

V.G. Soloviev, P. Vogel, G. Jungklaussen

# NON-ROTATIONAL STATES OF ODD-MASS DEFORMED NUCLEI IN THE REGION 155 $\leq$ A $\leq$ 181

Submitted to Izv. AN USSR

on that we want no

「「「「「「「「」」」

The interaction of quasiparticles with phonons in odd-mass deformed nuclei was considered in ref.<sup>11</sup>. Secular equations were obtained the roots of which are the energies of the ground and excited states. It was shown that the interactions of guasiparticles with phonons lead to the appearance of admixtures in one-particle states and to the formation of collective nonrotational states and complex structure states. In refs.  $^{2,3/}$  the energies of the nonrotational states of odd-mass deformed nuclei in the region  $153 \leq A \leq 187$  were calculated, the structure of these states was investigated. The probabilities of electric E2 transitions and the decoupling were computed. Similar calculations in the actinide region parameters A were made in ref.  $\frac{4}{1}$ . The interaction of quasiparticles with gamma vibrational phonons was studied in paper  $\frac{5}{5}$ . In the cases where these interactions play a predominant role the results obtained in ref.<sup>5/</sup> are close to these presented in  $ref^{/2/}$ .

The aim of paper<sup>/2/</sup> was to give a general picture of the excited states for many-odd-A nuclei. Many states with  $K_0 - 2$  and  $K_{0+2}$  (where  $K_0$  is related to the ground state of an off-mass nucleus) and the values of B(E2) were given. The data on some complex structure states and states close to the one-particle states were presented. It was shown that the account of interactions of quasiparticles with phonons led to an improvement of the description of states close to the one-quasiparticle states as compared with the independent quasiparticle model and to a rather correct description of the collective states and the complex structure states. Ref.<sup>/2/</sup> contains only a small part of the results obtained.

In the present paper the energies and the structure of the ground and excited states of a number of odd-mass deformed nuclei in the region

з

 $155 \le A \le 181$  are given. The characteristics of each nucleus are presented for all the calculated states with excitation energies up to 1 MeV and for some states - higher than 1 MeV. In some cases the decoupling parameters **a** and the spectroscopic factors are listed.

The secular equation determining the energies  $\eta_j$  of the ground and excited states of odd-mass defomred nuclei is of the form:

$$f(\rho) - \eta_{j} - \frac{1}{4} \sum_{\lambda \mu i} \frac{V_{\rho \nu}^{2}}{Y^{i}(\lambda \mu)} \frac{f^{\lambda \mu}(\rho \nu)^{2}}{\epsilon(\nu) + \omega_{\lambda}^{\lambda \mu} - \eta_{j}} = 0, \quad (1)$$

where  $\rho$  denotes the average field level with a given  $\mathbf{x}_{\mathbf{x}}$  and  $\nu$  the remaining levels;  $\epsilon(\nu) = \sqrt{(E(\nu) - \lambda)^2 + C^2}$  (C is the correlation function,  $\lambda$ is the chemical potential),  $U_{\rho\nu} = u_{\rho} u_{\nu} - v_{\rho} v_{\nu}$ ,  $f^{\lambda\mu}(\rho\nu)$  is the matrix element of the multipole moment operator  $(\lambda \mu)$ . The summation over  $\lambda \mu i$  means that one takes into account the interaction of guasiparticles with guadrupole  $\lambda = 2$ ,  $\mu = 0,2$  and octupole  $\lambda = 3$ ,  $\mu = 0,1,2$  phonons and the first two roots i = 1,2 of the secular equation for the even-even nucleus The energies of the collective states  $\omega_{\mu}^{\lambda\mu}$  and the quantities  $Y^{i}(\lambda\mu)$ are calculated in ref.<sup>6</sup>. However, in the present paper, in contrast to ref.<sup>2</sup> the multipole-multipole interaction constant is chosen so that to obtain the energies of the vibrational states in even-even nuclei which are close to the experimental ones. This leads to a non essential change of the results of this paper in comparison with the ref.  $\frac{2}{2}$ , the most striking difference is observed for nuclei  $Y_b^{169}$ ,  $Y_b^{171}$  since the energies of the gamma vibrational states for these nuclei were overestimated. The energies  $E(\gamma)$ and the Nilsson potential wave functions are used in the calculations the one-particle level scheme being the same as in ref.

The wave function for the state with a given  $K_{\pi}$  is of the form

$$\psi(\mathbf{K}\pi) = \Omega(\mathbf{K}\pi)^{\dagger} \psi_{0}, \qquad (2)$$

$$\Omega (K\pi)^{+} = \frac{1}{\sqrt{2}} C_{\rho} \sum_{\alpha} \{a^{+}_{\rho\sigma} + \sum_{\lambda\mu i} D^{\lambda\mu i}_{\rho\nu\sigma} a^{+}_{\nu\sigma} Q_{i} (\lambda\mu)^{+}\}, \quad (3)$$

where  $Q_i(\lambda\mu)$  is the phonon operator of multipolarity  $(\lambda\mu), a^+_{\nu\sigma}$  is the quasiparticle absorption operator,  $\sigma = \pm 1; \psi_0$  is the wave function of the ground state of the even-even nucleus. From the normalization condition we have

$$C_{\rho}^{-2} = 1 + \frac{1}{4} \sum_{\lambda \mu i} \frac{v_{\rho \nu}^{2}}{\gamma^{i} (\lambda \mu)} \frac{f^{\lambda \mu} (\rho \nu)^{2}}{(\epsilon (\nu) + \omega_{i}^{\lambda \mu} - \eta_{j})^{2}}$$
(4)

 $D_{\rho\nu\sigma}^{\lambda\mu_{1}} = \frac{1}{2} - \frac{V_{\rho\nu}}{\sqrt{Y^{1}(\lambda\mu)}} - \frac{f^{\lambda\mu}(\rho\nu)}{\epsilon(\nu) + \omega_{1}^{\lambda\mu} - \eta_{j}}$ (5)

The quantity  $C_{\rho}^{2}$  defines the contribution of he onequasiparticle state with a given  $\rho$  and the quantity  $\frac{1}{2}C_{\rho\sigma}^{2}(D_{\rho\nu\sigma}^{\lambda\mu i})^{2}$  defines the contribution of the component with quasiparticle in the state  $\nu$  and of the phonon  $\lambda\mu i$  to the state described by the wave function  $\psi(R_{\pi})$ .

Each  $K\pi$  and  $\rho$  has its own equation of the type (1). Its solutions  $\eta_1, \eta_2$ , ... are the energies of these states. In each nucleus the least of all the values  $\eta_1(K_0\pi)$  is the energy of the ground state and the energies of the excited states are determined by the differences  $\eta_1(K\pi) - \eta_1(K_0\pi)$ . If in studying the states with given  $K\pi$  in the Nilsson level scheme there are several states  $\rho_1, \rho_2, \ldots, \rho_n$  with identical  $K\pi$  for which the quantities  $\epsilon(\rho_1), \epsilon(\rho_2) \ldots \epsilon(\rho_4)$  are close to one another then instead of eq. (1) a more complicated secular equation should be solved. The general form of this equation is given in ref.<sup>(1)</sup> and a particular case n=2 is investigated in ref.<sup>(2)</sup>. It should be noted that the secular equation (1) has no free parameter.

The results of calculations of the energies and the wave functions for some odd-N and odd-Z nuclei are given in Tables 1-18. In the first column the value of  $K\pi$  is given, in the second and the third - the experimental and calculated values of the energies (in kev). The fourth column gives the contribution (in per cent) of the largest components of

5

the wave function obtained from the normalization condition of the wave function. For example, in the  $K_{\pi}=\%$ -state of <sup>155</sup>Gd 5214 <sup>X/</sup> 42 per cent denotes the contribution of the one-quasiparticle state and 521 $\frac{1}{2}+Q_{1}(22)$  37% denotes the contribution of the component quasiparticle in the 521t state plus phonon  $Q_{1}$  (22).

The experimental data are taken from the review papers<sup>/7-10/</sup> and the original papers<sup>/11-28//31-35/</sup>. Nuclei which are most perspective from the point of view of experimental investigations are chosen for the analysis. The nuclei <sup>157</sup> Tb and <sup>159</sup> Tb which are analysed in ref.<sup>/2/</sup> should be added to nuclei of Tables 1-18. Note that the calculated spectra of <sup>161</sup> Ho and <sup>163</sup> Ho are very similar to the spectrum of <sup>165</sup>Ho, therefore the corresponding tables are not given in the present paper.

