obtained by the Bes-Szymanski method ac
cording to scheme L ' o )

The quadrupole moments calculated by eq.(9) coincide prac
tically with those corresponding to uniformly charged ellipsoids what
indicates to a self-consistent solution of the problem. '

The results of calculations of the deformations corresponding

° * and at y=60°
to the energy minima &,(¢) at y=0° denoted by ¢ f .
denoted by c'; are given in Figs. 1 and 2 in the form of conto

maps. The values for c;" ard €7 correspond to the two minima of
. i >0 , the other at <0,

the function &(B, y=0°) depending on B,one at B ,l“

The function of such a type is given in Fig., 5 for . Ba 5
Fig. 3 gives the deformation energies 54,, (e ) -50(",9) -6 (€]

for the minima €, at y=0° . It is seen that in the middle of the

region the deformation energies are 8 MeV, what is close to those
. . . <
obtained in ref./5/ for nuclei of the middle of the regions 150 <A <190

and A > 226, Most nuclei of the region considered have the deforma-

tion energy higher than 2 MeV, o
The function &o(B8.,y) has one minimum, for some nuclei it lies

at ¥ =0° for others at y =60°. Fig.4 gives the difference of the de-

formation energies

' - +
AE 4o =G uerle)) =6 ) (e =&, (e =& (e

© °© id line
ini = tel =60 . The solid li
corresponding to the minima at y =0 an b4




in Fig.4 corresponds to the case Agde, =0, The positive value of

A&4.y is denoted by @ and points out that the equilibrium shape
of the corresponding nuclei is a prolate ellipsoid of rotation, To the
negative values of A&, , denoted by (9 there correspond nuclei
having the shape of an oblate ellipsoid of rotation, It is seen from
Fig.4 that there is a large number of nuclei the equilibrium deforma-
tion of which is an oblate ellipsoid of rotation,

Basing on the data of Figs, 1 and 2, the equilibrium deformation

parameters €, or B, can be found as follows., For a given nucleus

the difference A& gof

should be found from the curves of Fig.4. If
A& de

¢ >0 then the equilibrium deformation is a prolate ellipsoid of

rotation then the corresponding value of 6: from Fig.1 determines the

Otherwise the equilibrium shape is an oblate
ellipsoid and the corresponding value of ¢
The contour maps of Figs 1~

equilibrium deformation,

: is found from Fig,2,
4 are calculated by the Bes-Szy-
manski method with schemes 2 and 3. The calculations according

to all the three schemes give similar results. Calculating according

to scheme 2 one obtained somewhat lar

c"; and ¢, and higher deformation energies as compared to the

ger deformation parameters

scheme 2, The region with maximum deformation is shifted to smaller
Z and N. The region of the negative values of A gd“ on a plot
similar to Fig.4 in the range Za56-60and N=66

TIn calculating with scheme 3 one obtain

parameters ¢} and

-74 was increased,
ed somewhat smaller
€ as compared to scheme I, the region of ma-
ximum equilibrium deformations being somewhat shifted to larger Z,
The region of nuclei with positive equilibrium deformations is essen-

tially extended, The values of A§,, in the range Z=54-60, N=66-74

were decreased and does not exceed in its absolute value 0,4 MeV,
For the ground states of even-even nuclei the deformation
energy of which is higher than 2 MeV, the parameter

Y% is either
0° or 60°

i.e, all the deformed nuclei are axially symmetric,
In ref./14/ corrections to the nuclear total energy connected
with the projection of the nuclear wave functions on the state with

a fixed momentum I and its projection M were introduced, The account

R S

h corrections leads to a small increase of the deformation
of suc !

ergy, retaining B . practically unaffected.
en ’

V.
Of most interest in the region considered are strongly neutron-

. . rium and
deficient isotopes of xenon, cesium, barium, lanthanum, ceriu

e others, The parameters of the equilibrium deformations and the
som .

deformation energies for nuclei from the transition regions are far more
efo .
nsitive to the calculation methods and the choice of the parameters as
Se . - . - -
ompared to stronglv deformed nuclei. In this case it is important to have re
c s

sults independent of the calcilation method and the choice‘ of tpa::-
meters and , in addition,to single out results corresponding to the
i arameters.

et C;:;Cie:liltth vevhlioch is independent of the calculation method arnd
the choice of the parameters for the nuclei considered appeérs tto
be the following:energy difference between minima, correspo'ndtngthz
a prolate and oblate ellipsoid of rotation is very small, This is "
me;\in difference in the behaviour of the function 6°(ﬁ,y) for nuclef
of a given region as compared to the behaviour of &,(B8.y) for nuclei
i i < A< 190 and A> 226.

