M.I. Chernej, N.I. Pyatov, K.M. Zheleznova

SPIN-QUADRUPOLE FORCES AND COLLECTIVE STATES IN DEFORMED NUCLEI

I. $\mathbf{0}^{+}$States

M.I. Chernej, N.I. Pyatov, K.M. Zheleznova

SPIN-QUADRUPOLE FORCES AND COLLECTIVE STATES IN DEFORMED NUCLEI

I. $\mathbf{0}^{+}$States

Submitted to IzV. AN USSR

1. Introauction

The spin-dependent forces appear to be very important on analysis of a number of qualitative features of the nuclear structure. The spin dependent foroes, for example, define the coupling momentum rules in odd-odd nuclei and the spin-splitting of the two-quasiparticle states in even-mass nuolei ${ }^{l}$. These foroes affect significantly the odd--even shiltt in a rotational band with $K=0{ }^{1,2}$. The spin-dependent forces are responsible for the magneitic polarization effects in oddeeven nuclei ${ }^{3}$.

It is natural also to attempt to clarify the spin interaction effects in the collective motion of nuclei.

The present paper is devoted to the study of the spin quadrupole interaction effect on the properties of collective 0^{+}and 2^{+}states. The pairing plus quadrupole as well as spin-quadrupole interactions model is developed using the approximate second quantization method ${ }^{4}$. It is shown that the introduction of the spin-quadrupole interactions does not lead to a simple renormalization of the constants in the microscopic theory of collective excitations developed in recent years (see, e.g. 5-1l).

The spin-quadrupole interactions affect significantly the properties of monopole exoftations in even-even nuclei. They affect noticeably the energy and E?-transition probability. It seems that the spin-quadrupole interections may be responsible for the appearanoe of a new branch of colleotive excitations below (or near) the energy gap.

For a certain strength of the spin-quadrupole interactions the appearance of new 2^{+}states below the two-quasi-partiole excitation energy is also possible.

The paper presents the numerical caloulations of energies, transition probabilities and wave functions of 0^{+}states for nuclei in the region $150: \Lambda \leqslant 174$, which were performed with an electronic oomputer. The numerical calculations for 2^{+}states will be published as well.

II. Theory

The effect of the long-range spin- dependent forces on collective motion in single--closed shell nuclei has been first investigated by Kisslinger ${ }^{12}$. He studied the 2^{+}vibrational states, using pairing plus quadrupole or spin-quadrupole forces. It turned out that the spin-quadrupole coupling parameter estimated from the empirical energies of 2^{+}-states must be chosen about five to ten times larger than the ordinary quadrupole one. from the comparison of the oalculated transition probabilities $B(E 2)$ as well as the energy levels in the odd-mass nuclei with experimental data it was concluded that the quadrupole force is the major component leading to the 2^{+}collective vibrations. This is connected mainly with the importance of quadrupole interactions within a shell, while the spin-quadrupole effects may result from interaction between partioles filling different j-levels only.

But the large energy shifts in the odd-mass nuclei can result from an addition of spinquadrupole force which has little effect on vibrational energies and the $B(E 2)$ values. The effects of quadrupole and spin-quadrupole interactions mixing appear to be small in these nuclei and have not been considered by Kisslinger. The single-particle levels are two-fold degenerated in deformed nuclei and the interaotion between particles in different levels is expected to be more significant than in spherical nuclei.

1. The Interaction Hamiltonian

The spin-multipole interaction operator is extraoted from the multipole expansion of the usual spin potential $V\left(\left|\vec{r}_{1}-\vec{r}_{2}\right|\right) \vec{\sigma}_{1} \vec{\sigma}_{2} \quad$, where $\sigma_{\text {, }}$ are the Pauli spin matrices and $\vec{r}_{\text {i }}$ are the radius-vectors of particles. For simplioity we have assumed the radial part to be separable (as in the case of the quadrupole force) and we get the spin--multipole force in the form:

$$
\begin{equation*}
-X_{t}^{(\ell)} \sum_{\kappa} r_{1}^{\kappa} r_{2}^{\kappa} \sum_{m} P_{\ell m}^{*}(\kappa, \sigma) P_{\ell m}(\kappa, \sigma) \tag{I}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{\ell m}(\kappa, \sigma)-\sum_{q, \tau}\langle k 1 q \tau \mid \ell m\rangle y_{k q}(\theta, \varphi) \sigma_{\tau} \tag{2}
\end{equation*}
$$

