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1. Introduction

Problems related to the improvément of the dne—pa.rticle level sche-
mes have recently drawn attention of physicists engaged in studying the
nuclear structure. These schemes underlie all theoretical approaches clai-.
ming to the explanhation of main regularities in nuclei from the microscopic
point of view,

The one-particle level schemes are to be improved for the following
reasons,

It is well known that the peripheral collisions are very important in
direct reactions, Therefore, it is necessary for the model wave functions
of nucleus states involved in the transition to have right behaviour on
the boundary and the periphery of the nucleus,

In analysing the nuclear structure it is very important to take into
account the right behaviour of the wave functions, There are data which
indicate that the correlative forces acting between nucleons are gspeciauy
effective in the surface layer of the nucleus 1'2.

‘This region gives the largést contribution in the electromagnetic
transitions of high multipolarity A > 2 , as well as in forbidden beta
transitions since in these caseé. tl:e radial part of the transition operator
is a sharply increasing function of the coordinate,

Al the investigations of deformed nuclei were actually based on the
model one- particle states obtained in the paper by Nilsson 3 which played

a great role in nuclear spectroscopy.



However the wave functions of these states are not accurate in
the abovementioned sence because they are the solution of the Schro-
dinger equation with oscillator potential, whiéh strongly differs from the rea-
listic potential on the boundary and the periphery of the nucleus,

In addition, the relative position of the levels in the Nilsson scheme
with a noticeable changing of the mass number A remains unaffected (it is
only the energy scale that changes). In the realistic potential the relative
position and even the level sequence may essentially alter.

To get more correct wave functions and the one- particle energies
of deformed nuclei it is necessary to start from the anisotropic Saxon-
-Woods potential which reflects, to a larger degree, the real situation,

A number of paper 456,78 5 devoted to the solution of this prob-
lem for axially- symmetrical deformed nuclei.

In the present paper -we generalize the method suggested in refs,

5,6 to the case of nonaxial deformed nuclei and consider the main regu-
larities in the behaviour of one- particle levels, This problem is very important
in the study of the nucleus equilibrium shape. The calculations performed

are based on the Newton approximation 9, being a generlization of the

. 3 . .
Nilsson scheme and therefore in this case too are not correct enough.

2, Solution_of the Schrodinger egquation

Following the paper of Gareev, lvanova and Ka\linki.n5 we assume

that the mean radius R of a deformed nucleus is determined by the formula:

ReR [1+4a Y® +a (Y avY?)]-=
0 0 2 2 2 2

(1)
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R being the radius of an equally large sphere 10.



The Schrodinger equation is written in the form:

[ -

B+ V(B.y,P)-E1¥a0. (3)

2M
We make the identity transformation, Adding and subtracting the spherically
symmetrical part of the potential V (0,0,r) we have:

n? - -
[-— 8+ V(0.0 4 V(B 7, D)-E1¥ a0 (4)

where -~ R

v(ﬁ’)'y ?) -v(ﬁ;Y! ')"'v(o!o»').
Following paper 5 we expand V(B,y,Nin a series in spherical functions:
(5)

VB, ) =% cl(B.y.r) Y (0,8),
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Here
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8. 0.

The term V o in eq. (6) correspond to the spin-orbital interaction, It
!

was shown earlier 11 that the account of the change in the interaction
V- 0 with nucleus deforming leads to rather small corrections. There-

fore we put that v o(ﬁ,y, T)=0 . Thus
®. 0.
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From egs. (1) and (7) it follows that the expression V(B8,y,r, 6, ¢) is

invariant with respect to the transformations:

¢pr-¢; dsm+d; Oan—0 (8)

Therefare the expansion coefficients (5) possess the following property

C;‘ - C;“ and A, g are even . (9)
As before 7, we find the solution for eq. {4) in the form of a superposi-

tion:
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where dlml, are the eigenfunctions of the states obtained from the
n
Schrodinger equation with spherically symmetrical potential:

2
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in this case \bnl, -Rne,(f)ye, . SN (12)
y* is the spherical spinor. As is shown in ref. 12 the ra-