A very important characteristic of the K = 1/2 states is the value of the decoupling parameter a. For a in ref.<sup>(2)</sup> the following formula is obtained

 $\mathbf{a} = C_{\rho}^{2} \{ \mathbf{a}_{\rho\rho}^{N} + \sum_{\nu\nu'} \mathbf{a}_{\nu\nu'}^{N} (D_{\rho\nu'}^{201} D_{\rho\nu'+}^{201} D_{\rho\nu'+}^{301} D_{\rho\nu'+}^{301}) \}$ (6)

where  $\mathbf{s}_{\mu\nu}^{N}$ , is the one-particle decoupling parameter calculated with the average field (Nilsson potential) wave functions. In ref. the decoupling pawere analysed for states close to the neutron 5214 state. rameters a It was shown that the account of the interactions of quasi-particles with phonons essentially improve agreement between theoretical and experimental data. In the present paper one gives the decoupling parameters a for some other K = 1/2 states. The calculated and experimental values of the energies and the parameters are placed in Table 19. For the 510† states as the value of  $a_{\rho\rho}^{N}$  one takes the value given in ref. (29) calculated with the wave functions of the one-particle deformed Saxon-Wood potential. As is known, for the 510 states the values of calculated with the Nilsson functions contradict the experimental data. However, the calculations with  $a^{N}$  from ref. in which one takes into account both changes in the deformation (for  $A \ge 177$  one takes  $\delta = 0.2$ ) and the interactions of quasiparticles with phonons lead to a good agreement with experiment.

 $x/Nn_{\lambda} \Lambda t$  denotes the Nilsson potential state with  $K = \Lambda + \Sigma$  and by  $Nn_{\lambda} \Lambda t$  the state with  $K = \Lambda - \Sigma$ .

The cross sections for direct nuclear (dp), (dt) reactions when the targets are the even-even nuclei, are proportional to the spectroscopic factor equal to

$$C_{\rho}^{2} u_{\rho}^{2}$$
 for (dp) reaction (7)

$$C_{\rho}^{2} v_{\rho}^{2}$$
 for (dt) reaction (7')

The effect of the interaction of quasi-particle with phonons on the spectroscopic factors is shown by the example of the 5211 state in table 20(similar quantites for the 5101 state are given in ref.<sup>21</sup>). It is seen that as the level moves away from the Fermi surface its one-quasiparticle component and, consequently, the cross section for the (dt) reaction decrease. This fact is proved experimentally in ref.<sup>23/</sup>. Notice that the spectroscopic factors for other states and nuclei can be easily obtained using Tables 1-18. The quantity  $C_{\rho}^2$  occupies the first place in the fourth column and the quantities  $u_{\rho}^2$  and  $v_{\rho}^2$  can be calculated using the standart formulas of the superfluid nuclear model.

Now let us briefly discuss the results given in Tables 1-18.

<sup>155</sup> Cd

The spectrum of this nucleus is very interesting<sup>/11/</sup>. The interaction of quasiparticles with beta as well as gamma vibrational phonons are important. Two vibrational states are based on the ground state of the nucleus. In the first  $K_{\pi} = 1/2$ - state the gamma-vibrational phonon is strong ly mixed with one-particle 5214 state. The second one, the  $K_{\pi} = 3/2$ - state is a rather pure beta-vibrational state. The calculated energy of the beta-vibrational state is somewhat overestimated as compared to the experimental one. The calculations predicted the existence of low-lying levels close to the 5304 and 5324 ones which are probably some of non-identified levels in the experimental spectrum of <sup>155</sup>Gd. The  $K_{\pi}=1/2$ + level close to the 6604 one was not experimentally observed. This could be understood from two reasons: the theoretical values of the decoupling parameter a for a given state reaches a = 6.15 what lead to a large distortion of the rotational band; in the Nilsson scheme calculations the

matrix elements with  $\Delta N = 2$  are not taken into account, their account will lead in the given region to the mixing of the 400† and 660† states (see ref.<sup>/30/</sup>). The value of log ft obtained in ref.<sup>/11/</sup> are in satisfactory agreement with theory. Note that the correction due to pairing correlations in log ft for the 400† and 402† states reached  $R_{B^{\mp}}$  0.05.

#### 163 Er

According to the Nilsson scheme the ground state of this nucleus N = 97 should be the 642 state. From the experimental data it with follows that the ground state of Er is the 5231 state and the 6421 state is an excited one with energy 22 KeV. Our calculations give approximately the same energies for these states. In <sup>163</sup>Er there is observed a  $K_0 - 2$  state with  $K\pi = 1/2$ - (K<sub>0</sub> relates to the ground state). It has a complicated structure and contains a large-quasiparticle component and the admixtures of two different gamma-vibrational phonons. The calculated decoupling parameter a is close to the experimental value (see ref.<sup>(2)</sup>). The observed in ref.  $\frac{15}{15}$  levels with  $K\pi = 3/2+(1540 \text{ kev})$  and  $K\pi = 1/2 + 12$ (1804 kev) which well populated in the decay of  $T_{m}$  (log ft = 5.4 and 5.2) are probably three-quasiparticle states with configuration p5231 + p4114 $-n5234^{36/}$ . However as in the case of <sup>165</sup>Er the possibility of mixing of the three-guasiparticle  $K \pi = 3/2^+$  state with the  $K \pi = 3/2^+$  (1200 keV) state can not be exluded.

# <sup>163</sup> Dy

The all-round investigation of the spectrum of the nucleus was made in refs.<sup>/13,14/</sup>. The results of calculations are in satisfactory agreement with experimental data. To explain the intensities of the electromagnetic transitions between the states of three lowest rotational bands with negative parity it is necessary to take into account the Coriolis interactions including the second perturbation order. Similar problems arise also in analysing the <sup>165</sup>Dy spectrum.

To explain the small values of log ft for the transitions to the  $K\pi = 1/2$ +states (5.6 and 4.9) one should assume the admixture of the three-quasiparticle { p523 - p 411 f - n 523 state which is the main

component of the 523 +  $Q_1(32)$  state. This component noticeable contribute to the second  $K\pi = 1/2 +$  state (11 per cent) and gives the predominant contribution to the third  $K\pi = 1/2 +$  state which, however, was not so far observed. It is difficult to account for the decouplong parameter a for the first  $K\pi = 1/2 +$  band (  $a_{th} \approx 2.0$ ,  $a_{exp} \approx 0.52$ ) and the cross section for the (dp) reaction for the second  $K\pi = 1/2 +$  state. It should be noted that the mixing of one-particle wave functions of the 660<sup>†</sup> and 400<sup>†</sup> states as well as the 651<sup>†</sup> and 402<sup>‡</sup> states not taken into account in the Nilsson scheme (and, correspondingly in our calculations) can noticeably influence the  $K\pi = 1/2 + 3/2 +$  states for nuclei in the given region.

The  $K\pi = 3/2 - (821 \text{ kev})$  state is, according to the calculations, the one-quasiparticle 532} state and the state with large component  $521 \pm Q_1(22)$  lies essentially higher (about 1.4 MeV).

#### <sup>165</sup>Er

In the spectrum of this nucleus three types of phonons  $Q_1(22)$ ,  $Q_1(20)$  and  $Q_1(30)$  plays an essential role. In contrast to <sup>163</sup> Dy there is no low-lying  $K\pi = 1/2 +$  states with large admixture of the 523 $\frac{1}{2} + Q_1(32)$  component. It would be interesting to find the experimental value of the decoupling parameter for the  $K\pi = 1/2 + (508 \text{ keV})$  band, the theoretical value is  $a_{th} \approx 2.0$ . In the given nucleus there exists the known<sup>20/</sup> three-quasiparticle  $K\pi = 3/2 +$  state with configuration (p523 $\frac{1}{2} - n523\frac{1}{2} + p411\frac{1}{2}$ ) and energy 1428 keV. We have predicted the existence of a  $K\pi = 3/2 +$  state of some other nature with energy of about 1.4 MeV. It is quite possible that the observed state is the mixture of these two states.

