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Introduction 

'The problem of the dependence of the energy of the nucleus on 

tAe deformation parameters of hip,her mutipole orders ( .\ > 2 ) has at­

tracted much attentiod 
1

/ • A knowledge of this dependence is important ·for 

the interpretation of a very broa!f class of effects such as the equilibrium 

deformation • vibrational spectra, fission barriers etc. In this paper we 

shall investigate the effect of the shell structure on deformations of the 

quadrupole {3 :a and octupole {3 
8 

types. 

For nuclei in the 218 :SA :S 232 region octupole I • f1 states 

have very unusual properties. 'Their energies are very low, momenta of 

inertia large and hindrance factors for a -decay small/ 
2

/ • Such behaviour 

indicates, that for these nuclei the shell structure may strongly chan~e 

the simple ( liquid drop) dependence of the energy on the octupole defor­

mation. Besides, this region of nuclei is also on the boundary between 

spherical and deformed nuclei. 'l'l-lerefore we have chosen this region for 

our calculations. Because the projection of the angular momentum on the . 

nuclear symmetry axis in low-lying - 1 f1 
states is equal to zero we 

shall limit ourselves to axially- symmetric nuclei. Preliminary results of our 

calculations were already published in/ 3 / • 

'!he problem of nuclear stability with respect to octupole deformations 

3 



was investigated in papers/ 4-
7/. The restoring force par:"ameter C a was 

calculated using various approximations ( usually perturbation theory). The 

restoring force consists of twoterms, of approximately the same magnitude, 

but opposite sign. The quantity c d•t characterizes the repulsion of the 

filled and unfilled shells which contributes to the deformation, C , .. , origJ,... 

nates from the "inertia of closed shells" or volume conservation which 

counteracts the deformation. ln the mentioned papers the restoring force 

parameters were small and positive, i.e. the nuclei were "soft" but nonde­

forrrEd, 

The purpose of this paper is to obtain more detailed information 

about the dependence of the potential energy on the parameters of the 

quadrupole otld octupole deformation. 

The method of calculating the ~ ( f3 
1 

, f3 
1 

) function. 

'lb calculate the energy of the nucleus we shall use the method, 

whi.ch has already proved to be successful when considering the equili­

brium quadrupole deformation (see e.g/ 11 and references mentioned there), 

According to this method the energy of the nucleus is calculated as the 

energy of a system of nucleons, interacting via pairing forces and moving 

in a deformed average field. 

Let the equipotential surface have the form 

r • R k ( fJ , fJ >[ 1 + {3 Y ( 9 , .P ) + f3 Y ( 9 , .p ) - - 9 - y - 3 -fJ {3 Y ( 9, ; ) ] , 
o 1 a 1 10 a ao 2 35 , 1 a 10 

( 1) 

The .last term in the square brackets assures the constancy of the centre 

of nass and the k( {3 
1

, fJa l function assures the volume conservation. The 

condition of volume conservation is a consequence of the constancy of the 

average nucleari density. 

The potentlru, in analogy with Nilsso../ 8 /, is of the form 

1 ol I 2 I 3 
V a-M Iii r ( 1 + - 5 -({3 1 +{3 a)]( 1-2{3 

1 
Y

10
(9,.pl-2 {3 a Ya

0
(9,.pl + 18y --{3

2
{3 

8 
Y

10
(8,t/>)J. 

2 0 "' •• 35 , ( 2 ) 

4 

• 

In the lowest approximation with respect to fJ 
1 

and fJ a 

( 2) has the equipotential surfaces ( 1) and in the spheric 

to the harmonic oscillator one. 

Let us note, that the octupole potential of the ., r a Y 

in/ 4•6 / does not have surface of the ( 1) type, moreover,. 

surfaces have one branch extending to infinity. Therefore v 

pole potential • r 
1 

Y ao following from ( 1). 