$Y_{k q}(\theta, \varphi)$ are the sperical harmonics, $\quad \mathscr{C}_{t}^{(\ell)}$ is the spin-multipole coupling constant. The sollective states, formed by interaction (1) will have the angular momentum component along the nuclear symmetry axis and parity $K \pi=m(-1)^{k}$ In particular for 0^{+}and 2^{+}states we take into account the contribution of the term with $k=1=2$. Taking into account the interaction (1), we write the Hamiltonian in the form:

$$
\begin{equation*}
H=H_{s . p}+H_{\text {pair }}+\sum_{l} H_{\text {copl }}^{(\ell)}, \tag{3}
\end{equation*}
$$

where

$$
\begin{align*}
& H_{s, p .}=\sum_{s, p}^{\prime}\left(E_{s}-\lambda\right) a_{s p}^{+} a_{s p}, \quad(p= \pm) \tag{4}\\
& H_{\text {puer }}=\sum_{0,0^{\prime}}^{-}(-G) a_{s+}^{+} a_{s-}^{+} a_{s_{-}-} a_{1+} \tag{5}\\
& H_{\text {colp }}^{(v)}-x_{2}^{(\ell)} T_{q}^{+} T_{q}^{(l)}-\frac{x_{t}^{(e)}}{2} T_{t}^{+} T_{t} \\
& T_{q}=\sum_{s, s^{\prime}, p, p^{\prime}} q_{s p ; s^{\prime} p^{\prime}} d l_{s p}^{+} a_{s^{\prime} p^{\prime}} \tag{6}\\
& T_{t}=\sum_{s, s^{\prime}, \rho, \rho^{\prime}} t_{s \rho ; s^{\prime} \rho^{\prime}} \alpha_{s \rho}^{+} \alpha_{s^{\prime} \rho^{\prime}}
\end{align*}
$$

E_{s} are the single-partiole energies; $\quad \lambda$ is the chemical potential; G is the pairing interaction constant; $\alpha_{s p}^{+}$and $\alpha_{s p}$ are oreation and annihilation operators.
$q_{s p ; s^{\prime} p^{\prime}}$ and $t_{\text {sp; s' }} p^{\prime}$ are single-particle matrix elements of the quadrupole and spin-dependent interaction, respectively. The usual multipole and spin dependent interactions are involved with corresponding coupling parameters $\mathcal{H}_{q}^{(\ell)}$ and $\mathcal{H}_{t}^{(\ell)}$ in the collective. Fe part of the Hamiltonian (3). In all expressions the summation over the neutron and proton one-partiole states 1 s assumed. For the sake of simplicity, we assume further that $\mathcal{L}_{q}^{(\ell)}$ ($\mathscr{H}_{t}^{(\ell)}$) is the same for (n, n), (p, p) and (n, p) interactions.

The single particle matrix elements $q_{\text {Ap; } s^{\prime} p^{\prime}}$ and $t_{s p ; s^{\prime} p}$ has different propertles under the index permutation and time reversal:

$$
\begin{align*}
& q_{s s^{\prime}} \equiv\langle s+| r^{\ell}\left(y_{l m}^{*}+y_{l m}\right)\left|s^{\prime}+\right\rangle=q_{s+i s^{\prime}+}=q_{s-i s^{\prime}-}=q_{s^{\prime} s} \\
& \bar{q}_{s s^{\prime}} \equiv\langle s+| r^{\ell}\left(y_{l m}^{*}+y_{l m}\right)\left|s^{\prime}-\right\rangle=q_{\Delta+; s^{\prime}-}=-q_{s^{\prime}+; s-}=-\bar{q}_{s^{\prime} s} \tag{7}\\
& t_{s s^{\prime}} \equiv\langle s+| r^{\ell}\left(p_{l m}^{*}+p_{l m}\right)\left|s^{\prime}+\right\rangle=t_{s+: s^{\prime}+}=t_{s-; s^{\prime}-}=-t_{s^{\prime} s} \\
& \bar{t}_{s s^{\prime}} \equiv\langle s+| r^{l}\left(p_{l m}^{*}+p_{l m}\right)\left|s^{\prime}-\right\rangle=t_{s+; s^{\prime}-}=t_{s^{\prime}+; s-}=\bar{t}_{s^{\prime} s}
\end{align*}
$$

