








L. The equilibrium deformations of the ground states of even-
even nuclei have been studied in a number of papers., Bes ans Szy-
manski/ 1/, Sobiczewski/ 2/ et al, have calculated the equilibrium
deformations for nuclei in the rare-earth region and in the actinide
ragion, They used the one-particle energies of the Nilsson potern-~
tial and took into account the pairing correlations of the sSupercotrr
ducting type. In order to calculate the statical nuclear shape Baran-
ser and Kumar/ 3/ have used the model in which the pairing corre—
lations and quadrupole- quadrupole interactions are taken into accouint,
In the overwhelming majority of cases the calculated equilibritim defor-
mations 8, are in good agreement with experimental data. Das Gup-
ta and Preston/ 4 have investigated the axial symmetry of the shape
of nonspherical nuclei, They showed that the strongly deformed
nuclei have axial symmetry and the static shape of these nuclei is
a prolate ellipsoid of rotation, The word " strongly deformed nuclej"
will be used for defining nonspherical nuclei which are outside the
transition regions from deformed nuclei to spherical ones,

The investigation of the equilibrium deformations of the excited

-
nuclei is in its initial stage, In ref./ 5/ it was considered in what



cases the equilibrium deformations of the excited ‘quasiparticle states
may differ from those of the ground states,

In ref./ 6/ the equilibrium deformations of the excited states
were investigated in connection with the problems of the structure
of spontaneously fissioning isomers.

The main attention is focused, in this paper, on the calcula-
tion of the equilibrium deformations of the excited states, It is cor-
sidered whether shape isomers may exist in heavy strongly defor-
med nuclei. Since the magnitude of the equilibrium deformations of
the: excited states are mainly defined by the behaviour of the total
energy of the ground state of an even-even nucleus depending on
th=> deformation parametres B and Yy then the total energy

go(B,y) for sirongly deformed nuclei is calculated,

I, The energies go(ﬁ ,¥) of the ground states of everreven
nuclei for the B values from 0 to 0.4 and for the y ~walues from
0° to 60° (provided that B> 0, ychanges from 0° to 60°, if B
assumes the positive and negative values then ¥ changes from
0° to 30°) are calculated by the two methods: by the Bes- Szymar-
ski method/ 1 and the Strutinsky method/ 7 .

Following the Bes-Szymenski method the total nuclear energy

can be represented in the form

go(B.y)=5p+5 +f.c , (1)

where 5, , @n are the energies of the proton and neutron sys-
tems, 6:: is the Coulomb energy of a uniformely charged ellip-

soid. The energy of the proton system is of the form
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ion is made over the average field ot >article

wi e =T

are the one-particle energies of the Newton potential/ 8/
t of the pairing interactions in the proton

levels,
E (v)
G, - is the const
system and 2v: is the proton density in the state v , The constants
Gy and G, and the parameters of the Newton potential ( which in the
turns into the Nilsson potential) are taken in the rare-

case y=0
earth region the same as in ref./ 9/ and in the actinide region the

same as in ref./ 6/.
Following the Strutinsky method/ i the total energy of the

ground state of an even-even nucleus is divided into the two parts:

50(,3,)')=5dmp(ﬂ,y)+A5(B.y), (3)

is the energy in the liquid drop model, its para-

where 5dmp (B, y)
meters are determined from experimental data on the nuclear me

ses, The shell correction

ABB.y)=A&E(Z) +AE(N) ()

consists of the proton and neutron parts, in this case

AE(7) =&, - &(2), (5)

where 6, is determined in (2) and the averaged energy

- A
&(z) « [Eg(E)dE

- (6)
g(E)=l —lzexp[—(iﬂ)—)nl
” y VvV Y



and A is the chemical potential, the parameter y is close to the
energy difference between the shells (that is 5-10 MeV). The con-
stants €6 and €, were chosen so that obtain for B =B,and y=0°
the correlation functions €, and €  close to the data in ref./ 10/.
The schemes of the average field levels were chosen the same
as in the Bes-Szymanski calculations,

III, Let us now discuss the results of cal tion of the total
energy of the ground states of even-even strongly deformed nuclei
depending on the deformation parameters 8 and y . Some of the
obtained results a presented in Figs, 1-7. In Figs. 1 and 2 is gi-
ven the function 50(;3 , Y= ) for a number of the gadolinium and
hafnium isotopes, The deepest minima of the functions 50(,3,)') cor-
respond to the equilibrium defomations which 'ar_e denoted by B8, and

Y, . It is seen from the figures thatv the minima of the functions
5o(ﬁ.y) become deeper as far as the isotbpes are moving away
from the nuclei of the transition regions.