# <sup>165</sup>Dy Er Yb

Tables 5-7 give the data on three nuclei with N= 99. The spectra of <sup>165</sup> Dy and <sup>167</sup> Er are alike but the spectrum of <sup>169</sup>Yb differs from them. This is due to the energy increase and, correspondingly, to the decrease of "collectivity" of gamma-vibrational states in <sup>168</sup>Yb as compared to <sup>164</sup> Dy and <sup>166</sup> Er. This fact is most clearly revealed in the  $K\pi = 3/2 +$  states. In the nuclei <sup>165</sup> Dy and <sup>167</sup> Er the first  $K\pi = 3/2 +$  state is mainly collective and the second one-single-quasiparticle state. In <sup>169</sup>Yb on the contrary,

the first  $K\pi = 3/2 +$  state is close to the one-quasiparticle state and the second to the collective state. Note that a small difference in the energies and the structure of some states as compared with ref.<sup>(2)</sup> are due to the fact that in the present paper the values of  $\omega_{\mu}^{\lambda\mu}$  close to the experimental ones were inserted into eqs. (1), (4) (5). If we take for the 510<sup>4</sup> state the one-particle value of the decoupling parameter a calculated in ref. (29) on the basis of the wave functions of the Saxon-Wood potential we obtain satisfactory agreement between the calculated decoupling parameters a and the experimental values for states containing the one-particle 510<sup>‡</sup> component. In the Yb nucleus the  $K_{\pi=1/2}$ state with energy 1317 keV was observed in ref.  $\frac{23}{12}$ . The  $K_{\pi=1/2}$ -states with energies 1300 and 1350 predicted by us may not be apparently identified with the observed one. These states are excited with small cross sections in (dp) and (dt) reactions and have other values of a . A state with a large one-particle 510 compound is considerably higher (≈ 1.7 MeV).

The odd-mass isotopes of Ytterbium are experimentally investigated in ref.<sup>[23]</sup>. The calculated energies and other characteristics of the level of these nuclei rather well agree with experiment. It would be interesting to find experimentally the hole  $K_{\pi} = 5/2 - \text{and } 5/2 + \text{levels.}$  Note that for <sup>171</sup>Yb and <sup>17b</sup> Yb the difference of the results of the present calculations as compared to the calculations in ref.<sup>[2]</sup> is maximum. This is due to the fact that in these nuclei the calculated in ref.<sup>[6]</sup> energies of the  $K_{\pi}=2+$  states are most strongly different from the experimental one. In <sup>172</sup>Yb the first state is close to the two-quasiparticle nn  $521\frac{1}{6} - 512\frac{1}{7}$  state and the second one is collective. Therefore in <sup>173</sup>Yb the wave functions of some states contain large components with  $Q_1(22)$  and  $Q_2(22)$  phonons.

<sup>175</sup>Yb <sup>177</sup>Hf

The levels <sup>175</sup> Yb are investigated in ref. <sup>23/</sup> and <sup>177</sup> Hf in ref. <sup>26/</sup> by the (dp) and (dt) reactions. In ref. <sup>25/</sup> the  $K_{\pi} = 1/2 + (1454 \text{ keV})$  state was observed in <sup>175</sup> Yb for which log ft = 5.3 for the beta decay from 1/2+411; state of <sup>175</sup>Tm. In Table 10 there is  $K\pi = 1/2$ + state with energy 1.5 MeV which can not be, however, identified with the experimentally observed 1454 keV energy state. On the other hand, the three-quasiparticle  $K\pi = 1/2$ + state with configuration p411; - p514; + n514; must lie, according to ref.<sup>(37)</sup> at an energy of about 1.6 MeV. For this state the obtained value of log ft = 5.3 is quite reasonable.

In ref.<sup>26/</sup> in <sup>177</sup> Hf a number of  $K\pi = 1/2 - 3/2$ -states of energy of about 1.5 MeV was found by the (dp) reaction. These states (due to the factor  $u_{\rho}^2$ ) must be particle ones. As a result of calculations some  $K\pi = 1/2 - 3/2$ -states of energies close to the experimental ones were obtained. The structure of these states is given in Table 11. However, the correspondance of the calculated and experimental states is not unambiguous. At sufficiently high excitation energies states from the N = 7 (770,761) should be observed, which are not included in our calculations.

<sup>177</sup>Yb <sup>179</sup>Hf

In the calculation of all nuclei with N < 107 one used the same average level scheme as in ref.<sup>(2)</sup> and the Nilsson wave functions with deformation  $\delta = 0.3$ . In the calculation of nuclei with  $N \ge 107$  one used the level scheme and the wave functions with  $\delta = 0.2$ . This is the cause of some changes in the calculated spectrum of the excited states of <sup>177</sup> Yb as compared to <sup>175</sup> Yb.

In these nuclei the interaction of quasiparticles with phonons is rather weakly revealed. This is due to the fact that in neighboring eveneven nuclei the vibrational levels (especially with  $K_{\pi} = 2_{+}$ ) lie rather highly and are weakly "collectivized". Therefore in nuclei with N = 107states with a large contribution of phonons are revealed only at energies higher than 1 MeV.

#### <sup>181</sup>Hf

The levels of this nucleus were investigated by the (dp) reaction in ref.  $^{26/}$ . A number of particle excited states with energy up to 2 MeV was obtained. It is difficult to relate the observed and the calculated levels with

low spins since the experimental information is still little. In this nucleus the 501j state is apparently first revealed and among the observed excited states there are possibly states from the N = 7 shell (which are not included in our calculations). In <sup>161</sup> Hf the  $K_{\pi} = 13/2 + 606$  state is also first observed; its energy is in good agreement with the calculated value.

155 Eu

This nucleus lies near the boundary of deformed nuclei where the lowest vibrational states are the beta and octupole  $K_{II} = 0^{-1}$  states. As in the case of <sup>155</sup> Gd and <sup>157</sup> Tb a low-lying comparatively pure beta vibrational state may exist in this nucleus. The results of calculation of the levels of <sup>155</sup> Eu satisfactorily agree with the available experimental data<sup>(31)</sup>.

<sup>165</sup> Ho

As was already mentioned, the calculated characteristics of the states in <sup>161</sup> Ho and <sup>163</sup> Ho are very close to those for <sup>165</sup> Ho. In <sup>165</sup> Ho both gamma-vibrational states  $K_0 - 2$  and  $K_0 + 2$  are known. The energies of these states calculated in the present paper and in ref.<sup>(2)</sup> are overestimated as compared to the experimental data. Interactions of quasiparticles with phonons in nuclei with an odd number of protons for states with negative parity are less effective as compared to states with positive parity. Therefore the admixture to the collective states of the type quasiparticle in the ground state plus phonon are small.

<sup>169</sup> Tm

In this nucleus two levels of the type  $K_0 = 2$  with  $K_{\pi} = 3/2 +$  are detected, for one of them the value of B(E2) being large for the other small. The structure of the second  $K_{\pi} = 3/2 +$  state calculated in ref.<sup>(2)</sup> corresponds to the first  $K_{\pi} = 3/2 +$  state detected experimentally and vice versa. After the  $K_{\pi} = 2 +$  state energy has been corrected in <sup>166</sup> Et the situation became somewhat better. For the remaining states satisfactory agreement between theory and experiment is obtained.

<sup>171</sup> Lu

In this nucleus the interactions of quasiparticle with beta-vibrational phonons play an important role. The energy for the 514<sup>‡</sup> state obtained in ref.<sup>(35)</sup> strongly differs both from the energies of this states in other isotopes and the calculated value. The identification of the  $K_{\pi} = 7/2$  - state as the 523<sup>‡</sup> one is not sufficiently reliable.

In conclusion it should be noted that the results of calculations given in Tables 1-20 allow to conclude that theory satisfactorily describes all the experimental data on the odd-mass deformed nuclear levels in the region  $155 \leq A \leq 181$ . Besides, the position of many new levels in the studied nuclei is predicted. The Cariolis interaction was not taken into account which is some cases could play an important role especially in the calculation of the electromagnetic transition probabilities. The largest uncertainties in the calculations are due to a rough description of the behaviour of the average field levels and the wave functions in the one-particle Nilsson model.

The authors express their deep gratitude to L.A.Malov for usefull discussion, A.A.Korneichuk and K.M.Zhelesnova for the help in making numerical calculations.

#### References

- 1. В.Г.Соловьев. Phys. Lett., <u>16</u>, 308 (1965). Статья в сборнике "Структура сложных ядер", Атомиздат, 1966, Москва.
- 2. V.G.Soloviev, P.Vogel. Nucl. Phys., 90, N. 3 (1966).
- 3. В.Г. Соловьев, П. Фогель. ДАН СССР, <u>171</u>, (1966).
- 4. Л.А. Малов, В.Г. Соловьев. Ядерная физика, <u>5</u>, № 2 (1957).
- 5. D.R. Bes, Cho Yi Chung, Nucl. Phys., 86, 581 (1966).
- 6. V.G.Soloviev. Atomic Energy Review 3, 117 (1965). К.М.Железнова, А.А.Корнейчук, В.Г. Соловьев, П.Фогель, Г.Юнгклаузен. Препринт ОИЯИ, Д-2157 (1965).
- 7. B.Mottelson, S.Nilsson, Mat.Fys.Skr.Dan.Vid.Selsk. 1, N 8 (1959).
- 8. С. Рич., М. Банкер. Известия АН сер. физическая 40, (1966).