The single- particle hamiltonian has the usual form 

hI .. .. -ol .. I 

H({J ,fJ l•---11+V(fJ 1 ,fJal+Cle+D<f -<l> 
I a 2M 

The parameters C,D used in our calculations were taken 

c". -0.856, cP. -0.779, DN. -0.1391 DP • -0.253 

total energy, contrarY to the individual level order, does r 

cally on these parameters. 

The hamiltonian ( 3) was diagonalized in the spherical 

i.e. 

w, - I I N tA • N t A I N l A I > 

in the Nilsson f- representation/ 8 / • In this representatio 

zero matrix elements of the quadrupole part of ( 3 ) ar 

11 N • 0 ones. However, in the octupole part additional sec 

arise 

.. ( . 
I 

t (~y....JLY l'9,</>)- ~-LY(9,.P)+ 
a 63 115o 45 7,o 

72 
35 

which wece neglected similarly as the change in the "' .. 
• • The non- zero matrix elements of the octupole part 

nondiagonal ones with 11 N = 1,3,5 •••• We limit ourselves 1 

11 N •1 and 3. The influence of the others is negligible bee 

differences are large and the matrix elements themselves 
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in papers/ 4- 7 / • The restoring force parameter C a was 

various approximations ( usually perturbation theory). The 

of two terms, of approximately the same magnitude, 

The quantity c def characterizes the repulsion of the 

shells which contributes to the deformation, C nat origi­

inertla of closed shells" or volume conservation which 

deformation. In the mentioned papers the restoring force 

small and positive, i.e. the nuclei were "soft" but nonde-

this paper is to obtain more detailed information 

of the potential energy on the parameters of the 

octupole deformation. 

The method of calculating the 6; ( {3 1 , {3 a ) function. 

the energy of the nucleus we shall use the method, 

proved to be successful when considering the equlli­

deformation (see e.g/ 1 / and references mentioned there), 

method the energy of the nucleus is calculated as the 

nucleons, interacting via pairing forces and moving 

surface have the form 

l[l + tl y (8,tf>l+ tl y (8 ,t/>) --9-.,j-3 -{J fJ y (9,\; )), 
ll 10 a ao 2 35 rr 1 a to 

( 1) 

the square brackets assures the constancy of the centre 

1r. ( tl , fJ l function assures the volume conservation, The 
1 a 

conservation is a consequence of the constancy of the 

, in analogy with Nilssorf S/ , is of the form 

5 2 ll 3 -;;-<tl
2 

+fl a l ][ 1-2 {J
2 

Y 
20

(8 ,tf>l-2 fJ a Ya0 (8 ,tf>l + 18y --{J 2{J a Y10(8,,Pl). 
.. 35rr ( 2 ) . 

4 .. 

In the lowest approximation with respect to fJ 2 and {3 a the potential 

( 2 ) has the equipotential surfaces ( 1) and in the spherical limit is equal 

to the harmon~c oscillator one. . a 
Let us note, that the octupole potential of the • r Y 80 type used 

in/ 4•6 / does not have surface of the ( 1) type, moreover, its equipotential 

surfaces have one branch extending to infinity, Therefore we use the octu-
2 

pole potential • r Y 10 following from ( 1). 

The single- particle hamiltonian has the usual form 

h ll .. .. .... ... 

H(/3 ,{3 l•--6.+V({J
2

,f3al+Cls+D<f -<f> ), 
ll I 2M abell 

(3) 

The parameters C,D used in our calculations were taken from/
9

/ 

eN. -0.856, cP .. -0.779, DN. -0,139, DP • -0,253 (In MeV). The 

total energy, contrary to the individual level order, does not depend criti­

cally on these parameters. 
The hamiltonian ( 3) was diagonalized in the spherical oscillator basis, 

i.e. 