All the diagonal spin-wultipole matrix elements are equal to zero.
Let us subject the operators $d_{s p}$ to the Bogolubor canonical transformation:

$$
\begin{equation*}
a_{s \rho}=u_{s} \alpha_{s-\rho}+\rho v_{s} \alpha_{s \rho}^{+} \tag{8}
\end{equation*}
$$

where $\alpha_{s p}^{+}$and $\alpha_{s p}$ are the quasipartiole creation and annihilation operators, respectively, and U_{s} and V_{s} are the transformation parameters. For the operators T_{q} and T_{t} we get the expressions:

$$
\begin{align*}
T_{q} & =\sum_{s, 1^{\prime}}\left\{V_{s O^{\prime}}\left(q_{s s^{\prime}} B_{\Delta s^{\prime}}+\bar{q}_{s s^{\prime}} \bar{B}_{O s^{\prime}}\right)+\right. \\
& +\frac{1}{\sqrt{2}} U_{s s^{\prime}}\left[q_{s s^{\prime}}\left(A_{s s^{\prime}}^{+}+A_{s s^{\prime}}\right)+\right. \tag{9}\\
& \left.+\bar{q}_{s s^{\prime}}\left(\bar{A}_{s s^{\prime}}^{+}+\bar{A}_{s s^{\prime}}\right)\right]
\end{align*}
$$

$$
\begin{align*}
& T_{t}=\sum_{s, s^{\prime}}\left\{M_{s s^{\prime}}\left(t_{s 1^{\prime}} B_{s s^{\prime}}+\bar{t}_{s s^{\prime}} \bar{B}_{s s^{\prime}}\right)+\right. \\
& +\frac{1}{\sqrt{2}} L_{s 1^{\prime}}\left[t_{31^{\prime}}\left(A_{3,}^{+}-A_{33^{\prime}}\right)+\bar{t}_{35}\left(\bar{A}_{31^{\prime}}^{+}-\bar{A}_{31^{\prime}}\right)\right] \tag{10}\\
& V_{A A^{\prime}}=U_{1} U_{s^{\prime}}-V_{1} V_{s^{\prime}} ; \quad U_{1 S^{\prime}}=U_{1} V_{1^{\prime}}+U_{1^{\prime}} V_{1} \tag{11}\\
& M_{\Delta s^{\prime}}=u_{s} u_{s^{\prime}}+v_{s} v_{s^{\prime}} ; \quad L_{s_{1}^{\prime}}=u_{s} v_{s^{\prime}}-u_{s^{\prime}} v_{s}
\end{align*}
$$

The operators $B_{S S^{\prime}}, \bar{B}_{S S^{\prime}}, A_{S S^{\prime}}$ and $\bar{A}_{s S^{\prime}}$ are introduced in ref. ${ }^{11}$:

$$
\begin{align*}
& B_{s s^{\prime}}=\sum_{p} \alpha_{s p}^{+} \alpha_{s p} ; \bar{B}_{s s^{\prime}}=\sum_{p} \rho \alpha_{s-p}^{+} \alpha_{s^{\prime} p} \tag{12}\\
& A_{s s^{\prime}}=\frac{1}{\sqrt{2}} \sum_{\rho} p \alpha_{s p} \alpha_{s^{\prime}-p} ; \bar{A}_{s s^{\prime}}=\frac{1}{\sqrt{2}} \sum_{\rho} \alpha_{s p} \alpha_{s^{\prime} p}
\end{align*}
$$

The quantities T_{q} and T_{t} contain various factors connected with the canonical transformation parameters (8). This is due to the different parties of the multipole and spin-multipoie interaction under time reversal.

Let us introduce the phonon operators by the following transformation:

$$
\begin{align*}
& A_{s 1^{\prime}}^{+}+A_{s s^{\prime}}=\sum_{1} i g_{s s^{\prime}}^{i}\left(Q_{i}^{+}+Q_{i}\right) ; A_{s s^{\prime}}^{+}-A_{s s^{\prime}}=\sum_{i} w_{s s^{\prime}}^{i}\left(Q_{i}^{+}-Q_{i}\right) \tag{13}\\
& \bar{A}_{s 1^{\prime}}^{+}+A_{s s^{\prime}}=\sum_{i}^{i} \bar{g}_{s s^{\prime}}^{i}\left(Q_{i}^{+}+Q_{i}\right) ; \bar{A}_{s 1^{\prime}}^{+}-\bar{A}_{s s^{\prime}}=\sum_{i} \bar{w}_{s s^{\prime}}^{i}\left(Q_{i}^{+}-Q_{i}\right)
\end{align*}
$$