" theTt:fl:Dr; ;?Ses a small part of the resu’lltsafor,_a number.' of ::
non, barium, cerium and neodymium isotopes. The -calculvs.txon.ssth t
performed by schemes 1,2,3 by the Bes-Szymanski methocci: wi :Z_
and with the account of the Coulomb energy ( denoted by NC and frespt -
tively) and by the Strutinsky method (qenoted by‘ St.).. The dAegorma ;,.e
energies 6“,(5"';) and the deformation energy differences dof
e El‘rnol\n/:e’\lf:able 1it is seen that the calculations by scheme 2t
give the most deep minima of the function go(ﬂ,y) and the larl'g::d
values of IA@d., | as compared to the calculations b3f schemes. -
3. The account of the Coulomb energy leads to an increase In

deformation energy by 1-2 MeV ard to an increase of the deformation
efol

e
- ,08, It is also seen that for som
parameters ¢+ and €, by 0.04-0

aver . . n
lei all the results indicate that their equilibrium deformation is a
nuc

oblate ellipsoid of rotation,




Let us compare the resulis obtained by the Bes-Szymanski
method and the Strutinsky method, It is seen from Table I that the
deformation energies &, (3 | &, (6D calculated by the Strutinsky
method are lower by 0,5-1,5 MeV as compared to ther Bes-Szyman-
ski method. When going to the middle of the region 50 <N <82,
50 < Z < 82 this divergence increases, the deformation parameters
calculated by the Strutinsky method are smaller by 0,02-0,05 than
the Gf values obtained by the Bes-Szymanski method with the
account of the Coulomb energy. The co: and & d"(cf ) values calcula-
ted by the Strutinsky method lie between the correspornding €°+
and &,,(e¥) values calculated by the Bds- Szymanski method
with and without the account of the Coulomb energy.

In ret./8/ it is indicated that the €5 and &4 values obtained
by the Bes-Szymanski method depend on the conservation of the vo-
lume of the nucleus, The analysis showed that in calculations by
the Nilsson scheme with the term < (2> /12/ the volume conservation
condition is fulfilled better than in schemes without < £%/10/, How-
ever in the calculations by the Bes-Szymanski method it is difficult
to take into account with sufficient accuracy the effect of the Coulomb
energy ard ensure volume conservation for the potential, containing

the spin-orbital interaction,

VI,

For the ground states of even-even nuclei the total energy
50 (B.y) is of the form similar to ﬁhat represented in Fig.5 (the lo-
wer solid curve) and in Fig.6 for >°Ba, The function & ,(8.7) is
calculated by the Bes-Szymanski method taking into account the
Couwlomb energy, It is seen from Figs.5 and 6 that the function 50(3,)')
has one minimum at B =-0.25 and y =0° and the equilibrium defor--
mation of '?° Ba is an oblate ellipsoid. The dependence 5°(B.y )
given in Fig.,6 shows that there is a wvalley for B8 =0.25 when vy
changing from 0° to 60°. ( B<0 corresponds to 8>0 and ¥ =-600).

10

Therefore there is a smooth transition from the minima at ¥ =0° to
the minimum at ¥y =60°.

Nuclei of the region considered are characterized by a large
softness with respect to y ~vibrations, the functions &,(8,y) change
weakly and monotonously with ¥ changing from 0° to 600. Therefore
in studying rotational nuclear states in the region considered one
should take into account the connection of rotfations with gamma vib-
rations,

The small value of the difference A& 4, for the ground states of
even-even nuclei implies the possible existence of excited quasipar-
ticle states the equilibrium deformations of which differ strongly
from those in the ground states. Fif.5 gives the energies & (pop,)
of the two-quasiparticle excited states as a function of 8 , It is
seen that '®Ba  in the ground ard two-quasiparticle nn (523f ,- 532 )
states is an oblate ellipsoid, The two-quasiparticle states with

nn ( 5234 , 4024 - 5324 , 4114 ) and pp( 4204 , 541¢ ~ 402t , 514%)
have positive equilibrium deformation corresponding to prolate ellip-
soid,

Thus, due to weak dependence of the function 50 (By) on y
in nuclei of the region considered two types of states may exist:
some of them correspond to the prolate nuclear shape, the others
to the oblate one,

The electromagnetic transitions with the change, of the nuclear
shape are hindered (though in this case the hindrance is not large)
therefore the states of this kind may be called shape isomers,

An analogous situation takes place in other even-even nuclei
as well as in odd and odd-odd nuclei. According to our calcula-~
tions the shape isomers may exist for a number of isotopes of Xe ,
Cs, Ba, La, Ce and others, Their experimental observation is of

great interest,
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Table I

Deformation Parameters &3 s Deformation Energiesécdqlt': ) (in MeV)
and Deformation Energy Deference A&lq. (in MeV)

Nucledi Scheme I Scheme 2 Scheme 3
NG  C st NC c c
1 2 3 4 5 6 Vi 8

€ 0,77 0,24 0,19  0.18  0.25  0.23
bigs5) 06 1.9 10 13 2.8 1.9

1o
;.,XQ“ £ 0.11  0.25 0,15  0.15  0.25  0.24
ddey(el) 0.2 1.6 0.6 0.6 2.1 2.0
08y -0 -0 =04  =0.7 =0.7  +0.1