I 
lfl .... I. • "AINfAI.> 

I • NfA NL 

in the Nilsson f- representation/a/. In this representation the only norr­

zero matrix elements of the quadrupole part of ( 3 ) are the diagonal 

6. N • 0 ones. However, in the octupole part additional second order terms 

arise 

.. f • 
ll 

f ( ~..;_._11 y l '6,") 
• 63 50 

~_,_y (6, <P> + 
45 7 30 

72 
as- .,j-"-Y (fJ,.p)), 

3 10 

.. 
which were neglected similarly as the change in the vectors t and 

1. · The non- zero matrix elements of the octupole part of ( 3 ) are the 

nondiagonal ones with 6. N = 1,3,5 ... • We limit ourselves to elements with 

6. N •1 and 3. The influence of the others is negligible because the energy 

differences are large and the matrix elements themselves are small. The 
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effect of the octupole part of ( 3) on the energy of the nucleus is mainly 

connected with the matrix elements having l\ N • 1 between shells in the 

vicinity of the Fermi surface, 'Taking further shells placed symmetrically 

with respect to the Fermi surface into account, as well as terms with 

l\ N •3, increases the effect of the octupole part by about 209(,, In our 

calculations we took 5 oscillator shells for protons and 5 oscillator shells 

for neutrons and matrix elements with l\ N • 1,3, Note, that filled shells 

Vlhich do not participate in the diagonalization, qmtribute nevertheless to 

the stabilization of the spherical form, owing to the volume conservation 

condition, 

The eigenvalues lh ( fJ 1 • fJ 1 l of hamiltonian ( 3) were used in the 

equations of the superfluid nuclear model 

2/G • I 
• y(f -Al

1
+t\

1 

• ( 4) 

N-I(l-
( -A 

• ..; ( ( - A )I + l\ I 
• 

and the quantities A • A for neutrons ( 132 S N S140) and protc:ms 

( 86 S Z $ 92) were calculated, The following values were used for the 

pairing interaction constants G • 21/ A, G • 25/ A (MeV), After sol-
N P 

ving the system ( 4) the energy lh ( fJ 
1 

, fJ 
1 

l was calculated according to 

-A 
l+A N-t\

1
/G + lh ({J

1
,{J

1
l ·IE (1- • 

BCB 8 • 
E • 

N N N 

(5) 

+ I Et ( 1-
( t- A 

l + AP Z A I I G -
E t 

p p 

where E • y ( f - A )
2 

+ A 
2 

is the quasiparticle energy. The summation over 

• contains all the neutron states, over t all the proton ones, For nonin­

teracting particles, which however for each deformation fill the lowest 1/ 2N 

6 

• , 'lv'--_, ... -: l.' 

'-"' // 

and 1/ 2 Z levels one obtains 

KN KZ 

Q; <{J , fJ l • I 2 ( < fJ , fJ l + I 2 ( < fJ , fJ l . 
,IP• 2 I -I • 2 I \ •I \ 2 I 

Let us note that the formulae ( 5) or ( 6) contains imp 

approximations, E.~. the Coulomb energy of the protons was 

states 111.ere not projected onto the subspace with definite ang• 

and parity etc, However, for not too large deformations, neithE 

tioned approximations can change the results considerebly, 

Discussion 

The single particle energies lh ( fJ 2 • fJ 1 l , the quanl 

and A ( fJ 2 • fJ 1 l as well as the functions lh BOB ( fJ 
11 

, fJ 
1 

l and 

111.ere calculated for nuclei with 218 :::; A:::; 232, with the step 0 

fJ 
8 

, Between these points the parabolical interpolation v 

control calculation show that errors connected with the intE 

not substantial, The results are represented in the form o 

tables and are discussed below, 

o..) The quadrupole deformation, 

Fig,1 gives the dependence of lh BOB on fJ 
11 

( for fJ 
1 

selected nuclei, The curves are normalized so that the minirr 

ah\B.ys equal to zero (this it tr~e for aU figures), Besides 

shift of the minimum with increasing A towards the larger def• 

can note a chan,ge in curvature from nucleus to nucleus, The curval 

mum value for nuclei with neutron number N•136 i.e, these nucle 

with respect to quadrupole deformations, The equilibtium deforn 

ed from our calculations are somewhat smaller than the expE 

( see also Tab,1), 

b) Pairing correlations 

On Fig,2 the dependence of the square of the- corre1 

(energy gap) on the fJ 
2 

deformation is shown for systems 
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of ( 3) on the energy of the nucleus is mainly 

