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Introduction

The problem of the dependence of the energy of the nucleus on
the deformation parameters of higher mutipole orders (A> 2) has at-
tracted much attention/ 1 . A knowledge of this dependence is important for
the interpretation of a very broad class of effects such as the equilibrium
deformation , vibrational spectra, fission barriers etc, In this paper we
shall investigate the effect of the shell structure on deformations of the
quadrupole B, and octupole B, types.

For nuclei in the 218 <A £232 region octupole 1, = 1= states
have wvery unusual properties, Their energles are very low, momenta of
inertia large and hindrance factors for a-decay sma]_l/ 2/ . Such behaviour
indicates, that for these nuclei the shell structure may strongly change
the simple (liguid drop) dependence of the energy on the octupole defor-
mation, Besides, this region of nuclei is also on the boundary between
spherical and deformed nuclei, Therefore we have chosen this region for
our calculations, Because the projection of the angular momentum on the .
nuclear symmetry axis in low-lying I = 17 states is equal to iero we
shall limit ourselves to axially- symmetx}lg/ nuclei, Preliminary resuits of our

cajculations were already published in

The problem of nuclear stability with respect to octupole deformations



/4_7/. The restoring force parameter C, was

was investigated in papers
calculated using varlous approximations (usually perturbation theory). The
restoring force consists of twoterms, of approximately the same magnitude,
but opposite sign. The quantity C 4ot Characterizes the repulsion of the
filled and unfilled shells which contributes to the deformation, C reat  OTigi-
nates from the "inertla of closed shells" or volume conservation which
counteracts the deformation, In the mentioned papers the restoring force
parameters were small and positive, l.e, the nuclei were "soft" but nonde-
formed,

The purpose of this paper is .to obtain more detalled information
about the dependence of the potential energy on the parameters of the

quadrupole and octupole deformation,

The method of calculating the & ( B8,.8,) function.

To calculate the energy of the nucleus we shall use the method,
which has already proved to be successful when considering the equili-
brium quadrupole deformation (see e.g./ 1 and references mentioned there),
According to this method the energy of the nucleus is calculated as the
energy of a system of nucleons, interacting via pairing forces and moving
in a deformed average field.

Let the equipotential surface have the form
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The last term in the square brackets assures the constancy of the centre
of mass and the k(ﬂ’,ﬂ')functlon assures the volume conservation, The
condition of volume conservation is a consequence of the constancy of the
average nucleai'f‘,fdenslty.

/ 8/

The potenthl, in analogy with Nilsson , Is of the form
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In the lowest approximation with respect to B , and ﬁ' the potential
(2) has the equipotential surfaces (1) and in the spherical limit is equal
to the harmonic oscillator one.

Let us note, that the octupole potential of the = e’ Yoo type used
in/ 4,6/ does not have surface of the ( 1) type, moreover, its equipotential
surfaces have one branch extending to infinity, Therefore we use the octu-
pole potential = e Y,, following from (1).

The single- particle hamiltonian has the usual form

? - -3 +9 (3)
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The parameters C,D used in our calculations were taken from/ 9

Cy= -0.856, C,=-0779, Dy==-0139, D,=-0.253 (In MeV). The
total energy, contrary to the individual level order, does not depend criti-
cally on these parameters,

The hamiltonian (3) was diagonalized in the spherical oscillator basis,

i.e.

1
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in the Nilsson ¢~ representation/ 8/ . In this representation the only non-
zero matrix elements of the quadrupole part of (3) are the diagonal

AN =0 ones., However, in the octupole part additional second order terms

arise
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which were neglected similarly as the change in the wvectors E and
% . The non-zero matrix elements of the octupole part of (3) are the
nondiagonal ones with AN =1,3,5 .. . We limit ourselves to elements with
AN =1 and 3. The influence of the others is negligible because the energy

differences are large and the matrix elements themselves are small, The



effect of the octupole part of (3) on the energy of the nucleus is mainly
connected with the matrix elements having AN =1 between shells in the
vicinity of the Fermi surface, Taking further shells placed symmetrically
with respect to the Fermi surface into account, as well as terms with
AN a3, increases the effect of the octupole part by about 20%. In our
calculations we took 5 oscillator shells for protons and 5 oscillator shells
for neutrons and matrix elements with AN = 1,3, Note, that filled shells
which do not participate in the diagonalization, contribute nevertheless to
the stabilization of the spherical form, owing to the volume conservation

condition.
The eigenvalues &(B8,.B8,) of hamiltonian (3) were used in the

equations of the superfluid nuclear model

2/C =% —-llm= '
' oVle, -0t

(4)
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and the quantities A, A for neutrons (132 < N £140) and protons
(86 <Z <92) were calculated. The following values were used for the
pairing interaction constants G = 21/ A, G, = 25/ A (MeV), After sol-
ving the system (4) the energy & (8 o' B,) was calculated according to