- 9. В.Гнатович, К.Я. Громов. Ядерная физика 3, 8 (1966).
- 10. Б.С. Джелепов, Л.К. Пекер, В.О. Сергеев. "Схемы распада радиоактивных ядер", изд. АН СССР, Москва-Ленинград, 1963 г.
- 11. M.Finger, P.Galan, M.Kuznetzova. et al. Preprint JINR E-2908(1966); P.Blichert-Toft, E.G.Funk. J.M.Mihelich. Preprint (1966).
- 12. L.Funke, H.Graber, R.H.Kaun, et al. Nucl.Phys. 84, 461 (1961).
- 13. L. Funke, H.Graber, K.H.Kaun. et al. Nucl. Phys 84, 424 (1966).
- 14. O.W.B.Schult, M.E.Banker, D.W.Hafemeister. Preprint (1966).
- 15. В. Гнатович, К.Я. Громов, П. Фингер, Я. Врзал, Я. Липтак, Я. Урбанец. Изв. АН СССР, <u>41</u>, № 4 (1967).
- 16. B.Harmatz, T.H.Handley, J.W.Michelich. Phys.Rev. 128, 1186 (1962).
- 17. R.K.Sheline, W.N.Shelton, Phys.Rev. 136, B351 (1964).
- 18. O.W.Schult, B.P.Meier, U.Gruber, Z. for Phys. 182, 171 (1964).
- В.А.Бондаренко, П.Т. Прокофьев, Л.И. Симонова. Изв. АН СССР, сер.физ. <u>39</u> 2168 (1965).
- 20. T.Kucarova, V.Zvolska, N.Vejs.
- 21. К.Я. Громов, В.С. Джеленов, В. Звольска, И. Звольски, М.А. Лебедев, Я.Урбанец. Изв. АН СССР, сер.физ. 26, 1023 (1962).
- 22. K.Hauser. Nucl. Phys. 35, 342 (1962).
- 23. D.G.Burke, B.Zeidman, B.Elbek et al. Mat.Fys.Medd.Vid.Selsk. 35, N.2 (1966).
- 24. C.J.Orth, M.E.Bunker, J.W.Starner. Phys.Rev. 132, 355 (1963).
- 25. K.Wien, Z.fur Physik 191, 137 (1966).
- 26. F.A.Rickey, R.K.Sheline. Preprint (1966).
- 27. M.Vergnes, R.K.Sheline, Phys.Rev., 132, 1736 (1963).
- 28. P.Manfrass, A.Andreef, W.Bergmann, R.Kastner, Nucl. Phys. 90(1966).

29. A.Faessler, R.K.Sheline. Phys.Rev., 148, 1003 (1966).

- 30. П.Э. Немировский, В.А. Чепурнов, ЯФ 3,ь 998 (1966).
- 31. L. Funke et al., Nucl. Phys. 70, 335 (1965).
- 32. R.M.Diamond, B.Elber, F.S.Stephens. Nucl. Phys. 43, 560 (1963).
- 33. L.Persson, Arkiv for Fysik, 24, 89 (1963).
- 34. P.Alexander, F.Boehm, Nucl.Phys., 46, 108 (1963).
- 35. B.Harmatz, T.H. Handley. Nucl. Phys. 81, 481 (1966).
- 36. В.Г. Соловьев. ЖЭТФ 43, 248 (1982).

37. Н.И. Пятов, В.Г. Соловьев. Изв. АН, сер.физ. <u>28</u>, 1617 (1964).

Received by Publishing Department on December 2, 1966.

|               |                |         | 64 91                                            |
|---------------|----------------|---------|--------------------------------------------------|
| K۳            | Energy ( keV ) |         | STRUCTURE                                        |
|               | exper.         | calcul. |                                                  |
| 3/2 -         | 0              | 0       | 5214 915; 5214 + Q <sub>4</sub> (22) 65          |
| I/2 +         | 1              | -50     | 660+ 63%; 660+ + 9,(20) 30%                      |
| 5/2 +         | 105            | 85      | 6424 815; 642+ + Q.(20) 155                      |
| 3/2 +         | 85             | 135     | 651+ 91\$; 651+ + Q,(20) 3\$; 660+ + Q,(22)      |
| II/2 <b>-</b> | 1              | 190     | 505+ 90%; 505+ + Q (20) 7%;                      |
| 5/2 -         | 287            | 300     | 523+ 88%; 521+ + 0,(22) 7%; 523+ + 0,(20) 2%     |
| 3/2 -         |                | 400     | 532+ 715; 532+ + 9, (20) 125; 530+ + 9, (22) 105 |
| I/2 -         |                | 400     | 530+ 60%; 530+ + Q,(20) 15%; 532+ + Q,(22) 13%   |
| I/2 -         |                | 550     | 521+ 425; 521+ + Q,(22) 375; 523+ + Q,(22) 165   |
| 3/2 +         | 267            | 590     | 402 + 595; 400 + 4,(22) 245; 404 + 4,(22) 85     |
| I/2 +         | 368            | 740     | 400 + 645; 402 + 9,(22) 225; 400 + 9,(20) 105    |
| 3/2 +         | 1              | 850     | 651+ 35; 651+ + Q.(20) 955;                      |
| 3/2 -         | 592            | 980     | 521+0,75; 521+ + 0, (20) 99%                     |
| 3/2 -         |                | 990     | 5324 IIS; 5324 + Q.(20) 88%                      |

TABLE I.

Gđ

155

TABLE 2. 163

## 68 95

| ×-         | Energy ( keV ) |         | STRUCTURE                                                 |  |  |
|------------|----------------|---------|-----------------------------------------------------------|--|--|
| <b>N N</b> | exper.         | calcul. |                                                           |  |  |
| 5/2 -      | 0              | 0       | 523+ 96%                                                  |  |  |
| 5/2 +      | 22             | -10     | 6424 975                                                  |  |  |
| 3/2 -      | 104            | 75      | 521+ 95%                                                  |  |  |
| 3/2 +      |                | 260     | 651+ 785; 651+ + Q(20) 105; 521+ + Q(30) 45               |  |  |
| 11/2 -     |                | 280     | 505+ 95%; 505+ + Q1(20) 4%                                |  |  |
| I/2 -      | 345            | 480     | 521+ 55%; 523+ + Q,(22) 26%; 521+ + Q,(22) 16%            |  |  |
| 1/2 +      |                | 500     | 660+ 65%; 660+ + Q <sub>1</sub> (20) I3%; 65I + Q (22) 9% |  |  |
| 3/2 -      |                | 500     | 532+ 79%; 532+ + Q (20) 6%; 530+ + Q (22) 5%              |  |  |
| 7/2 +      |                | 680     | 633+ 95%                                                  |  |  |
| 5/2 -      |                | 930     | 512 + 48%; $642 + 9(30) + 7%$ ; $510 + 9(22) - 3%$        |  |  |
| 7/2 -      |                | 980     | 523+ IS; 521++ Q1(22) 985                                 |  |  |
| I/2 +      |                | 1000    | 660+ 3%; 640+ 1%; 642+ + Q1(22) 85%                       |  |  |
| I/2 -      |                | 1000    | $521+ + Q_1(22) = 60\%; 523+ + Q_1(22) = 35\%$            |  |  |
| 9/2 +      |                | 1000    | 6244 IS; 6424 + Q1(22) 985                                |  |  |
| 9/2 -      |                | 1050    | $523 + 9_{1}(22) \sim 100\%$                              |  |  |
| 3/2 +      |                | 1200    | 651+ 25; 521+ + $Q_1(30)$ 725; 651+ + $Q_1(20)$ 35        |  |  |
| I/2 -      |                | 1400    | 521+405; 523++0(22) 355; 521++0(22) 135                   |  |  |
|            |                |         | ·                                                         |  |  |