matrix elements having ~ N • 1 between shells in the 

surface. Taking further shells placed symmetrically 

Fermi surface into account, as well as terms with 

the effect of the octupole part by about 20%. 1n our 

oscillator shells for protons and 5 oscillator shells 

elements with ~ N • 1,3, Note, that filled shells 

in the diagonalization, c<:mtribute nevertheless to 

spherical form, owing to the volume conservation 

of hamiltonian ( 3) were used in the 

nuclear model 

2/G • I 
• _ .\)1 +~I y(€. 

( 4) 

N•I(l- ( -" 
• V ( € _ ,\ )I + ~ I 

• 

~ . " for neutrons ( 132 S N S140) and prot_ons 

calcu}ated, The following values were used for the 

constants G • 21/ A, G • 25/ A (MeV). After sol-
" p 

) the energy 6; ( {:1 1 , {:1 1) was calculated according to 

,(:1) -IE 0-
a • • 

1- ( \ -" 
E 

\ 

( -.\ 

E • 

+A N 
If 

+A Z- ~ 1 /G p p p 

~I I G + 
If If 

(5) 

is the quasiparticle energy. The summation over 

neutron states, over t all the proton ones. For nonin­

which however for each deformation fill the lowest 1/ 2N 

6 

... 1
·\( 

' . . . 

and 1/ 2 Z levels one obtains 

KIf KZ 

6; <{:1 , {:1 > • I 2 ( < {:1 , {:1 > + I 2 ( < {:1 , {:1 > • 
IP I I -I a I I ,. 1 ' I I 

( 6) 

Let us note that the formulae ( 5) or ( 6) contains implicitly various 

approximations. E,@,. the Coulomb energy of the protons was neglected, the 

states '11\ere not projected onto the subspace with definite angular momentum 

and parity etc, However, for not too large deformations, neither of the men­

tioned approximations can change the results considerebly. 

Discussion 

The single particle energies 6; ( f:11 • f:1 a) , the quantities ~ <{:11 ,(:11 ) 

and .\({:11 .{:11> as well as the functions 6; 808 ({:1 1 .{:11> and 6;1P({:1
2

.{:1
1 

> 

'11\ere calculated for nuclei with 218 ::>A::> 232, with the step 0,06 in {:1 1 and 

{:1 a , Between these points the parabolical interpolation was used, the 

control calculation show that errors connected with the interpolation are 

not substantial, The results are represented in the form of figures and 

tables and are discussed below, 

a) The quadrupole deformation, 

Fig,1 gives the dependence of 6; 808 on {:1 1 ( for {:1 
1 

• 0) for some 

selected nuclei, The curves are normalized so that the minimum energy is 

al'-'IB.ys equal to zero (this it tr~e for all figur~s), Besides the expected 

shift of the minimum with increasing A towards the Jarger deformations, one 

can note a change in curvature from nucleus to nucleus, The curvature has aminit­

mum value for nuclei with neutron number N•136 i.e. these nuclei are "softest" 

-with respect to quadrupole deformations, The equilibtium deformations obtain­

ed from our calculations are somewhat smaller than the experimental ones 

( see also Tab,1). 

b) Pairing correlations 

On Fig,2 the dependence of the square of the- correlation function 

(energy gap) on the {:1 1 deformation is shown for systems with various 

~ 
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numbers of neutrons, The analogical picture for protons is shown on 