In the general case $g_{s s^{\prime}}^{i}, \bar{g}_{s j^{\prime}}^{i}, w_{\Delta A^{\prime}}^{i}, \bar{w}_{s_{1}^{\prime}}^{i}$ are the matrix elements of rectanguar transformation matrices. We determine the inverse transformation in the form:

$$
\begin{align*}
& Q_{1}^{+}+Q_{1}=\frac{1}{2} \sum_{11^{\prime}}\left\lfloor w_{1 s^{\prime}}^{i}\left(A_{11^{\prime}}^{+}+A_{11^{\prime}}\right)+\bar{w}_{s 1^{\prime}}^{i}\left(\bar{A}_{11^{\prime}}^{+}+\bar{A}_{11^{\prime}}\right)\right] \tag{14}\\
& Q_{1}^{+} Q_{i}-\frac{1}{2} \sum_{\Delta, s^{\prime}}\left[g_{s 1^{\prime}}^{i}\left(A_{11^{\prime}}^{+}-A_{11^{\prime}}\right)+\bar{g}_{s 1^{\prime}}^{i}\left(\bar{A}_{11^{\prime}}^{+}-\bar{A}_{11^{\prime}}\right)\right]
\end{align*}
$$

From (13) and (14) and from the linear independence of the operators Q_{i} it is easy to obtain a condition on the transformation parameters:

$$
\begin{equation*}
\sum_{\Delta, A^{\prime}}\left(w_{s s^{\prime}}^{i} g_{s s^{\prime}}^{i^{\prime}}+\bar{w}_{i s^{\prime}}^{i} \bar{g}_{\Delta s^{\prime}}^{i^{\prime}}\right)=2 \delta_{i i^{\prime}} \tag{15}
\end{equation*}
$$

From the index permutation symmetry for the operators $A_{\text {os' }}$ and $\bar{A}_{\text {so' }}$ we get also the conditions:

$$
\begin{equation*}
g_{A s^{\prime}}^{i}=g_{s^{\prime} s}^{i} ; \quad w_{s^{\prime}}^{i}=w_{\Delta^{\prime} \Delta}^{i} ; \bar{g}_{\Delta s^{\prime}}^{i}=-\bar{g}_{s^{\prime} s}^{i} ; \quad \vec{w}_{\Delta s^{\prime}}^{i}=-\bar{w}_{\Delta^{\prime} s}^{i} \tag{16}
\end{equation*}
$$

Now the operators T_{q} and T_{t} are of the form:

$$
\begin{align*}
& T_{q}=\sum_{s, s^{\prime}} V_{\Delta s^{\prime}}\left(q_{\Delta s^{\prime}} B_{\Delta s^{\prime}}+\bar{q}_{\Delta s^{\prime}} \bar{B}_{s s^{\prime}}\right)+\sum_{i} R_{i}^{q}\left(Q_{i}^{+}+Q_{i}\right) \tag{17}\\
& T_{t}=\sum_{s, s^{\prime}} M_{\Delta s^{\prime}}\left(t_{s s^{\prime}} B_{\Delta s^{\prime}}+\bar{t}_{\Delta s^{\prime}} \bar{B}_{s s^{\prime}}\right)+\sum_{i} R_{i}^{t}\left(Q_{i}^{+}-Q_{i}\right) \tag{18}\\
& R_{i}^{q}=\frac{1}{\sqrt{2}} \sum_{s, s^{\prime}} U_{\Delta s^{\prime}}\left(q_{s s^{\prime}} g_{\Delta s^{\prime}}^{i}+\bar{q}_{\Delta s^{\prime}} \bar{g}_{\Delta s^{\prime}}^{i}\right) \tag{19}\\
& R_{i}^{t}=\frac{1}{\sqrt{2}} \sum_{s, s^{\prime}}^{1} L_{\Delta s^{\prime}}\left(t_{\Delta s^{\prime}} w_{s s^{\prime}}^{i}+\bar{t}_{\Delta s^{\prime}} \bar{w}_{s s^{\prime}}^{i}\right) \tag{20}
\end{align*}
$$

considering $A_{S S^{\prime}}, \bar{A}_{s s^{\prime}}$ and Q_{i} to bo approximately Bose operators (this approzimation is discussed in detail, eeg. in ref. ${ }^{11}$) we determine the phonon raoul Ψ by

$$
\begin{equation*}
Q_{i} \Psi=0 \tag{21}
\end{equation*}
$$

We assume the vacuum expectation values of the operators $B_{\Delta s^{\prime}}$ and $\bar{B}_{0 s^{\prime}}$ to be approximalrely zero.