14

<u>TABLE 3.</u> 163 0**y** 66 97

4

| Kır    | Energy ( keV ) |         | STRUCTURE                                                      |
|--------|----------------|---------|----------------------------------------------------------------|
|        | exper.         | calcul. |                                                                |
| 5/2 -  | -0             | 0       | 523+ 96%                                                       |
| 5/2 +  | 251            | 90      | $6424 94\%$ ; $6424 + Q_1(20) 2\%$ ; $6604 + Q_1(22) 1,5\%$    |
| 7/2 +  |                | 290     | 633+ 97%                                                       |
| 3/2 -  | 422            | 310     | $521+92\%$ ; $651++Q_1(30)$ $2\%$ ; $521++Q_1(22)$ $2\%$       |
| 1/2 -  | 351            | 340     | $521 + 73\%$ ; $523 + 4_1(22)$ $23\%$ ; $521 + 4_1(22)$ $3\%$  |
| 3/2 +  | 859            | 460     | 651+ 75%; 651+ + $Q_1(20)$ 14%; 521+ + $Q_1(30)$ 6%            |
| 11/2 - |                | 620     | 5054 94%                                                       |
| 5/2 -  |                | 660     | $512 + 88\%$ ; $510 + Q_1(22)$ $6\%$ ; $642 + Q_1(30)$ 2%      |
| I/2 +  | 738            | 680     | 660 + 33%; $642 + 9(22)$ 50%; $660 + 9(20)$ 6%                 |
| 9/2 -  |                | 780     | $523 \downarrow + Q_1(22) \sim 100\%$                          |
| 9/2 +  |                | 900     | $642 + Q_1(22) \sim 100\%$                                     |
| I/2 -  |                | 940     | $521+ 9\%; 523+ + Q_1(22) 60\%; 521+ + Q_1(22) 26\%$           |
| 3/2 -  | 821            | 950     | $532 + 73\%$ ; $532 + 4_{1}(20)$ 10%; $651^{4} + 4_{1}(30)$ 7% |
| I/2 +  | (884)          | 1060    | 660+ 22%; 642+ + Q1(22) 43%; 523+ + Q1(32) II%                 |
| I/2 -  | (1056)         | 1070    | 5214 14%; 5214 + Q1(22) 70%; 5234 + Q1(22) 15%                 |
| 1/2 +  | (884)          | 1100    | $66041,55;5234 + Q_1(32) 705;6424 + Q_1(22) 55$                |
| 3/2 -  |                | 1300    | 521+ + Q <sub>1</sub> (20)~ 100%                               |

<u>TABLE 4.</u> 165 68 97

| ¥.     | Energy ( keV ) |         | STRUCTURE                                                                                  |  |  |
|--------|----------------|---------|--------------------------------------------------------------------------------------------|--|--|
| Dü     | exper.         | calcul. |                                                                                            |  |  |
| 5/2 -  | 0              | 0       | 523+ 96%                                                                                   |  |  |
| 5/2 +  | 47             | 90      | $6424 94\%$ ; $6424 + Q_1(20) 2\%$ ; $6604 + Q_1(22) 2\%$                                  |  |  |
| 7/2 +  |                | 290     | 633+ 97%                                                                                   |  |  |
| 3/2 -  | 243            | 300     | $521 + 93\%$ ; $651 + Q_{(30)}$ 3%; $521 + Q_{(22)}$ 1%                                    |  |  |
| 1/2 -  | 297            | 320     | $521 + 71\%$ ; $523 + Q_1(22) = 24\%$ ; $5214 + Q_1(22) = 3\%$                             |  |  |
| 3/2 +  | 855            | 460     | 651+ 72 <b>%;</b> 651+ + Q <sub>1</sub> (20) 13%; 521+ + Q <sub>1</sub> (30) 7%            |  |  |
| II/2 - |                | 550     | 505 + 86%; 505 + + Q1(20) I4%                                                              |  |  |
| 1/2 +  | 508            | 640     | $660 + 31\%; 642 + Q_1(22) 55\%; 660 + Q_1(20) 6\%$                                        |  |  |
| 5/2 -  | 608            | 670     | $512 + 86\%$ ; $510 + Q_1(22)$ 7%; $642 + Q_1(30)$ 3%                                      |  |  |
| 9/2 -  |                | 800     | 523; + Q (22) ~ 100%                                                                       |  |  |
| 9/2 +  |                | 900     | 642+ + Q (22) ~ 100%                                                                       |  |  |
| I/2 -  |                | 910     | 521+ 9%; 523+ + Q(22) 52%; 521+ + Q(22) 36%                                                |  |  |
| 3/2 -  |                | 950     | $532 \neq 71\%$ ; $651 \neq 0$ , (30) $10\%$ ; $532 \neq 0$ , (20) 9%                      |  |  |
| 7/2 -  |                | 980     | 521+ + Q1(22) ~ 100%                                                                       |  |  |
| I/2 +  |                | 1020    | $660 + 26\%$ ; $642 + Q_1(22) + 44\%$ ; $651 + Q_1(22) - 20\%$                             |  |  |
| I/2 -  |                | 1050    | $521 \downarrow 17\%$ ; $521 \downarrow + Q_1(22)$ $60\%$ ; $523 \downarrow + Q_1(22)$ 19% |  |  |
| I/2 -  |                | 1300    | 510+ 32%; 512+ + Q <sub>1</sub> (22) 62%                                                   |  |  |
| 3/2 +  |                | 1400    | 651 + 3%; 521 + $Q_1(30)$ 90%; 651 + $Q_1(20)$ 4%                                          |  |  |

| <u>TABLE 5.</u><br>165<br>66 99 |                |         |                                                        |  |  |
|---------------------------------|----------------|---------|--------------------------------------------------------|--|--|
| V.                              | Energy ( keV ) |         | STRUCTURE                                              |  |  |
| 51                              | exper.         | calcul. |                                                        |  |  |
| 7/2 +                           | 0              | 0       | 633 + 98%                                              |  |  |
| 1/2 -                           | 108            | 150     | 521 + 98%                                              |  |  |
| 5/2 -                           | 184            | 250     | $512 + 90\%$ ; $510 + Q_1(22) = 8\%$                   |  |  |
| 5/2 -                           | 533            | 550     | 523+ 96%                                               |  |  |
| 5/2 +                           |                | 590     | 6421 89%; 523 + $Q_1(30)$ 4%; 6421 + $Q_1(20)$ 2%      |  |  |
| 1/2 -                           | 570            | 700     | $5104 31\%; 5124 + Q_1(22) 64\%; 5124 + Q_1(22) 3\%$   |  |  |
| 3/2 +                           | 539            | 750     | 6514 6%; 6334 + $Q_1(22)$ 93%                          |  |  |
| 3/2 -                           | 574            | 820     | 5214 81\$; 521+ + $Q_1(22)$ 11\$; 6514 + $Q_1(30)$ 4\$ |  |  |
| 11/2 +                          | 1              | 850     | $6334 + Q_1(22) \sim 100\%$                            |  |  |
| I/2 +                           | 1              | 950     | 660† II\$; 642† + Q <sub>i</sub> (22) 85%              |  |  |
| I/2 -                           |                | 1020    | $523 + Q_1(22) \sim 100\%$                             |  |  |
| 5/2 -                           |                | 1030    | 523+ 2%; 521+ + Q1(22) 98%                             |  |  |
| 3/2 -                           | 1103           | 1050    | 521+ 9%; 521+ + Q <sub>1</sub> (22) 89%                |  |  |
| 9/2 +                           |                | 1060    | 6244 IS; 6424 + Q (22) 98%                             |  |  |
| 7/2 -                           |                | 1100    | 514+ 82%; 512+ + Q1(22) 8%                             |  |  |
| 3/2 +                           | 1167           | 1150    | $651+67\%$ ; $521+9_1(30)$ $13\%$ ; $633+9_1(22)$ 7%   |  |  |
| 1/2 +                           |                | 1250    | 523+ + Q <sub>1</sub> (32) 100%                        |  |  |

## <u>TABLE 6.</u> 167 68 99

-

|   | Energy ( keV ) |         | STRUCTURE                                                  |
|---|----------------|---------|------------------------------------------------------------|
|   | exper.         | calcul. |                                                            |
| + | 0              | 0       | 6331 98%                                                   |
| - | 208            | 150     | 52I+ 98%                                                   |
| - | 348            | 280     | 512+ 90%; 510+ + Q <sub>1</sub> (22) 8%                    |
| - | 585            | 550     | 523+ 96%                                                   |
| + | 1              | 590     | $642 + 89\%; 642 + 9_1(20) +\%; 523 + 9_1(30) - 3\%$       |
| + | 532            | 800     | 651+ 6#; 633+ + Q1(22) 90#                                 |
| - |                | 810     | $5104 30\%$ ; $5124 + Q_1(22) 65\%$ ; $5124 + Q_1(22) 3\%$ |
| - | 745            | 820     | 521+ 81\$; 521+ + Q,(22) 12\$; 651+ + Q,(30) 4\$           |
| • |                | 830     | 633+ + 0, (22) 98%                                         |
| • |                | 950     | 660+ II\$; 642+ + Q1(22) 88%                               |
| - | 1              | 1000    | 523+ 2%; 521+ + Q1(22) 98%                                 |
| - |                | 1020    | 5234 + 0. (22) ~ 100%                                      |
| - |                | 1050    | 5214 IIS: 521+ + Q.(22) 825                                |
| • | 1              | 1150    | 651+ 69%; 521+ + Q. (30) 8%; 633+ + Q. (22) 7%             |
| _ | -              | 1150    | 514 + 85%; $512 + 9$ , (22) 8%; $633 + 9$ , (30) 6%        |