€3
dial part of the wave function (12) can be well represented in the form

R () =N [s()] ew [ -5%(0)/2) (13)

(for the definition of the function §(r) see ref. 12).
Inserting the expansion (10) into eq. (4), multiplying th2 Lh.s, by
(wm‘l’ ')" and integrating we get
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By solving the system of equations (14) we may determine the energy E
and the coefficients am! of (10), i.e. the wave functions of the states.
[ 14 -
Since the expansion (5) for V(8,y, 1) includes the terms only

with even A  then the contribution to (10) wil be given by the functi-



ons 111‘“2 which have the definite parity, i.e. the summation in (10) is
nly

made only either over the even or over the odd values of “¢”.

.

3. Expansion of the potential V(B,y,1, 6, ) in a series in

spherical functions

To solve the system of equations (14) it is necessary to calculate
the functions C:(B, y, t) :

ar n

C:(B,y, M = f f\.;(ﬁ,y, 1,0,8) Y:(G,¢)Sln0 46 d¢. (16)
0o 0

These functions were obtained by numerical integration . Fig.(1) ( B is

0.16 and B is 0.32) gives the curves corresponding to the functions
[ 2A+1 (A=) ];/2_

=C (By1) depending on r for different values of
4y A+ ! .
the parameter vy .
It is seen from Fig.1 that with increasing parameter y the compo-

nents of the expansion (5) with different A but for =0 have the
shape of the corresponding curves for y =0 ., However, their values
decrease, On the contrary, with increasing y the components with p#£0
become more important. Among the components with nonzero n the most
important is C? (B,y,1) . This is due to the fact firstly that the function
c? has no 2zeros. Therefore the radial part of the matrix elements en~
terizng equations (14) for this component is the largest one. Secondly, the

function C: exceeds all other functions and rapidly increases with

increasing y :
2
CO%0/125 R )/ COR; a/12; R) = 0,04,
c¥(0,32; n/3; R D/ COO /35 R, ) ~0,25.
2

A similar picture occurs at B =0.16 with the only difference that

the absolute value of the functions C ;‘ is twice as small,



4, Neutron levels

It may be expected that the violation of the axial nuclear symmetry
occurs in the transition regions between the spherical and strongly de-
formed nuclei 13. One of such regions is formed by nuclei near Nd143.
Therefore the calculation were made for the nuclei of this group,

The one-particle wave functions and the energies of the spherical
N143 state should naturally be chosen as the basic ones 12.

Using the expansion (5) we solve the system in a numerical way.

In the expansion (10) it is necessary to restrict oneself only to

those ¢ states of the spherically symmetrical nucleus the account

m
nfy
of which is very essential, Such are the bound and the lowest states of
the continuous spectrum, The problem of the account the continuous spectrum
states is rather complicated, However, approximately this problem can be
solved in just the same way as in ref.5, expecially as the used appro-
ximation is satisfactory enough 6. ‘

This approximation is based on the fact the most contribution should
be given by those states of the continuous spectrum which correspond
to the quasistationary levels, The wave functions of these levels are
maximum .inside the nucleus, the effective barrier penetrability being
small . Such states possess low energies and large angular momenta,
Taking into consideration the character of the problem they can be well
described by the stationary wave functions. The difference of these
functions from the real ones outside the barrier is of no importance since
the matrix elements of (14) contain the quantity ¥ , which rapidly
tends to zero for large t . It is necessary to take into account se-
veral lowest quasistationary states because they noticeably affect the
behaviour the highest bound states of the deformed nucleus, The wave
functions and the energies of the quasistationary states are calculated by
the method presented in ref, 12.

We have used the following values of the Saxon-Woods potential

parameters:

'vo =88 MV 1 =124f; @ =065




x =0,28 is the constant of the spin-orbital interaction,

Fig.2 gives the space diagram-fragment showing the behaviour of
the neutron states of the even shell at beta and gamma nucleus defor-
mations. .

Fig.3 and 4 give the systems of upper neutron levels for different

y at B =0.16 and B =0.32 respectively.