It should be noted that the calculations for 102 Gd (and to
less degree for 104 éd )} are more sensitive to the Nilsson potential
parame{érs and to the Gy and ©6; values as compared with stron-
gly deformed nuclei and therefore they are not quite unambiguous.
The depth of the the well is close to the energy of zero oscilla-

tions. Therefore the calculated function go(ﬂ.y) does not contradict

a sharp disappearance of the deformation when the number of neu-
t~-ons is 88 that is revealed in the properties of the first 2" states
and in the anomaly of the behaviour of the coupling energy of the

/11/.

The results in Figs, 1-4 are obtained by the Strutinsky me-

pair of last neutrons

tnod. However, for defomed nuclei the functions &4(8.,y) calcu-

lated by the Bes-Szimanski and the .Strutinsky methods are very



close to each other. So, the calculations by the Bes- Szymanski
method give for = G  B.=033 and & (B ,y=0% = -4.8 MeV

(as compared with B, = 030, & (B,,y=0"= -4.8 MeV on Fig. 1)
and for R Bo=03 and & (By, y=0°) = -3.1 MeV (as compared
ed with By= 0.27, &(B,. y = 0°) =-3.1 MeV on Fig. 1) and
so on, '

From Fig, 1 and 2 it is seen that for Yy = Oc> the function

60( B,y = OO). has the two minima: one at 8>0 , the other at
B<o (or B>o0 , y=50° ). In order to make oneself sure that & mini ~
mum  of 50(/3 4 ) exists for B< 0 it is necessary to calculate
the function & _ (B, ) for all the values of y different from
zero, Fig. 3 gives the behaviour of the function & (B, , v ) de-
pending on y for the function values at minima with respect to B .
From Fig. 3 it is seen that in all the cases the function &8, y)
has only one minimum for ﬁo> 0, vy, = 00. This fact is seen in
Fig. 4 where for Ty the behaviour of 50 (B .y ) is given
for y equal to 0°, 10°, 20° 30° 40° 50° and 60°.

For the dysprosium, erbium and itterbium isotopes the beha-
viour of 50( ﬁl,“y ) is \:ery similar to the behaviour of this
same function for Yb and Hf , the functions & (B , ¥ ) have
less deep minima for the tungstem isotopes, The wvalues obtained by
us for strongly deformed nuclei | §,(8 =0, y= 0%) - &,(B,.%)| are by
2-4 MeV smaller than those in ref./ 12/ . The calculated wvaiues of
the equilibrium deformation of g  are in good agreement with experi
mental data (see, e.g. ref./ 13/ ). The B, values found by us are
far larger than those calculated in ref./ 2/ and somewhat smaller
than those calculated in ref./ 12/ .

The function 50( B . v ) is also calculated for nuclei

in the actinide region, Figs., 5-7 represent a part of the results of

calculation of 50(13,)') performed by the Bes- Szymanski method.
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It should be noted that the behaviour of &, ( 8 . ¥ ) for Pu

is about the same as the curve I in Fig. I in ref./ 6/. In Fig. 7 one
cives a contour diagram where the continuous lines correspond to
the &,(B.y ) values like -5, -4, -3, -2 and -1 MeV. The
minimum of &6,(B,y) is -5,7 MeV with respect to the &, (B=0,

y =0° ) value. The curves such as in Figs. 6 and 7 are close
to the functions § , ( B.y ) for 290 U ,“opu and for a number of
curium and californium isotopes, For all the strongly deformed nuc-
lei the function 6o(ﬁ , ¥) has one minimum at y =0°. The calcu-
lated values of B, are in rather good agreement with experimental
data (see e.g. ref./ 14/ ) and are close to the values calculated

in ref./ 2/ .