To simplify the notations we further distinguish between the operators $A_{\text {os }}$ and $\bar{A}_{\text {ss' }}$, $B_{s s^{\prime}}$ and $\bar{B}_{\Delta 1^{\prime}}$ as well as between the matrix elements, $q_{s s^{\prime}}$ and $\bar{q}_{1 s^{\prime}}, t_{11^{\prime}}$ and $\bar{t}_{\text {ss }}$ ' etc. only when necessary.

The Hamiltonian (3) is expressed approximately in terms of the $B_{\text {ss }}$ and Q_{i} operators (for a obtain multipole state):

$$
\begin{align*}
H^{(\ell)} & =\sum_{s} \varepsilon_{s} B_{s s}+\frac{G}{\sqrt{2}} \sum_{i} \sum_{s s^{\prime}} u_{s} v_{s}\left(u_{s^{\prime}}^{2}-v_{s^{\prime}}^{2}\right) g_{s^{\prime} d^{\prime}}^{i} B_{s s}\left(Q_{i}^{+}+Q_{i}\right)- \\
- & \frac{1}{2} \mathscr{H}_{q}^{(\ell)} \sum_{i} R_{i}^{q} \sum_{s s^{\prime}} V_{\Delta s^{\prime}} q_{s s^{\prime}}\left[B_{s s^{\prime}}\left(Q_{i}^{+}+Q_{i}\right)+c \cdot c\right]+ \tag{22}\\
& +\frac{1}{2} \mathscr{H}_{t}^{(\ell)} \sum_{i} R_{i}^{t} \sum_{s s^{\prime}} M_{s s^{\prime}} t_{s s^{\prime}}\left[B_{s s^{\prime}}\left(Q_{i}^{+}-Q_{i}\right)+c \cdot c\right]- \\
- & \frac{1}{2} \mathscr{H}_{q}^{(\ell)} \sum_{i i^{\prime}} R_{i}^{q} R_{i^{\prime}}^{2}\left(Q_{i}^{+}+Q_{1}\right)\left(Q_{i}^{+}+Q_{i^{\prime}}\right)+ \\
& +\frac{1}{2} X_{t}^{(e)} \sum_{i i^{\prime}} R_{i}^{t} R_{i^{\prime}}^{t}\left(Q_{i}^{+}-Q_{i}\right)\left(Q_{i^{\prime}}^{+}-Q_{i}\right)
\end{align*}
$$

Here $E_{s}=\sqrt{\left(E_{s}-\lambda\right)^{2}+C^{2}}$ are the quasipartiole energies, and $C=C \sum_{s} U_{s} V_{s}$. The parameters U_{s} and V_{s} are assumed to be determined previously by solving the pairing correlation problem. The pairing interaotion oonstants G_{N} and G_{z} are determined from the calculations of the pairingenergies.

The Hamiltonian (22) oontains terms whioh correspond to quasiparticle and phonon exoitations as well as terms of the quasipartiolemhonon interaotion. The latter are taken into acoount only in the spectra of odd-mass nuolei.

2. Colleotive States of Even-Eren Nuolei

We consider one-phonon exoitations of the type:

$$
\begin{equation*}
Q_{i}^{+} \Psi^{1}=\frac{1}{4} \sum_{s, s^{\prime}}^{\prime}\left\{\left(g_{0 s^{\prime}}^{i}+w_{s s^{\prime}}^{i}\right) A_{s s^{\prime}}^{+}-\left(g_{\Delta s^{\prime}}^{i}-w_{\Delta t^{\prime}}^{i}\right) A_{s s^{\prime}}\right\} \Psi^{\prime} \tag{23}
\end{equation*}
$$

By means of a variational prooedure we determine the parameters $g_{\Delta y}^{i}$ and $w_{s y}^{i}$ and ṭhe one phonon energies ω_{i} (the latter are formally introduoed as the Lagrangian mutlitpliers):

$$
\begin{equation*}
\delta\left\{\left(\Psi^{+} Q_{i} H^{(\ell)} Q_{i}^{+} \Psi\right)-\frac{w_{i}}{2}\left(\sum_{\Delta s^{\prime}} w_{s j^{\prime}}^{i} g_{i s^{\prime}}^{i}-2\right)\right\}=0 \tag{24}
\end{equation*}
$$