gs 0.16 0.22 0.20 0.18 0.24 0.22
Cdy(€7) 006 1.9 11 14 2.9 1.9

122,
*
ﬂ)(e‘, g, 0,10  0.21 0. 0,15  0.22  0.22

ly(sl) 0.2 1.3 0.7 0.8 2.0 1.7
Af.,/q. —0u4 =046  =0u4  =0.6 =0.9  =0.2
I

€5 @1 0,21 0,17 0,17 0,23  0.20
Eheyls) 05 1.5 0.9 1.2 2.5 1.6

124
ﬂ)(e 10 gt 0.10 1.18 0.13 0.4 0.19 0.18

fiplsl) 0,2 1.0 0.7 0.8 1.8 1.2
Aqu -0.3 ~0e5 -0.2 ~Qol -0.7 -0l

€5 0.11 0.17 0.13 0.14 0.20  0.17
Edegs’)o.2 0.9 0.6 0.8 1.8 1.0

e,, €2 0,10 0.5 0,15  0.12 0,16 0.15
Loy (€8] 0,1 0.7 0.5 0.6 1.5 0.9
pédey 0.1 -0.2 -0.1  =0.2 =03 =0.1

to ve continued
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1 2 3

m 5 6 7 8
€7 0,20 0.26 0.2 0,21  0.27  0.25

14 Ely(67) 1.4 3,3 2.0 2.3 44 3,3
:‘Ba-ta 34 0.17 0.26 0,22 0,18 0.26  0.25
€dys!) 0.8 2.8 1.6 1.5 3.6 3.2

o€ly -0.6 -0.5 0w 0.8 =0.8 =0.1

€7 0,18 0.25  0.22  0.20 0.26  0.25

2¢ £hy&a)11 2.9 7 2.0 40 2.9
s~% %0 gt 0,15  0.22 0,17  0.16  0.23  0.22
Eig(€l) 0.7 2.2 14 15 3.4 2.5

a 5.,/4 =04 =0,7 =03 ~0,5 =0.9 =0.4

€o, 0.4 0,23 0.18  0.17 0.25 0,23

/23 {/#[5;) 0.7 2.0 1.3 104 3.1 2.1
s‘,BQ;z €% 0.4  0.19 OJF 0.15  0.20  0.18
Eaglc) 0.5 1.6 4,2 .2 2.5 1.8

addef -0.2 04 -pf{ 0.2 -0.6 =-0.3

€ 0,11 0,18 0.13 0.1% 0,20  0.18

30 Ziglss) 03 1.0 0.7 0.9 20 1.4
s/“%¥ £t 0.0 0,15 0.5  0.13 0.6  0.15
/fdef(if} 0.2 1.0 0.7 0.8 1.7 1.2

s€def =01 0 0 -0.1  =0.3  +0.1

be continued
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to

7 2 3 m 5 3 7 8
€, 0.21 0.28  0.25 0.22 0,28  0.27
'”ce” Clyes) 1.8 w.n 2.5 2.8 5.2 4.0
¥ £ 0.18  0.26  0.22  0.20 0.26  0.25
oy (£0) 1.4 3.6 2.3 2.2 4.6 3.8
A bley =04 0.5 0.2 0.6 -0.6 -0.2
To  0.18  0.26 0.22 0.20  0.28  0.25
130 Edyls) 1.2 3.0 1.8 2.1 42 3.4
ss-C2 ¢4 0,15  0.22 0,17 0,17 0,23 0.21
’ng_/.[iz) 1.0 2.6 1.8 1.8 3.6 2.8
A&y =-0.2  -0.4 0 -0.3  =0.6 =~0.3
. 0,13 0.22 0,18  0.16 0,25 0,22
UZC Elysl) 0.6 1.8 14 13 2.9 1.9
s3-C3 €% 0.1 0,18  0.15  0.15 0,20  0.18
gy (c5) 0.5 1.7 1.2 1.3 2.6 1.9

A&dy =04 =01 0.1 0 -0.3 0
€ 0,19 0.28  0.25 0.21  0.29  0.27
2 Edesle:) 1.6 3.9 2.4 2.6 5.2 4,0
66/\/9/“- gt 0,18 0,26 0,24 0,19  0.26  0.24
EST) 145 3.7 2.6 2.4 4,8 3.8
b8y -0,1  =0.2 0.2 =0.2 =0.4  =0.2
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Fig.1, Contour map for the equilibrium parameter .tt as a function

of the number of neutrons N and protons Z, The numbers along

the curves give the t: values,
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Fig.2, Contour map for the deformation parameter ¢, as a function
of the number of neutrons N and protons Z. The numbers along
the curves give the ¢, wvalues.
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Fig.3. Equipotential curves for the deformation energy
E ., () =6 (e=0) ~& (e*)
def o o o o
at ‘; >0 as a function of the number of neutrons N and protons

Z.
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Fig.4. Equipotential curves for the energy difference
A8 for = & gorled) =y e =B —E (e}
as a function of the number of neutrons N and protons Z,
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Fig,6. Behaviour of the total energy &(B,y) (in MeV) for
at Bo-0.25.

Fig.5. Behaviour of the total energy of the ground and three two-
quasiparticle states of 'Bs (in MeV) as a function of the de-
formation parameter B from B =0.4 to 8 =-0.4 at y=0° ,

For the two-quasiparticle states quantum numbers N_n.A b a function of y
are given on the right for y =0° on the left at 8<D0, which
corresponds to B> 0, y =60,
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