As far as we are going to the transition region (i.e. for light

uranium and thorium isot_Opes) the minina of the functions & o( B.v
becane nore and more shallow and the shape of the curve

&( B,y =comst ) more and more deflecting from the parabola, For

a8
example, for Th

. [+] .0
{-;o(ﬁ. 0, y=0 )—60(/30-0.14 v Vgm0 )= —0,6MeV,

& (B=0, y=0"-§ (B, =010, y=60°%) = = 0,2 MeV , —

th2 curve is nonsymmetrical with respect to the minimum,
Thus, for each of the strongly deformed nuclei the function
&E,( B,y ) has one minimum at y = 0° and the B, values
are close to the experimental one, The results of calculations per-
formed by the two methods practically coincide with one another,

The cesults are stable against some changes of the ¢, and G,



and against such change of parameters in the Nilsson- New-
ntial which does not lead to contradiction with experimental
odd-mass strongly deformed nuclei.

or all the strongly deformed nuclei the shape of the curve

, ¥ =const) is close to the parabola which testifies a small
nicity of the oscillations, This result is in agreement with

{15/ / 15/

the admixture of two-phonon states to the one-photon states,

ilts obtained in ref, . In ref. one gives the calcula-
culations have shown that for strongly deformed nuclei the
‘es to the lowest one-phonon states are small what shows up
role of the anharmonic effects.

V. We discuss now the behaviour of the one-particle levels
wverage field depending on the deformation parameters B and
he behaviour of the one-particle levels at 0 or 60° depen-
B is well studied, it is well shown in the Nilsson scheme
L. ref./ 10/ )

the case when =,E OO or 6()0 the nucleus is nonaxial and
ection of the total momentum of the nucleus K on any axes
. good quantum number. The case of nonaxial nuclei was
ated by A5, Davydov ct al./ 16/ . For us it is important that
0 and 60° K is not a good quantum number,

t us choose the constant value g = g, >0 and vary

e ¥ from 0° to 60°, Let for ¥ = 0° the symmetry axis
ixis 0 ,and K= K, be a good quantuin number, Increasing
1 6° to 30° the wave function of a given state except the
ant witn K = K, (which i predominant) contains admixtures
er values of K. When y is larger than 30° we have for

0% an axially symmetrical nucleus with other symmetry axis

e denote by Oy(OyJ- 0_) and for this state there is a good

9



quantum number K = K, . In the interval of y from 30° to 60°
the predominant component of the wave function is a component
with K=K 4 , This is seen from Table I. From the normalization
condition of the wave function of the lowest state from subshell

i3/ ON€ nas obtained the components of the wave function with
different K for B - 0.20. For ¥ = 0° the state considered is
assigned by the quantum numbers 1/2 +[660] and the syrametry axis
ic the axis 0, . At y #60° the given state is assigned by

13/2 + [ 606 ] and the symmetry axis is the axis Oy

As an example we show the behaviour of the one- particle
levels of the average field for nuclei in the actinide region depen-
ding on vy . Fig. 8 gives the scheme of the levels for the neut-
ron system and in Fig. 9 for the proton system. The calculation
is made for B = 0.14, This choice is explained by the fact that
the function & JB . y= 60°) has a minimum near B = 0.14 for
the uranium and plutonium isotopes. The energies are given in
units b & o = 41 A -1/ MeV. On ‘the left one gives the quantum
numbers K#[Na_ Al for y=0° and on the right for
y=60°,

Figs. 8 and 9 show that the energy of most levels depends
weakly on ¥y . However, there is a number of levels the energy
of which increases by 0.5 MeV when y changes from 0° to 60°.
This can lead in principle, to the existence of quasiparticle excite
states with v = 60°

Using the formulas of the superfluid nuclei model/ 17/ it is
not difficult to calculate the behaviour of the total energies depenc
ing on B and y for odd-mass nuclei with a quasiparticle on the
level p and for two- quasiparticle excited state of even-even nucle
wita quasiparticles on the levels P, and Py - The energy of the

one- quasiparticle state of the system which consists of an odd

10



number of protons and the quasiparticle of which is on the level P

is of the form

C:(p)
G, (7)

2
& (piB.y) =E(p)+2V§PE(V)vV -

The energy of the two- quasiparticle state of the system which cor-
sists of an even number of protons with the quasiparticles on

the levels p, and p, reads:

(PIP
5P(PI,P25ﬁ.)’)-E(pl)+E(p2)+2v"2plp2E(v)vV -—J_:_( )

In order to calculate {'Sp(p i B,y) and ép(pl,pz;ﬁ,y) for each
state and for each value of B8 and Y one solves the equations
( see ref/ /) for determining the correlation functions € (p),

€ {p,,p;)) and the chemical potentials A (p) and A ( P, P, ) .
Similar formulas are taken from the calculations for the neutron Sys-
tem states,

The total energies of the one- quasiparticle states of
&(pify) and of the two- quasiparticle states of 5(pl c P, B LY
are calculated by the formulas (1) or (3), (5) where instead of
{2) one inserts (7) or (8). The total energies of the two-quasi-
particle states of odd-odd nuclei & ( voss,i B .y) are calculated
by the formulas (1) or (3), (5), where instead of &, and &
one inserts the expressions (7).