Using the variational prooedure we oan derive from (24) the following set of equations:

$$
\begin{aligned}
\varepsilon_{s s^{\prime}} g_{s s^{\prime}}^{i} & -w_{i} w_{s s^{\prime}}^{i}-G\left(u_{s}^{2}-v_{s}^{2}\right) \delta_{s s^{\prime}}^{2} \sum_{\tau}\left(u_{r}^{2}-v_{t}^{2}\right) g_{i \tau}^{i}- \\
& -2 \sqrt{2} x_{q}^{(\ell)} R_{i}^{q} U_{o s^{\prime}} q_{s s^{\prime}}=0 \\
\varepsilon_{\Delta s^{\prime}} w_{s s^{\prime}}^{i} & -w_{i} g_{s s^{\prime}}^{i}-G \delta_{s s^{\prime}} \sum_{\tau \tau} w_{r \tau}^{i}- \\
& -2 \sqrt{2} b_{t}^{(\ell)} R_{i}^{t} L_{\Delta s^{\prime}} t_{s s^{\prime}}=0
\end{aligned}
$$

where $\quad \varepsilon_{0 s^{\prime}}=\varepsilon_{s}+\varepsilon_{s^{\prime}}$
The diagonal terms are included to eliminate the spurious 0^{+}state ${ }^{6}$.
After combersome caloulations, which are omitted here, the equation for ω_{i} (index 1 stands for different solutions) an be written in the form ${ }^{x}$ \bar{x} We omit the superseript of $e_{q}^{(\ell)}$ and $x_{t}^{(\ell)}$.

$$
\begin{equation*}
\left[1-x_{q} F\left(\omega_{i}\right)\right]\left[1-x_{t} S\left(\omega_{i}\right)\right]=x_{q} x_{t} X^{2}\left(\omega_{i}\right) \tag{26}
\end{equation*}
$$

With the definitions:

$$
\begin{aligned}
& F\left(\omega_{i}\right)=F_{0}\left(\omega_{i}\right)-\varphi_{n}\left(\omega_{i}\right) / \gamma_{n}\left(\omega_{i}\right)-\varphi_{p}\left(\omega_{i}\right) / \gamma_{p}\left(\omega_{i}\right) \\
& F_{0}\left(\omega_{i}\right)=2 \sum_{s s^{\prime}} \frac{\varepsilon_{s s^{\prime}} U_{s s^{\prime}}^{2} q_{s s^{\prime}}^{2}}{\varepsilon_{s s^{\prime}}^{2}-\omega_{i}^{2}} \\
& \varphi\left(\omega_{i}\right)=4 C^{2} \sum_{s} \frac{q_{s s} \Gamma_{s}\left(\omega_{i}\right)}{\varepsilon_{s}\left(4 \varepsilon_{s}^{2}-\omega_{i}^{2}\right)} ; \Gamma_{s}\left(\omega_{i}\right)=\xi\left(\omega_{i}\right)-4\left(E_{s}-\lambda\right) \eta\left(\omega_{i}\right) \\
& F\left(\omega_{i}\right)=\sum_{\Delta s^{\prime}} \frac{q_{s s}\left[4 C^{2}-\omega_{i}^{2}+4\left(E_{s}-\lambda\right)\left(E_{s^{\prime}}-\lambda\right)\right]}{\varepsilon_{s} \varepsilon_{s}\left(4 \varepsilon_{s}^{2}-\omega_{i}^{2}\right)\left(4 \varepsilon_{s^{\prime}}^{2}-\omega_{i}^{2}\right)} \\
& \eta\left(\omega_{i}\right)=\sum_{s s^{\prime}} \frac{q_{s s}\left(E_{s}-E_{s^{\prime}}\right)}{\varepsilon_{s} \varepsilon_{s^{\prime}}\left(4 \varepsilon_{s}^{2}-\omega_{i}^{2}\right)\left(4 \varepsilon_{s^{\prime}}^{2}-\omega_{i}^{2}\right)} \\
& \gamma\left(\omega_{i}\right)=\sum_{s s^{\prime}} \frac{4 C^{2}-\omega_{i}^{2}+4\left(E_{s}-\lambda\right)\left(E_{s^{\prime}}-\lambda\right)}{\varepsilon_{s} \varepsilon_{s^{\prime}}\left(4 \varepsilon_{s}^{2}-\omega_{i}^{2}\right)\left(4 \varepsilon_{s^{\prime}}^{2}-\omega_{i}^{2}\right)} \\
& S\left(\omega_{i}\right)=2 \sum_{s s^{\prime}} \frac{\varepsilon_{\Delta s^{\prime}} L_{s s^{\prime}}^{2} t_{s s^{\prime}}^{2}}{\varepsilon_{s s^{\prime}}^{2}-\omega_{i}^{2}} \\
& X\left(\omega_{i}\right)=2 \sum_{s s^{\prime}} \frac{\omega_{i} U_{\Delta s^{\prime}} q_{s s^{\prime}} L_{s s^{\prime}} t_{\Delta s^{\prime}}}{\varepsilon_{s s^{\prime}}^{2}-\omega_{i}^{2}}
\end{aligned}
$$