16

<u>TABLE 7.</u> 169 70 **9**9

ş.

| .,      | Energy ( keV ) |             |                                                                  |          |  |
|---------|----------------|-------------|------------------------------------------------------------------|----------|--|
| ^п<br>— | exper.         | calcul.     |                                                                  |          |  |
| 7/2 +   | 0              | 0           | 6334 975                                                         |          |  |
| I/2 -   | 24             | 150         | 521+ 965                                                         |          |  |
| 5/2 -   | 192            | 240         | 512 + 885; 5104 + 0 (22) = 26; 570; 0 ()                         |          |  |
| 5/2 +   | 584            | 420         | 6421765: 6421 + 0(20) 10/1 (20) 2                                | %        |  |
| 5/2 -   | 570            | 560         | 5231956                                                          | %        |  |
| 3/2 +   |                | 740         | 651 + 596; $651 + 0$ (20) $277 + 622$                            |          |  |
| 3/2 -   | 657            | 850         | 5214 874: 5214 + 0 (20) $17$ ; 5334 + 0 (22) 11                  | 36       |  |
| I/2 -   | 805            | <b>9</b> 00 | 5101 376: 5121 + 0 (22) 507                                      | <b>6</b> |  |
| J/2 +   |                | 930         | $660^{+}35^{+};642^{+}+0.(22)$                                   |          |  |
| I/2 +   |                | 1100        | 6331 + 0.(22) = 1004                                             | 6        |  |
| 3/2 +   |                | 1100        | 6514 65: 6334 + 0 (22) 957 (77)                                  |          |  |
| 7/2 -   | 1 1            | 1100        | $514 \pm 856$ ; $5124 \pm 0$ (22) $876$ ; $6511 \pm 0$ (20) $39$ | 6        |  |
| 3/2 -   |                | 1200        | 521 + 36: 521 + 0 (22) 99; 533 + 0 (30) 49                       | 6        |  |
| I/2 -   |                | 1300        | 523 + 0 (22) ~ TOOK                                              |          |  |
| 1/2 -   |                | 1350        | 521+1.5%: 521++ 0 (20) 00% FAR                                   |          |  |
| 5/2 -   |                | 1350        | $523 + 3\%; 523 + Q_{1}(20) 95\%; 5211 + Q_{1}(22) 8\%$          | •        |  |
|         | 1 1            |             |                                                                  |          |  |

TABLE 8. 171 Yb 70 IOI

| 4.                                                                   | Energy ( keV )                |                                              | S                                                                                                                                                                                                                                                                                               |  |  |
|----------------------------------------------------------------------|-------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ····                                                                 | exper.                        | calcul.                                      | SINGCIGRE                                                                                                                                                                                                                                                                                       |  |  |
| I/2 -<br>5/2 -<br>7/2 +<br>I/2 -<br>5/2 +<br>5/2 -<br>3/2 -<br>3/2 - | 0<br>122<br>100<br>945<br>902 | 0<br>200<br>800<br>850<br>870<br>930<br>1000 | 521 · 95%; 521 + $Q_1(22)$ 2%; 523 + $Q_1(22)$ 2%<br>512 + 91%; 510 + $Q_1(22)$ 7%;<br>633 + 98%;<br>510 + 42%; 512 + $Q_1(22)$ 51%; 512 + $Q_1(22)$ 5%<br>642 + 74%; 642 + $Q_1(20)$ 18%<br>523 + 59%; 521 + $Q_1(22)$ 38%<br>521 + 34%; 521 + $Q_1(22)$ 62%<br>651 + 22%; 633 + $Q_1(22)$ 62% |  |  |
| /2 -<br>/2 -<br>/2 +<br>/2 +                                         | ~838                          | 1050<br>1100<br>1150<br>1400                 | 514+ 84%; 512+ $Q_1(22)$ 63%<br>514+ 84%; 512+ $Q_1(22)$ 10%; 514+ $Q_1(20)$ 4%<br>512+ 53%; 514+ $Q_1(22)$ 32%; 510+ $Q_4(22)$ 13%<br>633+ $Q_1(22) \sim 100\%$<br>624+ 97%                                                                                                                    |  |  |

<u>TABLE 9.</u> 173 Yb 70 103

| Kw    | Energy ( keV ) |         | 9 <sup>m</sup> P II C <b>M</b> II P P                                   |  |  |  |
|-------|----------------|---------|-------------------------------------------------------------------------|--|--|--|
|       | exper.         | calcul. |                                                                         |  |  |  |
| 5/2 - | 0              | 0       | 5124 96%                                                                |  |  |  |
| I/2 - | 398            | 270     | 521+ 94%; 521+ + 0.(22) 24+ 5234 . 0.(20)                               |  |  |  |
| 7/2 🗕 | 1              | 450     | 514+ 95%                                                                |  |  |  |
| 7/2 + | 350            | 620     | 633+ 97%                                                                |  |  |  |
| I/2 - | 1031           | 850     | 510+ 625: 512+ + 0.(22) 225+ 572+ 0 (00)                                |  |  |  |
| 9/2 + |                | 1000    | 624 <b>4</b> 99%                                                        |  |  |  |
| 3/2 - | 1340           | 1100    | $512 \neq 66\%$ ; $514 \neq + 0.(22)$ 17%; $5104 \pm 0.(22)$            |  |  |  |
| 5/2 - |                | 1200    | 523 + 38%; $521 + 0.(22) 24%$ ; $5124 + 0.(22) 8%$                      |  |  |  |
| 5/2 - | 1              | 1300    | 5234 115: 5124 + 0 (20) 205 501 0 (20)                                  |  |  |  |
| 3/2 - | 1224           | 1320    | 5214 2974 5014 + 41(20) 8076; 5214 + 41(22) 896                         |  |  |  |
| I/2 - |                | 1340    | 521 + 20%; 5214 + 42(22) 35%; 5214 + 42(22) 34%<br>5214 + 42(20) - 100% |  |  |  |

TABLE 10.

175 Yb 70 105

| Kπ    | Energy ( keV ) |         | STRUCTURE                                                        |
|-------|----------------|---------|------------------------------------------------------------------|
|       | exper.         | calcul. |                                                                  |
| 1/2 - | 0              | 0       | 5144 97%                                                         |
| 5/2 - | 633            | 230     | 5121 98%                                                         |
| 3/2 + | 260            | 420     | 624 + 99%                                                        |
| (/2 - | 511            | 660     | 510 + 89%; $512 + 0.(22)$ 7%                                     |
| 3/2 - | 809            | 780     | $512 \neq 75\%$ ; $514 \neq 0.(22)$ 15%; $5104 \pm 0.(22)$ 0%    |
| 1/2 - | 913            | 800     | $521 \neq 93\%$ ; $523 \neq + 0$ (22) 25; $521 \neq + 0$ (22) 25 |
| /2 +  | 995            | 1100    | 6334 94%; 6334 + 9,(20) 3%                                       |
| /2 -  |                | 1200    | 503 + 87%; $503 + + 0.(20)$ 6%; $501 + 0.(22)$ 6%                |
| :/2 + |                | 1500    | 6514 80%; 6514 + 9,(20) 16%                                      |
| /2 -  |                | 1650    | 523+ 34%; 521+ + 9,(22) 64%                                      |
| /2 -  | 1616           | 1700    | 5214 20%; 521+ + Q (22) 80%                                      |
| /2 -  |                | 1750    | 5104 2%; 5124 + 0 (22) 98%                                       |
| /2 -  |                | 1800    | 521+ 2%; 5104 + 9, (20) 96%                                      |
| /2 -  |                | 1800    | 512+ II\$; 514+ + Q. (22) 85%                                    |