From the condition of the absolute minimum of the total ener-
gies &(p, B8,y 6(,, +p,»B.y) and CS(uo,so;ﬁ,y)
it is not difficult to determine the parameters /3 and Y, for the
equilibrium deformation of the one- quasiparticle states of strongly

deicrmed nuclei,

11



V. Let us consider the behaviour of the total energies of one-
and two- quasiparticle states and find the appropriate equilibrium
values of the deformation parameter Ba and Y, for strongly defor-
med nuclei,

First, we consider the one-quasiparticle states, As was men-

/ 5/

deformation ﬁe which differs from the deformation ﬁo for ye-}'oao

tioned in ref, an one- quasiparticle excited state with equilibrium
may exist if the decrease of the quasiparticle state energy with cha-
nging B is larger than the inc..ase of the energy of an even-even
core, For one- quasiparticle states one may formulate the following
rules when deflections of B, from g = are possible: B, > B if

a quasiparticle is either on the hole level of the average field the
energy of which rapidly increases with increasing B or on the
particle level the energy of which strongly decreases with increasing
Bi B, < B, Iif a quasiparticle is either on the hole level the energy
of which rapidly decreases with increasing B or on the particle
lovel the energy of which strongly increases with increasing B .
In ref./ 5/ one gives some example of one-quasiparticle states in
which B, # B . In calculating in ref./ 5/ the functions

&(p; B.,y=0") for the ground one- quasiparticle states were taken

from ref./ 18/. The functions & (p ; B,y =0 calculated by us for
{1z ground states of odd-mass strongly deformed nuclei have {as
compared with ref./ 18/) more plane minimum for B>0 ., Therefore in
these calculations we obtain a somewhat larger deflection of B8,
from B8, as compared with ref./s/. The largest difference is for
the following states: according to our calculations, for y = 0° the
equilibrium deformation of the excited state 1/2 - [541] e s
I5] Ag = 0.01 - 0.02); in %4 for
*ne state 1/2 + [400] AB = 0.05 (as compared with AB= 0 in ref./ 5/)

by 0.04 larger than 3, (in ref,

for the state 1/2 ~[505] AB=-0.05(as compared with A8 = -0.01 in

12
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ref./ 5/ ); in  Hf the equilibrium deformations 8 of the states
: L

7/2 - [ 508] and 9/2 - [508] by 0,02 smaller than B, , while

in ref./ 5/ B,= B, and so on,

In the actinide region, e.,g. inau Pu for the one-quasiparticle
states 13/2 +[606] , 1/2 - [761] , 11/2 +[615] AB = 0,04 - 0.05,
while for the &tstes 1/2-[770],8/2-(761]1,7/2+(613} AB=_(0.03-0.04).
in "' Am the one-quasiparticle states 11/2-[s05], 1/2 + [651 ] have

B, = Bg+0.04 and the states 11/2+1[615]1,9/2 — [505] have
B -ﬁo-o.oa and so on.
s
Thus the calculation performed prove the conclusion drawn in

!/ 5/ '

ref, that some low-lying one- quasiparticle excited states in odd-
mass strongly deformed nuclei may have equilibrium deformations
which differ from the equilibrium deformations of the corresponding
e -« mn ‘ a o

Let us investigate the question as to whether there exist one-
quasparticle states with ¥, £ 0 for pe >0 |, As is shown below
the energies &,(B.¥) of the ground states of even-even nuclei
sharply increase with increasing ¥y from 0° to 10° and higher, From
Figs. 8 and 9 it is seen that the change in the energy of the one-
particle levels with increasing ¥y is essentially smaller as com-
pared with the change of the energies of the one-particle levels
with increasing B8 . These two facts allow one to understand the
results of the calculations performed according to which in strongly
deformed nuclei there are no one-particle states with ¥, £0