For the sake of convenience, the even and odd states are presented
separately.

The basic wave functions and the energies are given in Tables 1
and II (the parameters defining these functions have the same meaning
as in ref ) The asteriks denote the quasistationary states of the con-
tinuous spectrum which are taken into account. The rank of the energy
matrix for even states is -49, and that for odd states is 42,,

In the calcuwations we have restricted ourselves to the account of
the components with A < 4 in (5) since the contribution of the components

with A2 >6 is very small (see ref. 5) .

As is seen frc-;m the above considerations we have taken into ac-
count a large number of basis states of equal parity. The necessity of
such an approach follows from the comparison of the data obtained by the
described approach with these obtained with the aid of the " independent
shell” model which was used by Nilsson 3 and Newtong. A fragment of
the neutron level system (8=0,32) is given in Fig.5 as an example
of such an approach. The continupus lines show the behaviour of the
levels In our approximation the dotted line is the same levels calculated by
the "independent shell' model (only states belonging to a given shell
interact, the rank of the energy matrix being sﬁarply decreased). We see
that both cases essentially differ from one another, When the interaction is
switched on between the shells there appear noticeable displacements of
levels, the behaviour of the curve often changes. Fig.5 shows that the

interaction bhetween the shells should be taken into account,



5, Proton level system

In order to calculate the proton one-particle levels we have to expand

the Coulomb potential of a deformed nucleus in a series in spherical functions,

The Couwlomb potential is determined by the formula

2 -
V““l . 3(Z-ls)e [ n(B,y,t,0,¢’)dr ) (7)
4r R It -7
- 0
Putting
8(B Y1, 0 ¢ ) = () +B(B,y, 1,607, 8") (18)

where no(r’) is the radial density of the charge of a spherical nucleus
of the same volume and assuming that it is described by the Fermi-type
function, in just the same way as in section 3 we get
~ ’ ’ ’ “ ’ “ ’ ’
n(B;YQ'sa,¢)" 2 C (BJ)’,')YA(G,¢ ).
A A ( 19)
Using then the formulas

Ls (L)' P (CosH), < (20)
k

It =t Los (L' P (oo H), >
and .
4n
- k+1
for Vewl (B,y,1,0,¢6) we get:

P (Cos H) s ¥ (0,8 Y (6,4)
k( 8 = X 1¢ X 1¢

(21)

(22)
T Boy,no.e)=3 dlayovie.s)
coul Ap A A
where

‘
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M
DA(B,Y’K)g S
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% A
+f C:(B,y,r') :'({7-) e’

Thus, in calcuWating the proton level system the radial matrix elements in-

clude the sum

10
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C (Byy,t)+D (B,y, 1)

A A (24)
143

The proton level system for nuclei close to Nd is given in Fig.6 and 7.
In Fig.8 the part of the level scheme calculated with the account
of (24) (continuous lines) and for D‘;(B,y, r)=0 (dotted line ) is
given to show the effect of the term V”“ (B,v,16,¢) on the position of the
levels, Different levels react to a different extent to the Coulomb field
distortion, This should have been expected since the radial matrix: ele-
ments essentially depend on the behaviour of the radial wave functions which,
in the case of different states, have different form and value in the region where

D:( Bsy,1) noticeably differ from zero,

6., Conclusion

This paper is of a methodical character. The main aim of it is the
construction of the method for calculating the one-particle states of defor-
med nuclei using the realistic diffuse poteﬁtial.