In $\varphi\left(\omega_{i}\right), \xi\left(\omega_{i}\right), \eta\left(\omega_{i}\right)$ and $\gamma\left(\omega_{i}\right)$ summation over the neutron or over the proton single-partiole states is assumed. The sums in $F_{0}\left(\omega_{i}\right), S\left(\omega_{i}\right)$ and $X\left(\omega_{i}\right)$ run over all two-quasi-partiole states with the projections, which couple to a given $K \pi$. Eq. (26) is written for the 0^{+}and 2^{+}oollective states ${ }^{x}$. Putting \mathscr{H}_{f} or \mathscr{X}_{q} equal to zero we obtain the equations for the case of pure quadrupole or pure spin-quadrupole interaotions, respectively. In the general case in eq. (26) there is a term $X\left(\omega_{i}\right)$ correeponding to the quadrupole and spin-quadrupole interaction mixing. Note that " $S\left(\omega_{i}\right)$ and $X\left(\omega_{i}\right)$ contain no diagonal terms, therefore the exclusion of the spurious state by no means affeots them.
x) The spurious 0^{+}state is eliminated and tne solution with $\omega=0$ is excluded from eq. (26). The term $\varphi(\omega) / \gamma^{2}(\omega)$ is due to elimination of a spurious 0^{+}state.

Let us analyse in more detail the structure of eq. (26). We write it in the form: $1 / x_{q}=P\left(\omega_{i}, x_{t}\right)$,

$$
\begin{equation*}
P\left(\omega_{1}, x_{+}\right)=F\left(\omega_{1}\right)+\forall X_{+} X^{2}\left(\mu_{1}\right) /\left[1-\partial P_{+} S\left(\omega_{1}\right)\right] \tag{26}
\end{equation*}
$$

As it was shown previously ${ }^{l l}$ the function $F\left(\omega_{i}\right)$ has the first order poles, when $\left.\gamma^{\prime}(\omega)\right) O$ and for ω - $\mathcal{E}_{1 s^{\prime}}$ (the former for 0^{+}states only). The functions $S(\omega$.) and $X(\omega)$) have poles of the first order only for $\omega-\varepsilon_{s i}$. The total function $\left.P(\omega)_{c}, P_{t}\right)$ has poles at $\gamma^{\prime}\left(w^{\prime}\right) \quad O$ and at points where $1-\mathscr{P}_{t} S(\omega)-O$ (we call them spin poles). The position of the spin poles depends on the choice of \mathcal{X}_{t}. Therefore for a certain choice of γ_{t} the first spin pole may lie at a lower energy than the first pole of $\gamma(, n):$. This makes it possible to obtain two collective 0^{+}states below the energy gap.

For the 2^{+}states the function $P\left(\omega_{i}, \mathscr{f}_{+}\right)$has no poles of the type $\gamma(\omega)=0$ The solution of eq. (26) depends on the position of spin poles only (instead of the former
 It means, that for a certain H, the second colleotive 2^{+}state mas appear below the boundary of two-quasiparticle excitations.

For X^{\prime}, larger than $1 / S(\omega=0)$ the lowest spin pole becomes imaginary as is seen from the equation

$$
1 H, S(\omega) \quad 0
$$

The experimental observation of the second collective 0^{+}and 2^{+}states below (or near) the two-quasiparticle excitation boundary give a good support to the existence and significance of the spin-quadrupole interactions. In principle, it is possible to determine the spinmquadrupole coupling constant H^{t} by the use of empirical energies of these levels.