As is shown above, the function &( 8 > 0, y = 60°) has a
minimum, The problem is invesﬁgated whether this minimum can lead
to the existence in odd-mass strongly deformed nuclei of one-« si-

particle states with ¥, = 60° Table 2 shows the behaviour of the

. . . . . 338
energies depending on y for one-quasiparticle states in U and

285
Np for B8 = 0.14. From the table it is seen that for a number of

13



states, e.g. for 1/2+[6601  in "y, 1/240660],1/2-[530] in "*'Np (the

values of Krl Na A ] correspond to y= 60 ® ) the function
&(p; B,y) has, in addition to the deep minimum for y = 0° and
'B_B.' ,a very plane minimum for y=60° and B = 0,14, However
the depth of this minimum is very small, it is smaller than the energy
of zero oscillations and therefore it is impossible to speak about
the existence of the isomers of such a type. .-
Thus, in strongly deformed odd-mass nuclei the one—-‘quasi—
particle states must have y=0°
A number of two-quasiparticle states in strongly deformed even-
even nuclei ha\—/e the equilibrium deformations ﬂ. differing from B

240

when y = 0 . According to our calculations in °* Pu the two-quasi-

particle neutron states

Km = 7~,6—13/2 +[606] , 1/2 = [7611],

Kra 7—, 6 =13/2 +[606] ,1/2 - [501],

Kg = 6+, 7+13/2 +[606] , 1/2 + [880]

have the equilibrium deformation B; =B, +0.04 and the state

Kn= 2~,5-7/2+[613], 3/2 -[761]

has g,=8 , — 004 and so on,
As in odd-mass nuclei the two-quasiparticle excited states

of evern-even strongly deformed nuclei have Y, = o,

14



“Table 3 gives the behaviour of the two-quasiparticle states for
234 . :
U with changing ¥y from 60° to *30° for B=0,14 ., From this

table it is seen that for some states, e.g. neutron two- quasiparticle

Ko =3+ ,2+ 5/2 +1(633], 1/2 +[s40],

K =5-,6 —11/2 = [725) , 1/2 + {640 ]

and proton two- quasiparticle

Kr =3-,4-7/2-[503], 1/2 + [6601] ,

K7 =1~,0-,1/2~ [s5411, 1/2 + (6601

the function & ( pP,iB.y ) has, in addition to the deep minimum
for y = 2% and 8 = ﬁ; a minimum for B= 0,14 and ¥y = 60°.
However, as in the case of odd-mass nuclei, the depth of this mini-
mum is smaller than the energy of zero oscillations and an isomer
for ¥y = 60° in the case of even-even nuclei will not exist.

The largest deviations of B, from B, at ¥y = 0 must be
observed in odd-odd nuclei where it is more easy to find two le-
vels of the average field the energy of which rapidly changes with

/ 6/

nuclei in the transuranium region the excited states

B . So, the calculations of ref. showed that in many odd-odd

K7 = 12 -~ p11/2 -~ [505] , al13/2 +[606],

Km= 11 - p11/2 - [505,] , nl1/2 +[615],

Kn =6 + pll/2 — [ ., nl/2 = [ 1

15



have equilibrium deformations. which are by 0,08~ 0,10 larger than Bo.
Basing on these calculations We have tried to explain the structure
of spontaneously fissioning isomers,

The calculations showed that a number of excited states of
odd~ odd nuclei must have equilibrium deformations Ié. essentially
smaller than Bo for )'e =0 . For example, the equilibrium deforma-
tions of the excited states of nuclei with zZ= 105 and A= 258 and
262

Kr =0~ 9~ p9/2-[55], n9/2 + [604]
Kn =10 +,1+ p11/2 + {615) , n9/2 +{604]

are by 0.03 - 0.05 smaller than B, . For the isomers with ﬂe <B,
in odd-odd nuclei with Z>103 the spontaneous fission and alpha
decay half-lives can noticeably increase as compared with the ground
slates, This fact may turn out to be very essential in obtaining
heavier transuranium elements.
Table 4 shows the behaviour of some two- quasiparticle levels

in the odd-odd nucleuS“eNp depending on y for B8= 0,14. From
Table 4 it is seen that for their states the deepest minimum is at

Yy = 0°. In those states where there is an additional minimum at

Y = 50° and B = 0.14, e.g.