€ =A
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where E =y (e-A) +A is the quasiparticle energy. The summation over
s contains all the neutron states, over t all the proton ones. For nonin-

teracting particles, which however for each deformation fill the lowest 1 2N



and 1/ 2Z levels one obtains

WN Uz
5};3,»‘5.)-il2¢.(B’,B.)+ 2e (B,.B8,). (6)
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Let us note that the formulae (5) or ( 6) contains implicitly various
approximations. E,@. the Coulomb energy of the protons was neglected, the
states were not projected onto the subspace with definite angular momentum
and parity etc, However, for not too large deformations, neither of the men-

tioned approximations can change the results considerebly,

Discussion

The single particle energies & (83 .8,) , the quantities A(B,,8,)
and A(B,.B,) as well as the functions 5303 (B, By) and & (B, .8,)
were calculated for nuclei with 218 S A g 232, with the step 0,06 in ﬂ’ and

B, . Between these points the parabolical interpolation was used, the
control calculation show that errors connected with the interpolation are
not substantial. The results are represented in the form of figures and
tables and are discussed below,

a) The quadrupole deformation,

Fig.1 gives the dependence of 5303 on 8, (for B .-0) for some
selected nuclei, The curves are normalized so that the minimum energy is
always equal to zero (this it true for all ﬁgurgs). Besides the expected
shift of the minimum with increasing A towards the larger deformations, one
can note a change in curvature from nucleus to nucleus, The curvature has amini»
mum value for nuclei with neutron number N=136 i.e, these nuclei are " softest"
with respect to quadrupole deformations, The equilibtium deformations obtain-
ed from our calculations are somewhat smaller than the experimental ones
(see also Tab,1).

b) Pairing correlations

On Fig.2 the dependence of the square of the- correlation function

(energy gap) on the B, deformation is shown for systems with various



numbers of neutrons., The analogical picture for protons is shown on
Fig.3, The increase of A? with the increase of N or Z for zero deforma-
tion is related to the increase of the level density, with the removal from a
magic nucleus. The characteristic features of both figures is the existence
of a rather narrow region of ﬁ’ values in which the energy gap does
not depend on N or Z, In this region of deformations the singde particle
spectrum is close to an equidistant one, The periodical change of A% with
ﬂ’ is a consequence of the period’ical change of the level density., Since
the correlation energy is equal to -A /G one can see from the behaviour
of A? that pairing interactions promote the stabilization of the spherical
form in spherical nuclei and lead to a decrease of the curvature of the
potential energy for the deformed nuclei,

The quantity A? decreases monotonously as the octupole deforma-
tion ﬂ' increases, This qualitative feature is independent on Z or N and
B, . A typical example of the function A’(ﬂ,) is shown by the dashed
lines on Fig.2 (N=136) and Fig.3 (Z=90). These curves were calculated
for 5,-0.2. One can conclude from the behavior of the A’(B,) function
that pairing correlations counteract the octupole deformation-and increase
the restoring force with respect to the octupale vibrations,

c) General features of the dependence of the energy on 8 s *

The dependence of the ené-r.gy of the nucleus on the octupole defor-
mation has some general features which do not depend on the atomic num-
ber., To demonstrate them we choose the characteristic example of the
244Ra nucleus shown on fig.4, The curves 5(Ba) calculated using formus
lae (5) and (6) for different values of B, are shown. The & (B,)curveis
always a flat minimum for g8 .-0 and has no other minima, The curvature
of 5(B') decreases as ﬂ’ increases i.e, the restoring force decreases
for larger quadrupole deformations., The inclusion of the pairing interaction
increases the restoring force in comparison with & w ( Note, that the
energy surface 5,,,(B’, ﬁ') calculated according to (6), corresponds
to the envelope of the energy surface obtained for different configurations
of independent particles), The bottom of the 5(ﬁ') curve is more flat

than one could expect from a simple quadratic dependence on B,



d) Properties of the & (ﬁ,.ﬁs ) surface,

The functions & yos calculated for the spherical nucleus 218Rn, for

the tra_nsition nuclei 224& and 226FI‘h and for the deformed nucleus 232U
are shown on F‘ig.S— 8. Analogic figures for &m were shown in/ 3/ .