# TABLE II.

I77 Hf 72 I05

| ¥     | Energy ( keV ) |         | S Т В И С Т П В В                                                     |  |  |
|-------|----------------|---------|-----------------------------------------------------------------------|--|--|
|       | exper.         | calcul. |                                                                       |  |  |
| 7/2 - | 0              | . 0     | 514 96%                                                               |  |  |
| 5/2 - | 504            | 230     | 512+ 97%                                                              |  |  |
| 9/2 + | 324            | 440     | 624199,5%                                                             |  |  |
| I/2 - | 739            | 600     | 5104 80%; 512+ + Q(22) 9%; 5124 + Q(22) 5%                            |  |  |
| I/2 - | 560            | 720     | $521 \neq 90\%$ ; $523 \neq + Q_1(22) = 4\%$ ; $5214 + Q_1(22) = 4\%$ |  |  |
| 3/2 - | 919            | 750     | 512+ 68%; 514+ + 0. (22) 20%; 5T0+ + 0. (22) TT                       |  |  |
| 7/2 + | 750            | 1100    | 6334 915; 6334 + 0.(20) 56                                            |  |  |
| 7/2 - | 1058           | 1100    | 5034 82%; 5014 + Q (22) 8%; 5034 + Q (20) 5%                          |  |  |
| I/2 + | 1              | 1350    | $651 \neq 76\%$ ; $651 \neq 0$ , (20) 14%; $651 \neq 0$ (20) 7%       |  |  |
| 5/2 - |                | I450    | 523+ 28%; 521+ + 0, (22) 68%                                          |  |  |
| 3/2 - |                | 1500    | 521 + 19#; 521 + 9 (22) 80#                                           |  |  |
| I/2 - | 1634           | 1550    | 510 + 4%; 512 + 0,(22) 95%                                            |  |  |
| I/2 - |                | 1650    | $521 \downarrow 1\%; 521 \downarrow + 0.(20) 994$                     |  |  |
| 3/2 - |                | 1660    | 512+ 115; 514+ + 0'(22) 754: 5104 + 0 (00) TOT                        |  |  |
| 3/2 - | I434           | 1700    | $501^{+} 265; 503^{+} + 0.(22) + 0.5; 501^{+} + 0.(22) = 125$         |  |  |
| 3/2 - | 1502           | 1750    | $5014$ 30%; $5034 + Q_1(22)$ 35%; $5014 + Q_1(22)$ 15%                |  |  |

<u>TABLE 12.</u> 177 Το (δ = 0,2) 70 107

-

| Kπ.                                                         | Energy ( keV )                  |                                                           | 5 T R II C T II P P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|-------------------------------------------------------------|---------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                             | exper.                          | calcul.                                                   | JI KUCIUKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 9/2 +<br>1/2 -<br>7/2 -<br>3/2 -<br>5/2 -<br>1/2            | 0<br>335<br>111<br>708<br>(619) | 0<br>220<br>300<br>510<br>600                             | 6244 98% 5104 91%; 5124 + Q <sub>1</sub> (22) 7%<br>5144 98%<br>5124 81%; 5104 + Q <sub>1</sub> (22) 14%; 5144 + Q <sub>1</sub> (22) 2%<br>5124 94%                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 9/2 -<br>7/2 +<br>7/2 -<br>3/2 -<br>5/2 +<br>3/2 -<br>I/2 + | 1222<br>1365                    | 700<br>750<br>850<br>1000<br>1100<br>1100<br>1350<br>1700 | $5214 \ 89\%; \ 5214 + Q_1(22) \ 3\%; \ 5234 + Q_1(22) \ 3\%; \ 5054 + Q_1(22) \ 3\%; \ 5054 + Q_1(20) \ 2\%; \ 5054 + Q_1(20) \ 2\%; \ 5054 + Q_1(21) \ 1\%; \ 5034 \ 90\%; \ 5014 + Q_1(22) \ 2\%; \ 5124 + Q_1(31) \ 1\%; \ 5034 \ 90\%; \ 5014 + Q_1(22) \ 4\%; \ 5014, + Q_1(20) \ 3\%; \ 5014 \ 89\%; \ 5014 + Q_1(22) \ 14\%; \ 6424 + Q_1(20) \ 3\%; \ 5214 \ 47\%; \ 5214 + Q_1(22) \ 14\%; \ 6424 + Q_1(20) \ 3\%; \ 5214 \ 47\%; \ 5214 + Q_1(22) \ 41\%; \ 6334 + Q_1(32) \ 4\%; \ 6514 \ 31\%; \ 5104 + Q_1(31) \ 57\%$ |  |  |  |

| $\frac{\text{TABLE I3.}}{179}$ Hf (8 = 0,2) 72 107 |                |         |                                                                |  |  |  |
|----------------------------------------------------|----------------|---------|----------------------------------------------------------------|--|--|--|
| V                                                  | Energy ( keV ) |         | STRUCTURE                                                      |  |  |  |
| <b>N H</b>                                         | exper.         | caloul. |                                                                |  |  |  |
| )/2 +                                              | 0              | 0       | 6241 99%                                                       |  |  |  |
| /2 -                                               | 376            | 290     | 5IO+ 94%; 5I2+ + Q (22) 5%                                     |  |  |  |
| /2 -                                               | 215            | 200     | 514 + 98%                                                      |  |  |  |
| /2 -                                               | 522            | 600     | $512 + 87\%$ ; $510 + 0_1(22)$ $9\%$ ; $514 + 0_1(22)$ $2\%$   |  |  |  |
| /2 -                                               |                | 620     | 5I2↑ 96 <del>5</del>                                           |  |  |  |
| /2                                                 |                | 720     | 521+93%; 523++Q1(22) 3%; 521++Q1(22) 3%                        |  |  |  |
| /2 -                                               |                | 860     | 505+ 95%                                                       |  |  |  |
| /2 +                                               |                | 900     | 633+ 94%                                                       |  |  |  |
| /2                                                 |                | 1000    | 503 + 94%; 501 + 4 (22) 5%                                     |  |  |  |
| /2 -                                               |                | 1200    | 501 + 94%; $501 + 0(22) 3%$                                    |  |  |  |
| j/2 +                                              |                | 1200    | $642 + 83\%$ ; $6241 + Q_1(22)$ $6\%$ ; $5121 + Q_1(30)$ $3\%$ |  |  |  |
| 9/2 -                                              |                | 1500    | 521+ 55%; 521+ + Q(22) 30%                                     |  |  |  |

 TABLE
 14.

 181
 Hf

 72
 109

|        | Energy ( keV ) |         | STRUCTURB                                                                    |
|--------|----------------|---------|------------------------------------------------------------------------------|
|        | exper.         | calcul. |                                                                              |
| I/2 -  | 0              | 0       | 510 <sup>+</sup> 94 <b>*</b> ; 512+ + Q <sub>1</sub> (22) 3 <b>*</b>         |
| 3/2 -  | 255            | 290     | 512 + 91%; 510 <sup>+</sup> + Q (22) 6%                                      |
| 9/2 +  | 68             | 370     | 624 + 97%                                                                    |
| 9/2 -  |                | 460     | $505 \neq 93\%$ ; $503 \neq + Q_1(22)$ 2%; $505 \neq + Q_1(20)$ 2%           |
| 7/2 -  | 670            | 610     | 503 + 92%; $501 + 0.(22) - 3%$ ; $503 + 0.(20) - 3%$                         |
| 3/2 -  | 1063           | 800     | $501 \uparrow 90\%$ ; $503 \uparrow + 0$ , (22) 7%; $501 \lor + 0$ , (22) 2% |
| 7/2 -  |                | 820     | 514 + 97%                                                                    |
| 5/2 -  | · ·            | 1050    | 5I2↑ 86%; 5IO↑ + Q <sub>1</sub> (22) 5%                                      |
| II/2 + |                | 1100    | $615^{1}94\%$ ; $615^{1}+0$ , (20) 2%                                        |
| I/2 -  |                | 1200    | $521 \neq 90\%$ ; $523 \neq + Q_1(22)$ 3%; $521 \uparrow + Q_1(22)$ 3%       |
| 7/2 +  |                | 1350    | 633 ↑ 89%; 633↑ + Q,(20) 4%                                                  |
| I/2 +  |                | 1350    | $651 + 81\%$ ; $651 + + Q_1(20)$ 7%                                          |
| 5/2 -  |                | 1600    | $512^{4}$ 4%; $510^{4}$ + $Q_{3}(22)$ 90%                                    |
| 5/2 -  | 1637           | 1650    | $503 \downarrow 36\%$ ; $505 \downarrow + Q_1(22)$ 62%                       |
| 3/2 -  |                | 1700    | $512 \neq 6\%$ ; $510^{+} + 0_{1}(22) = 92\%$                                |
| 3/2 -  |                | 1800    | $5211495; 5214 + Q_1(22) 375; 5144 + Q_1(22) 45$                             |
| I/2 -  |                | 1850    | $501 \neq 32\%$ ; $501 \neq + Q_1(22) = 58\%$                                |
| 13/2 + | 1729           | 1900    | 606 † 88%; 624 † + Q <sub>1</sub> (22) 8%                                    |
|        | 1              |         |                                                                              |