Kmr=0~,1- 21/2 +{640], p1/2 - [541],
Kr = 1-~,0-~ nl1/2 +[640] , p1/2 ~ {5301,

K =1+ ,0+ nl/2 +[640], p1/2 +[660]

16



its depth is ' larger than in the case of odd and even-even nuc-
lei however even in this, the most favorableocase, we may not speak
about the existence of isomers with )’i.- 600’, since the depth of
this minimum is apparently, lower than the energy of zero oscilla~
tions, ‘

VI. The following conclusions concerning the strongly deformed
nuclei can be drawn on the basis of the calculations performed:

1. The total energies of the ground states of even--even nuclei
have minima at ¥,= 0° and at the values of B, which are in ag-
reement with experimental data on equilibrium deformations. The shape
of the curves éo(B,y) near the minimum is a parabola which leads
to a small anharmonicity of oscillations.

2. Some one-quasiparticle and two- quasiparticle excited states
may have equilibrium deformations B, which differ from ﬁo .

3. There are no excited states \'/vith ,8.! <0 , when B _>0.

4. In one- and two-quasiparticle excited states nuclei retain
the axial- symmetric shape, i.e. Yy = O.

These conclusions are relatéd to strongly deformed nuclei
which are outside of the transition region from spheroidal nuclei to
deformed nuclei. Some of these conclusions appear to be wrong for
the nuclei of the transition regions. It is just in the nuclei of the
transition region the appearance of shape isomers should be ex-
pected in particular, isomers for which B,< 0 while for the ground
state B «>% + In conclusion we expresé, our gratitute to A. Sobi-
czewski and V.M, Strutinsky for the routines of calculation on elec-

tronic computers,
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fable 1

The Contribution of the Components with Different Pro-
jeotion K of the Total Momentum on the Axes (; and ()
3T the Wave Function of the Lowest level from the oubShelll,,h
'or P = 0.20. oThis level is agsigned for d’ = 0° by 1/2+|660]
wad for x = 60° by 13/2 +[60aj

l.a.’ﬂ::::::::ﬂ::::::==========”8====l=.’===========-."I===

K Projection Values wtz: légs-
in degrees ghe Lo
% /, 3
o % Y )

10%-0,733 0,223 0,040 0,003 2.10~% 4.107° 4.10°8
»0° 0,600 0,300 0,085 0,014 0,001 6.10~2 1.107° o
30° 0,532 0,320 0,118 0,027 0,003 3.10~% 8,107°

30° 1.107* 8.10™% 2.1072 7.107% 0.056 2.1077 0.942
10° 1,107 2.1077 5.107* 8.10° 0.025 8.1071° 0.975 0y
50° 1,107 6.107193.107% 4.107220.006 4.10712 0.994
0 0 0 0 0 0 0 I
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Table 2

The Behaviour of the Energies (in MeV) of the One-Qu

particle Excited States

for P = 0.1k,

with Changing X from 60° to 30

331-

A ER RS I R I R S A N I I AT S I NSNS SIS I R T ARI L XAVAIDIRNIZ2DI]

Nuocleus K’]’[M n;A]

Y

tor Y= 60° 60° 50° 40° 30°

235  7/2+[613]  2.52 2,44 2.18 1.78

5/2+[633]  2.53 2.45 2.21 1.85

3/2+[642)  2.58 2.48 2,21 1.81
1/2+[651] 2465 2.57 2.30 1.95 °

5/2+ [622] 2.67 2.74 2.46 2.17

1/2+[680]  2.92 2.99 2.96 2.60

235, 5/2-[523)  2.52 2.44 2.18 1.78

N 11724775 2.56 2447 2.21 1.79

3/2-[533]  2.63 2.53 2.26 1.87

1/2=[5s1)  2.73 2.73 2.57 2.17

1/2+[660)  3.57 3.64 3.57 3.34

1/2-[530]  3.57 3.60 3.53 3.31
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able 3
The Behaviour of the Energiles (MeV) of the Txo—Quas%

rticle States of 23U wkth Changing Y from 60° to 30° for
= 001#

(Quantum Numbers I('Jr[/‘/nz/l] are Related to X =60°)