Fig,3, The increase of /!;. ~ with the increase of N or Z for zero deforma­

tiun is related to the increase of the level density, with the removal from a 

magic nucleus. The characteristic features, of both figures is the existence 

of a rather narrow region of fJ 1 values in which tl<te energy gap does 

not depend on N or Z, ln this region of deformations the singte particle 

spectrum is close to an equidistant one, The period1cal change of /!~ with 

fJ is a consequence of the periodical change of the level density. Since 
I ~ 

the correlation energy is equal to -/!;. I G one can see from the behaviour 

of A 1 that pairing interactions promote the stabilization of the spherical 

form in spherical nuclei and lead to a decrease of the curvature of the 

potential energy for the deformed nuclei, 

The quantity /!;. 1 decreases monotonously as the octupole deforma-

tion fJ increases. This qualitative feature is independent on Z or N and 
a I 

/J 1 , A typical example of the function !J. ( fJ 1 ) is shown by the dashes 

Unes <Jn Fig.2 ( N• 136) and Fig,3 ( z. 90). These curves were calculated 

for fJ ll • 0,2, One can conclude from the behavior of the 1!
1 <fJ 1) function 

that pairing correlations counteract the octupole deformation, and increase 

the restoring force with respect to the octupole vibrations. 

c) General features of the dependence of the energy on f3 1 • 

The dependence of the energy of the nucleus on the octupole defor­

mation has some general features which do not depend on the atomic num-

ber, To demonstrate them we choose the 
244Ra nucleus shown on Fig,4, The curves 

lae ( 5) and ( 6) for different values of fJ 1 

characteristic example of the 

lb ( fJ 
1 

) ci:uculated using formu­

are shown. The lb ( fJ )curve is • 
always a flat minimum for fJ 

1 
• 0 and has no other minima, The curvature 

of lb ( fJ
1 

) decreases as fJ 
1 

increases i.e. the restoring force decreases 

for larger quadrupole deformations. The inclusion of the pairing interaction 

increases the restoring force in comparison with lb IP ( Note, that the 

energy surface /i;IP ( fJ I ' fJ I ) calculated according to ( 6), corresponds 

to the envelope of the energy surface obtained for different configurations 

of independent particles), The bottom of the lb <fJa) curve is more flat 

t:'lan one could expect from a simple quadratic dependence on fJ 1 

a 

-
i 

d) Properties of the lb ( fJ ~ , fJ 
3 

) surface, 

The functions lb 808 calculated for the spherical nt 

the transition nuclei 
224

Ra and 
226m:. and for the deforma:i 

are shown on Fig,S- a. Analogic figures for i IP were 

In the harmonic approximation for i one expe 

I I /b. E + C ({J -fJ ) +C 1 fJ 1 0 I ll .. 

which on figures should give a system of ellipses with , 

and fJ 
1 

directions, ln reality the curves on figs. 5- a su 

fr:.>m such a prediction, To demonstrate this fact more clea 

fig,9 the "valleys" in the fJ 
1 

direction, i.e. the curves 

minima of lb for each value of fJI • These lines, 

transition nuclei differ considerably from the direct line fJ 
ed from (7). 

The quantities 

the potential energy 

fJ 
1 

and fJ 1 will both change during 

lb given on figures 5- a. ln the phone 

is equivalent to an iinteraction of octupole and quadrupol• 

can simply see, that such an interaction leads to the lower 

fJY of octupole vibrations and to an ·increase of their morr: 

Note, that such an interaction is used often, e.g. in/ io/. 
e ) Approximation of the lb ( fJ , fJ ) function by a 