# TABLE 15. 155 Bu 63 92

| Χī    | Energy ( keV ) |         | STRUCTURE                                                                         |  |  |  |
|-------|----------------|---------|-----------------------------------------------------------------------------------|--|--|--|
|       | exper.         | calcul. |                                                                                   |  |  |  |
| 5/2 + | 0              | 0       | 413+ 96%                                                                          |  |  |  |
| 3/2 + | 246            | 60      | 4II* 92%; 4II+ + Q (22) 7%                                                        |  |  |  |
| 5/2 - | 104            | 160     | 5321 98%                                                                          |  |  |  |
| 7/2 - |                | 540     | 5231 98%                                                                          |  |  |  |
| I/2 + | 765            | 600     | 4II+67%; 4II++Q1(22) 19%; 4I3++Q1(22) 14%                                         |  |  |  |
| 9/2 + |                | 700     | 4041 84%; 404 + Q; (20) 14%                                                       |  |  |  |
| 3/2 - | 1100           | 1000    | $541171\%$ ; $5411+Q_{3}(20)$ 19%; $4111+Q_{3}(30)$ 4%                            |  |  |  |
| 5/2 + |                | 1100    | $413 i + Q_1(20) \sim 100\%$                                                      |  |  |  |
| 5/2 - |                | 1150    | 532 <sup>4</sup> + Q <sub>1</sub> (20) 99%                                        |  |  |  |
| 5/2 + |                | 1200    | 5321 + Q <sub>1</sub> (30) 99 <b>%</b>                                            |  |  |  |
| 3/2 + | 1275           | 1250    | $422 + 74\%$ ; $420^{+} + Q_{1}(22) = 10\%$ ; $541^{+} + Q_{1}(30) = 7\%$         |  |  |  |
| I/2 + |                | 1500    | $420 \uparrow 65\%$ ; $422 \downarrow + Q_1(22)$ 15%; $420 \uparrow + Q_1(20)$ 6% |  |  |  |
| I/2 + |                | 1650    | 4II + 1%; 4I3 + 4,(22) 73%; 4II + 4,(22) 25%                                      |  |  |  |

TABLE 16. 165 Ho 67 98

|        | Energy ( keV ) |              | STRUCTURE                                          |  |  |  |
|--------|----------------|--------------|----------------------------------------------------|--|--|--|
| Kn     | exper.         | calcul.      |                                                    |  |  |  |
| 7/2 -  | 0              | 0            | 5231 99 <b>%</b>                                   |  |  |  |
| 3/2 +  | 362            | 160          | 4II↑ 9 <b>5%</b>                                   |  |  |  |
| I/2 +  | 423            | 220          | 4II4 95%                                           |  |  |  |
| 5/2 +  | (995)          | <b>59</b> 0  | 4I3¥ 98%                                           |  |  |  |
| 7/2 +  | 716            | 670          | $404 \pm 94\%$ ; $402 \pm 94\%$ ; $402 \pm 94\%$   |  |  |  |
| 3/2 -  | 514            | 840          | 52It 3%; 523t + Q <sub>1</sub> (22) 92%            |  |  |  |
| 7/2 +  |                | 850          | 413 1 3%; 411+ + Q (22) 95%                        |  |  |  |
| 5/2 -  |                | 850          | 532↑ 95%; 4I3↓ + Q <sub>1</sub> (30) 2%            |  |  |  |
| II/2 - | 687            | 900          | 523+ + Q <sub>1</sub> (22) 99%                     |  |  |  |
| I/2 +  |                | 1000         | 4II↓ 3%; 4II↑ + Q,(22) 95%                         |  |  |  |
| 9/2 -  |                | <b>I</b> 100 | 5I4                                                |  |  |  |
| 5/2 +  |                | 1150         | 402↑ 2%; 4II↓ + Q <sub>1</sub> (22) 97%            |  |  |  |
| 9/2 +  |                | 1150         | 404↑ I%; 4I3↓ + Q.(22) 98%                         |  |  |  |
| 3/2 -  |                | 1500         | 541* 14%; 411* + Q <sub>4</sub> (30) 85%           |  |  |  |
| 5/2 +  |                | 1500         | 4021 83%; 4001 + $Q_1(22)$ 6%; 5141 + $Q_1(32)$ 5% |  |  |  |

22

### TABLE 17.

.

.....

169 Tm 69 100

| 3% |
|----|
|    |
| 2% |
|    |
| 4% |
|    |
|    |
| 5% |
|    |
|    |
|    |
|    |
| 2% |
| -  |

<u>TABLE 18.</u> 171 100 71 100

| Kπ     | Energy ( keV ) |         | STRUCT                                          | URE                                |
|--------|----------------|---------|-------------------------------------------------|------------------------------------|
|        | exper.         | calcul. |                                                 |                                    |
| 7/2 +  | 0              | 0       | 404+ 93%; 404+ + Q (20)                         | 3%; 4021 + Q <sub>1</sub> (22) 3%  |
| 1/2 -  | 71             | 160     | 54I+ 8I%; 54I+ + Q,(20)                         | I4%                                |
| 1/2 +  | 382            | 200     | 4II + 88%; 4II + Q1(22)                         | 6%; 4I3∛ + Q₁(22) 4%               |
| 9/2 -  | (662)          | 270     | 5I4† 97 <del>%</del>                            |                                    |
| 5/2 +  | 296            | 310     | 402+ 88 <b>%;</b> 402+ + Q <sub>1</sub> (20)    | 6%; 400↑ + Q <sub>1</sub> (22) 5%  |
| 3/2 +  | 843            | 750     | 4II+ 58%; 4II+ + Q.(22)                         | 39*;                               |
| 7/2 -  | (470)          | 850     | 5231 98%                                        |                                    |
| 5/2 +  |                | 1000    | $413 \neq 37\%$ ; $411 \neq Q_1(22)$            | 61\$                               |
| 3/2 +  |                | 1050    | 402+ 25%; 404+ + Q1(22)                         | 72 <b>%</b>                        |
| 3/2 -  |                | 1200    | 532¥ 81%                                        |                                    |
| I/2 +  |                | 1350    | 400+ 28; 402+ + Q1(22)                          | 41#;4II+ + Q <sub>1</sub> (20) 25# |
| 1/2 +  |                | 1370    | 400 <sup>+</sup> 5%; 4II+ + Q <sub>1</sub> (20) | 65%; 402 + 9,(22) I5%              |
| (1/2 + |                | 1400    | 4044 + Q1(22) ~ 100%                            |                                    |
| 7/2 +  |                | 1500    | 404+ 3%; 404+ + 9,(20)                          | 97%                                |

#### TABLE 19.

| Nucle1    | Bner     | gy ( ke∛ )  | Parameter a |         | 0                  | C <sup>2</sup> ( %) |
|-----------|----------|-------------|-------------|---------|--------------------|---------------------|
|           | experim. | calculation | experim.    | calcul. | 3                  | (9 (70)             |
| 155<br>Gd | (556)    | 550         | (0,41)      | 0,36    | 52I¥               | 42                  |
|           | 368      | 740         | 0,24        | 0,30    | 400+               | 64                  |
| 165<br>Dy | 570      | 700         | 0,05        | 0,05    | 510 +              | 31                  |
| 167<br>Er |          | 810         |             | 0,05    | 5104               | 30                  |
| 169<br>Үр | 805      | 790         | 0,08        | 0,06    | 510 <del>\</del> , | 37                  |
| 171<br>Yd | 945      | 630         | 0,032       | 0,08    | 510 \$             | 42                  |
| 173<br>УЪ | 1031     | 850         | 0,20        | 0,12    | 510 <del>†</del>   | 62                  |
| 175<br>Yb | 260      | 420         | 0,20        | 0,18    | 510 4              | 89                  |
| 177<br>Hf | 739      | 600         | 0,18        | 0,16    | 5104               | 80                  |
| 177<br>Yd | 332      | 220         | 0,22        | 0,23    | 510+               | 91                  |
| 179<br>Hf | 376      | 290         | 0,165       | 0,23    | 510+               | 94                  |
| 181<br>Hf | 0        | 0           | 0,12        | 0,20    | 5101               | 94                  |
| 171<br>Lu | 71       | 165         | 3,8         | 2,8     | 54I¥               | 81                  |
|           | 392      | 190         | -0,71       | -0,70   | 4II+               | 88                  |

Decoupling parameter  $\alpha$  for some K= I/2 states.

#### TABLE 20.

Spectroscopic factors in reaction (d,t) for 3/2 - [52I] states.

| Nucled.                             | Energ              | y (keV)            | $- S = C_g^2 u_g^2$  |  |
|-------------------------------------|--------------------|--------------------|----------------------|--|
| MUCLEL                              | experiment         | calculation        |                      |  |
| 169<br>Yb<br>171<br>Yb<br>173<br>Yb | 657<br>902<br>1224 | 850<br>930<br>1320 | 0,82<br>0,33<br>0,27 |  |
| 175<br>Yb                           | 1616               | 1700               | 0,20                 |  |