*-l--’-ﬂa---.-----.-8----'- BN ENNEEESESERESEEEINIENNANKEETRRE

RN A AL Y

tor [ =60° for ¥ =60° 60° 50° 40° 30°

r

Neutron States

» 1+ 5/24{633] 7/2+[613)  4.36  x.28  3.99  3.58
y 9= 7/2+[613] 11/2-[725] #.37 A28 3.98 3.5
, 2+ 7/2+(613) 3/2+ [642] 407 A3k kO 3.60
y 3+ 7/2+[613] 1/24[651]  4.56 k.49 416 3.79
y O+ 5/2+[633] 5/2+[622)  4.57  4.53 .35 k.05
) 8= 11/24725] 5/2+[622]  4.59  4.55 436 4.0k
, 6+ 7/24[613) 5/2+[622) .60  £.55  £.36 4.0
, 2- s/2+[633] 1/2+[640)  s.84 492 w88 4.51
) 6 = 11/24725) 1/2+[640]  4.87  #.96  4.91  4.52

Proton States
y 1+ 7/2-[503] 5/2—[523] 4,29 &.21 3.95 3.56

9= 7/2-[503)11/24615]  w.29 w21 3.95 3.5
3+ 7/2-[503) 12foa] k.61 k.63 448 4.0D
= z/2-[503] 1/24[660] 5.5  5.61  5.56  5.36
o- 1/2-[5s1] 1/2{660]  5.89  6.05 .10 5.82
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Table Iv
The Behaviour of the Energies (in MeV) of the Twg-Quasi-
Particle States with Changging Y from 60~ to 30
for P = 0.14
(Quantum Numbers K% [Ai,A] are Related to )= 60°)

L
AN EE IR E S S T R EE I I NS S R T E R NIMESIESEEEEEIANIENA I Mg I IJ I

Y

Neutr.States Prot. States

K K,I; [/V"z/\] K, 7‘:[/‘/”2/‘-]
For ) =60° For y=60° For ) =60° 60°  50°  40°  30°

1-, 6= 7/2+ [613) 5/2= [523] 2.52 2.44 2.18 1.78
3+, 8+ 5/2+ [633] 11/2 {615] 2.57 2.49 2.24 1.86
11-, 0= 11/2-[725] 11/2+[615] 2.56 2.47 2.21 1.79
B+, T+ 3/2+ [642] 11/2+[615] 2.62 2.51 2,23 1.82
5¢, 6+ 1/2+ [651) 11/2+(615] 2.69 2.60 2.33 1.97
8+, 3+ 5/2+ [622] 11/2+[615) 2.72 2.67 2.49 2.18
1-, &= 5/2+ [622] 3/2- [532] 2.78 2.73 2.58 2.26
0-, 1- 1/2+ [640) 1/2- [541] 3.13 3.28 3,34 3.00
1-, O0- 1/2+ [640] 1/2= [530] 3.97 4.15 3.31 &.14
1+, O+ 1/2+ [640) 1/2+ [660] 3.97 4.18 4.35 4.17

iz RS rAESEEERERC TSSOSO SIS SEASTANSATATDIIISZRN
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Fig. 1. The behaviour of the total energy of the  gadolinium iso-
topes (in MeV) depending on the deformation parameter
from %- -0,4 to B = 0,4 for the nonaxiality parameter

v =0 23




fSOHf
I78Hf
476Hf

fﬂ’Hf

-04 -03 -02 -01 0 o1 02 0,3 o4 ﬁ

Fig., 2. The behaviour of the totad energy of the hafnium isotopes °
(in MeV) depoending on B (from -0.4 to + 0.4) for ¥y = O .
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Fig. 4. The behaviour of the total energy (in MeV) of gb de-
pending on B different values of y from 0 to 60 .

26












\rn

>
&
Q

~J
-
o

70]

6,97

681

6,7

Hedm/:oye/ P =014

4/2+[62O

% -[752]

4 [725] = N\
Wl — - 093]
7Ao 513 Yy ¢[40)
@ Y, [631]
rlest] 9 - [734]
+[622]
3054 e
3/2 +[642]
Torlsy] Y, +[643)
Ty-[w3) — ”?2'[72 5}
%9[522}/———-— (MG

02 @ 9 +[s04]

90 633] e lo24]
372; md//\//—fyz-[wd
3/2,[531}
fhp-L110]
th+3%0]

%'[ﬂ/zj\\

forlos] —_—

66

0° o0 20° 307

Fig. 8. The behaviour of the average field
neutron sy =fem depending on ¥y (i
On the left are the quantum number
o the right ¥y = 607,
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The behaviour of the one-particle levels of the average field

for the proton system depending on y (in degrees) for

B = 0,14, On the lefct) are given the quantxsm numbers
Kn[Na A] for y = 0, on the right for 60",
»
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