It is established that in calculating the levels it is necessary to
take into account the effect of at least neighbouring shells of the same pa~
rity,

The method allows one to take into account in a consistent way the
deformation of the Coulomb potential. The results can bg used for & more
correct solution of the probiem of the existence of nonaxial deformed nuclei

in the transition regions,

The authors are grateful to V.G.Soloviev for useful discussions.
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Table 1

Basioc neutron funotions

State E
nlJ a bl c
1 1K 17/2* 15.26 6.092 4,715 4.707 4.308 0.564
2 13 15/2%  6.42 5.857 4.494 4,602 4,644 0,589
3 11 11/2%  4.79 5.352 4,019 4.117 4.177 0.578
4 2g 9/2%* 1,87 5.226 3.131 3.713 3.755 0.392
5 11 13/2 -2,29 5.623 4,193 4.386 4.264 0.576
6 3p 1/2 -3.05 4,091 1.855 2,696 3.039 0,168
7 28 5/2 -3.13 4.699 2,739 3.327 3.424 0,360
8 3p 3/2 -3.98 4,129 1.853 2,702 3,148 0,169
9 l1h 9/2 -5.32 5,112 3.736 3.924 3,987 0,570
10 28 7/2 -5.85 4.824 2,746 3,376 3,690 0,364
11 1k 11/2 -10,71 5.375 3.834 4,093 4,382 0,573
12 3s -12.08 3.494 1.323 2.169 3.178 0,176
13 2d 3/2 -12,18 4.298 2,313 2,936 3,621 0,371
14 24 5/2 -14.05 4,399 2,313 2.955 3.745 0,368
15 lg 7/2 -14.94 4.866 3.383 3.630 4,114 0,570
16 lg 9/2 -=18.72 5,100 3.434 3.733 4.375 0.563
17 2p 1/2 -21.31 3.833 1.816 2,444 3.535 0,367
18 2p 3/2 =22,29 3.898 1.815 2.452 3,591 0.363
19 1f 5/2 -=23.82 4.589 2,957 3.249 4.088 0,555
20 1f 7/2 =26.23 4,783 2,985 3.311 4,260 0.545
21 28 -30,34 3,202 1,202 1.826 3.204 0,353
22 1a 3/2 -=-31.82 4,252 2,456 2,778 3.920 0,527
23 1d 5/2 =33.13 4.395 2,467 2.809 4,024 0.517
24 1p 1/2 =38.77 3.785 1.860 2,191 3.565 0,484
25 1p 3/2 =39.32 3.873 1.861 2.203 3.619 0.476
26 1s -44,65 3,011 1.081 1.407 2,880 0.415
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Table 2

Basic proton funotions

State Egli

1j 15/2%  14.63 5.830 4,588 4.711 4.817 0.608
11 11/2% 14,19 5.315 4.093 4,195 4,295 0.594
2g 9/2* 11.18 5.221  3.185 3.786 3.857 0.399
3p 1/2% 6.86 4,114 1,867 2.730 3.275 0.174
2f s5/2*% 6.61 4,702 2,777 3.382 3,789 0.379
11 13/2* 5.91 5.614 4.290 4,488 4,856 0,610
3p 3/2* 5.77 4.159 1.867 2.741 3.389 0.175
1h 9/2* 3.86 5,097 3.806 3.977 4,404 0,601
2¢ 1/2* 3.40 4,845 2,792 3.444 4,043 0.380

38 -2,37 3.543 1.210 2,032 3.164 0.167
1lh 11/2 -2.44 5,384 %.078 5.384 4,222 0.683
24 3/2 -2.56 4,327 2,608 3.111 - 3.427 0.376
24 5/2 ~4,73 4.444 2,583 3.137 3.969 0.389
lg 17/2 -5.86 4.870 4.412 4,796 3.902 0.676

1g 9/2 -10,31 5.130 4.323 4,880 4,676 0.685
2p 1/2 -11.71 3.894 2.086 2,868 3.596 0.385
2p 3/2 -12.84 3,970 2,016 2.703 3.637 0.381
1f 5/2 -14.75 4.624 3.629 3.356 4,304 0.593
1t 7/2 -17.61 4.840 3.555 3.384 4,440 0.572
28 -20.74 3.326 1l.354 2,175 3.164 0.373
14 3/2 -22,64 4,326 2.821 2.863 4,049 0.546
1d 5/2 =24 .23 4.491 2.774 2,890 4,150 0.530

1p /2 -=29.36 3.930 1.980 2.326 3.703 0.491
1p 3/2 -=30.04 4,038 1.960 2.349 3.767 0.481

14
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