• a 
We used the least- square method to approximate the lb ( ~ 

the formula 

lb • E + C ( fJ -fJ 
o ll ll eq 

ll ll 

) + c .fJ • 
ll 

+ c •• ·fJ ll • fJ • 

The last term in ( a) was added to take the phonon interac 

The results for lb are given in Table 1. All the coefficie 
IP 

The quantity C 
111 

fJ eq I C 
1 

in the fifth column is U 

(according to the first order perturbation theory) of the < 

energy. We have used the lb IP valaes to construct the 

they are more sensitive to the atomic number. The restori 

cients calculated from the lb 808 

c ... 2a0-300, -c .... 450-500, 

values are in narrower l 

9 
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The analogical picture for protons is shown on 

of /l 2 with the increase of N or Z for zero deforma­

density, with the removal from a 

features of both figures is the existence 

region of {3 
1 

values in which tl<le energy gap does 

In this region of deformations the singte particle 
2 

an equidistant one, The periodical change of ll with 

of the periodical change of the level density, Since 
2 

is equal to -/l I G one can see from the behaviour 

interactions promote the stabilization of the spherical 

nuclei and lead to a decrease of the curvature of the 

for the deformed nuclei, 

/). 1 decreases monotonously as the octupole deforma.­

This qualitative feature is independent on Z or N and 
2 

example of the function ll ( f3 8 ) is shown by the dashed 

( N• 136) and Fig,3 ( z. 90), These curves were calculated 

conclude from the behavior of the t/'<{3 1! function 

counteract the octupole deformation and increase 

respect to the octupale vibrations, 

dependence of the energy on f3 
1 

• 

of the energy of the nucleus on the octupole deCor­

not depend on the atomic num­

them we choose the characteristic example of the 

on li'ig,4. The curves Q, ( {3 a) carculated using formu-

different values of {3 2 are shown. The & <{3
1 

)curve is 

{3 
8 

• 0 and has no other minima, The curVature 

as {3 
1 

increases i,e, the restoring force decreases 

deformations, The inclusion of the pairing interaction 

restoring force in comparison with & JP ( Note, that the 

/hiP ( {3 I ' {J I ) calculated according to ( 6 ), corresponds 

of the energy surface obtained for different configurations 

particles), The bottom of the & <{3 ) curve is more flat • 
expect from a simple quadratic dependence on {3 8 

8 

... 
~ 

.. 
;~;~ 

d) Properties of the & ( fJ ~ , fJ 
8 

l surface, 

The functions & 808 calculated for the spherical nucleus 
21

aRn, for 

the transition. nuclei 
224 Ra and 

226m:. and for the deformed nucleus 
232u 

are ~hown on Fig.S- a. Analogic figures for i JP were shown ir/ 3 1 • 
In the harmonic approximation for i one expects 

&. E + c <{J -fJ >
2
+c

1
{3: , (7) 

0 ll ll ... 

which on figures should give a system of ellipses with axis in the {3 
1 

and {3 
1 

directions. In reality the curves on figs. 5- a substantially differ 

fr:..>m such a prediction. To demonstrate this fact more clearly we show on 

fig,9 the "valleys" in the {3 
8 

direction, i.e. the curves connecting the 

minima of & for each value of fJ, • These lines, particularly for 

transition nuclei differ considerably from the direct line 

ed from ( 7), 

{3 
2 

• Const, obtain-

The quantities {3 
2 

and {3 8 will both change during vibrations with 

the potential energy & given on figures 5- a, In the phonon language this 

is equivalent to an .iinteraction of octupole and quadrupole phonons. One 

can simply see, that such an interaction leads to the lowering of the ener .. 

goy of octupole vibrations and to an -increase of their momentra of inertia, 

Note, that such an interaction is used often, e,g, in/ io/. 
e) Approximation of the & ( {3 , {3 ) function by a simple formula, 

1 a 
We used the least- square method to approximate the 

the formula 

2 2 2 
/h • E + C ( {J - {3 ) + C {3 + C •fJ • {3 o ll ll eq a a u 1 a 

& ( {J 
2

, {J 
8

) function by 

(a) 

The last term in ( a) was added to take the phonon interaction into account, 

The results for & IP are given in Table 1. All the coefficients are in MeV. 