In the harmonic approximation for & onée expects
3 2
6= £+ C (B -B ) +C,B, . (7)

which on figures should give a system of eu{pses with axis in the B8 2
and ﬂ. directions, In reality the curves on figs. 5- 8 substantially differ
from such a prediction, To demonstrate this fact more clearly we show on
fig,.9 the "valleys" in the Ba direction, i.e, the curves connecting the
minima of & for each value of B, . These lines, particularly for
transition nuclei differ considerably from the direct line g, =Const, obtain-
ed from (7).,

The quantites B, and B, wil both change during vibrations with
the potential energy & given on figures 5-8, In the phonon language this
is equivalent to an imteraction of octupole and quadrupole phonons, One
can simply see, that such an interaction leads to the lowering of the ener=
gy of octupole vibrations and to an increase of thei/r 4m/0mentra of inertia,

10

e) Approximation of the 5(32 B, function by a simple formula,

Note, that such an interaction is used often, e.g. in

We used the least-square method to approximate the &(8 o B, function by
the formula i

5-s°+ca(ﬁz-ﬁ“)’+caﬁ:+c”-p’-ﬁ: ) (8)

The last term in (8) was added to take the phonon interaction into account,
The results for 5“’ are given in Table 1, All the coefficients are in MeV,
The quantity C_. B o /C R in the fifth column is the relative shift
( according to the first order perturbation theory) of the octupole phonon
energy. We have used the & ip Valaes to consfruct the table because
they are more sensitive to the atomic number, The restoring force coeffi-
cients calculated from the 6503 values are in narrower limits C ~100-110,

C, = 280-300, - C = 450-500,
3



The other function by which we approximate the potential energy of
the nucleus is taken from the liquid drop model with the shell structure con~

rection/ 11/

3 2
6-E°+cexp(- iﬁ/\/c)+§cl\ﬁ;\ . (9)

The quantities ¢, ,C,,. obtained from the experimental masses and

quadrupole momenta are tabulated in/ 11/ . The coefficient ¢ in the expo-

nential function is equal to

c-A’/'/ll( I B
r
[ ]

In/ 11/ the authors take n/ro =0,27 which means that the shell structure
effect disappears for the deformation B = 0,16, We have used the same
value of c, The results of the fit for Sn, together with 6 ., , €, . taken
[ 11/

from!’ , are shown in table 2, The mea. deviation was rather large, i.e,
the function (9) describes & only very roughly. The deformations B
wers obtained from the condition of a minimum of & , The parameters

GyCy have the same order of magnitude as #e liquid drop values in/ 11/

but they change much faster from nucleus to nucleus,

Conclusions

Let us recapitulate the main obtained results. There are no nuclei
with non-zero equilibrium octupole deformations in the considered region,
The potential energy surface differs substantially from a simple harmonic
form, terms describing the interaction between octupole and quadrupole
vibrations, as well as anharmonic terms containing higher powers of the
deformation parameters are essential, The form of the energy surface
changes with the atomic number A, the softest are the transition nuclei with
neutron number N=136,

In conclusion 1 would like to express my thanks to Mrs, V. Abbren-

tova for her help in compiling the machine-code as well as in computer

calculations,
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Table 1

Nuoleus C, C, Cys C”‘P%, 'ﬁﬂa
218p, 204 205 ~500 0.12 0.05
220, 181 200 -452 0.13 0,05
222y 154 201 -443 0.13 0,05
2205, 202 191 —465 0.17 0.07
222 gy 174 186 -421 0.18 0.08
224pq 161 186 -406 0.21 0.09
226p, 188 17 -313 0.24 0.13
228p, 197 172 -202 0.19 0.16
224, 162 181 -380 0.21 0,07
226qy, 141 180 -371 0.23 0.13
2300y, 185 171 -184 0.18 0.21
230y 154 165 -309 0.32 0.17
232y 163 17 -195 0,24 0.21
228y 170 166 287 0.26 0.19

2



Table

2

Nucleus GHS G C;.m o q, Jﬁm F
218gp -1.12 -1.42 30 91 145 - -
220pp 0,20 ~0.76 30 72 155 - -
222py 1.38 ~0.65 3 58 160 0.13
2205, 0.04 -0.08 29 74 155 - -
222p, 1.35 0.56 29 59 165 0.12 -
224pa 2.51 0.67 29 4 170 0.19 -
226p, 3.52 3.42 29 29 191 0,21 0,20
228q, 4.40 5.93 29 17 220 0,22 0.25
224y, 2.33 1.11 22 36 172 0.19 -
226qy, 3.48 1.21 22 21 177 0.21 -
228

™ 4.48 3.95 22 9 198 0,22 0.27
230qy, 5.35 7.67 22 6 240 0.23 0.34

b

13
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