'Ihe quantity C 
111 

{3 eq I C 
1 

in the fifth column is the relative shift 

(according to the first order perturbation theory) of the octupole phonon 

energy. We have used the i IP valaes to construct the table because 

they are more sensitive to the atomic number. The restorin.sa force coeffi­

cients calculated from the & 808 values are in narrower limits C 
2 
.. 100-110, 

C 
8 

.. 280-300, - C 28 .. 450-500, 

9 



r The other function by which we approximate 

the nucleul:l is taken from the liquid drop model with 

rection/ 11/ 

lb • Eo 
II ll 

+ Gexp(- ~fJA/c) +~ CAfJA 
A A 

the potential energy of 

the shell structure corw 

(9) 

The quantities G ws , C 11 Ms obtained from the experimental masses and 

quadrupole momenta are tabulated in/ 11/, The coefficient c in the expo­

nential function is equal to 

ll/1 a I 
c•A !••<--> 

0 

In/ 
111 the authors take aIr 

0 
• 0,27 which means that the shell structure 

effect disappears for the deformation fJ .. 0,16, We have used the same 

value of c, The results of the fit for lb IP together with G ws , c 
11 

ws taken 

from/ 
11

/, are shown in table 2, The mea.1 deviation was rather large, i,e, 

the function ( 9) describes lb only very roughly, The deformations fJ 
wer"' obtained from the condition of a minimUIIIl of lb • The parameters 

G •t,c 11 have the same order of magnitude as tie· liquid drop values in/ 11/ 

but they change much faster from nucleus to nucleus, 

Conclusions 

Let us recapitulate the main obtained results, There are no nuclei 

'With non- zero equilibrium octupole deformations in the considered region, 

The potential energy surface differs substantially from a simple harmonic 

form, terms describing the interaction between octupole and quadrupole 

vibrations, as well as anharmonic terms containing higher powers of the 

deformation parameters are essential, The form of the energy surface 

changes with the atomic number A, the softest are the transition nuclei with 

neutron number N-136, 

In conclusion I would like to express my thanks to Mr&i, V. Abbren­

tova for her help in compiling the machine- code as well as in computer 

calculations, 

10 
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function by which we approximate the potential energy of 

taken from the liquid drop model with the shell structure col"" 

t ~ 

E 0 + G exp (- ~ P A I c ) + ~ C A f3 A (9) 

G loiS , C tws obtained from the experimental masses and 

are tabulated in/ 
11

/. The coefficient c in the expo-

is equal to 

~I• • I 
c • A 1••<--l 

0 

aIr 0 • 0,27 which means that the shell structure 

deformation p .. 0,16, We have used the same 

of the fit for & IP together with G ws , C 
1 

ws taken 

in table 2, The mea,1 deviation was rather large, i.e. 

& only very roughly, The deformations f3 
from the condition of a minimUIIJI of & • The parameters 

same order of magnitude as fie· liquid drop values in/ 11/ 

much faster from nucleus to nucleus, 

Conclusions 

the main obtained results. There are no nuclei 

deformations in the considered rlgion, 

surface differs substantially from a simple harmonic 

the interaction between octupole and quadrupole 

anharmonic terms containing higher powers of the 

are essential, The form of the energy surface 

number A, the softest are the transition nuclei with 

like to express my thanks to JMrs;. V. Abbren­

in compiling the machine- code as well as in computer 

10 

#-

l ., 

~ J 

~ 

References 

1, S,G, Nilsson, Lectures in Varena Summer School, 1967, 

2, 

3, 

4, 

5, 

6, 

7. 

8, 

9, 

10. 

:1.1, 

E,K,fiyde,· I. Perlman and G,T, Seaberg. The nuclear properties of the 
heayy elements. (Prentice Hall. New Yersey, 1964). 

P. Vogel, Phys,Lett.,~B, 65 ( 1967). 

K, Lee and D,R, Inglis, Phys,Rev,,l.Q§ 774 ( 1967 ). 

I, Duttand D, Mukherjee, Phys, Rev,, 124, 888 

S, Johansson, Nucl, Phys. ~ 529 ( 1961). 

K. Lee, Preprint 1967. 

S,G, Nilsson. Mat.Fys,Medd,Dan,Selsk, 29, No.16 ( 1955 ). 

C, Gusrafson et al, Preprint Lund 1966, 

W, Donner and W. Greiner, Zeits~hr.fUrPhys, ..l2L. 440 ( 1966), 

W,D, Myers and W.l, Swiatecki, Report UCRL 11980 ( 1965), 

Rece.ived by Publishing Department 

on December 15, 1967 

11 



TablLL 

Table l I --- --
Nucleus G..,s G elM I c~ c. C,rp~ -Huoleua C.a c3 c~.3 c. P·'l-
218,Rn -1.12 -1.42 JO 91 145 

218an 204 205 -500 0.12 o.05 220Rn 0.20 -0.76 JO 72 155 

22~ 181 200 -452 O.lJ 0.05 222Rn l.Ja -0.65 Jl 58 160 O.l 

222an 154 201 -44) O.lJ 0.05 220aa 0.04 -0.08 29 74. 155 

220aa 202 191 -465 0.17 0.07 222Ra l.J5 0.56 29 59 165 O.l 

222 Ra 174 186 -421 0.18 o.o8 224Ra 2.51 0.67 29 41 170 O.l 

224Ra 161 186 -406 0.21 0.09 226Ra J.52 J.42 29 191 o.:: 29 

226aa 188 171 -JlJ 0.24 o.lJ 225aa 4.40 5.9J 29 17 220 0.2 

22~ 197 172 -202 0.19 0.16 224Th 2.JJ 1.11 22 J6 172 0.1 

224n 162 181 -J80 0.21 0.07 226Th J.48 1.21 22 21 177 0.2 

226Th 180 -J71 o.2J O.lJ 228 141 Th 4.48 J.95 22 9 198 0.2 
2JoTh 185 171 -184 0.18 0.21 

2JOTh 5.J5 7.67 22 6 240 0.2 
2JOu 154 165 -)09 O.J2 0.17 

2J2u 16J 171 -195 0.24 0.21 

228 
170 166 -287 0.26 0.19 

Th 

13 

12 

• 



I 
2!l!ll 2 

Table l --
Nucleus GI!S G elMS c. c, p,.~ f 

c.r~%. ··-c3 c~3 
------

CQ • 218,Rn -1.12 -1.42 JO 91 145 

204 205 -500 0.12 0.05 220Rn 0.20 -0.76 JO 72 155 

200 -452 O.lJ 0.05 222Rn 1.JB -0.65 J1 58 160 O.lJ 
181 

154 201 -44J 0.1J 0.05 220Ra 0.04 -0.08 29 74 155 

191 -465 0.17 0.07 222Ra l.J5 0.56 29 59 165 0.12 
202 

186 -421 0.18 o.os 224Ra 2.51 0.67 29 41 170 0.19 
174 

186 -406 0.21 0.09 226Ra J.52 J.42 29 29 191 0.21 0.20 
161 

171 -JlJ 0.24 O.lJ 225aa 4.40 5.9J 29 17 220 0.22 0.25 
188 

172 -202 0.19 0.16 224Th 2.JJ 1.11 22 J6 172 0.19 
197 

224Th 162 181 -J80 0.21 o.o7 226Th J.48 1.21 22 21 177 0.21 

226Th -J71 0.2J 0.1J 228 
141 180 Th 4.48 J.95 22 9 198 0.22 0.27 

2JO•Th 171 -184 0.18 0.21 2JOTh 5.J5 7.67 240 
185 22 6 o.n o.J4 

2JOu 165 -J09 o.J2 0.17 
154 

2J2u 16J 171 -195 0.24 0.21 

228 166 -287 0.26 0.19 
Th 170 

,, 
13 
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