Using (15) and the variational equations (25) we can derive the following expressions for $y_{i 1}^{\prime}$ and $W_{s i}^{\prime}$

$$
\begin{align*}
& \left.-\delta_{0,1} \frac{C}{\varepsilon_{s} \gamma\left(\omega_{i}\right)}\left[\frac{\omega_{i} \Gamma_{s}\left(\omega_{i}\right)}{4 \varepsilon_{s}^{2}-\omega_{i}^{2}}+\frac{\xi\left(\omega_{i}\right)}{\omega_{i}}\right]\right\} ; D\left(\omega_{i}, \mathscr{H}_{t}\right)-\frac{x_{t} X\left(\omega_{i}\right)}{1 x_{i} S\left(\omega_{i}\right)} . \tag{28}\\
& Z\left(\omega_{1}, \mathscr{P}_{t}\right)=Y\left(\omega_{i}, \mathscr{R}_{t}\right)+\frac{2 c^{2} \omega_{i}}{\gamma^{2}\left(\omega_{i}\right)} \sum_{s} \frac{\Gamma_{1}^{2}\left(\omega_{i}\right)}{\varepsilon_{s}\left(4 \varepsilon_{3}^{2}-\omega_{i}^{2}\right)^{2}} \\
& -\frac{4 c^{2} \omega_{i}}{\gamma\left(\omega_{i}\right)} \sum_{s} \frac{q_{s} \Gamma_{s}\left(\omega_{i}\right)}{\varepsilon_{s}\left(4 \varepsilon_{s}^{2}-\omega_{i}^{2}\right)^{2}} \tag{2.9}
\end{align*}
$$

$Y\left(\omega_{i}, x_{t}\right)$ is expressed in terms of the derivatives of $F_{0}\left(\omega_{i}\right), S\left(\omega_{1}\right)$ and $X\left(\omega_{1}\right)$:

$$
\begin{align*}
Y\left(\omega_{i}, x_{t}\right) & =\frac{1}{4}\left\{\frac{\partial F_{0}\left(\omega_{i}\right)}{\partial \omega}+2 D\left(\omega_{i}, x_{t}\right) \frac{\partial X\left(\omega_{i}\right)}{\partial \omega}+\right. \tag{30}\\
& \left.+D^{2}\left(\omega_{i}, x_{t}\right) \frac{\partial S\left(\omega_{i}\right)}{\partial \omega}\right\}
\end{align*}
$$

For the 2^{+}states all the diagonal matrix elements vanish and the above formulas are much simplified.

The diagonal two-quasipartiole amplitudes $g_{j s}^{i}$ and $w_{i s}^{i}$ in one phonon wave function of a 0^{+}state are affected only ria $Z\left(\omega_{i}, \alpha_{t}^{\prime}\right)$, namely:

$$
\begin{equation*}
\frac{g_{s s}\left(x_{t} \neq 0\right)}{g_{s s}\left(x_{t}=0\right)}=\frac{w_{v s}\left(x_{t} \neq 0\right)}{w_{s s}\left(x_{t}=0\right)}=\left[\frac{Z\left(w_{i}, x_{t}=0\right)}{Z\left(w_{i}, x_{t} \neq 0\right)}\right]^{1 / 2} \tag{31}
\end{equation*}
$$

For $x_{t}>0$ one can show that for the first 0^{+}state $Z\left(\omega, x_{t} \neq 0\right)=Z\left(\omega, x_{t}=0\right)$ (because the $Z\left(\omega, H_{f}\right)$ is proportional to the $\partial P\left(\omega, H_{t}\right) / \partial \omega$). This means that the spin-quadrupole interactions reduce the oontribution of diagonal amplitudes to the wave function of this state. The amplitudes of quasiparticles in aifferent levels may increase significantly at the expense of the diagonal configurations. For the nondiagonal amplitudes one can obtain the ratio :

$$
\begin{align*}
& \frac{w_{s s^{\prime}}^{i}\left(x_{t} \neq 0\right)}{w_{s 1^{\prime}}^{i}\left(x_{t}=0\right)}=\left[\frac{Z\left(w, x_{t}=0\right)}{Z\left(w, x_{t}+0\right)}\right]^{1 / 2} \times \tag{32}\\
& \times\left[1+D\left(w, x_{t}\right) \frac{\varepsilon_{s 1^{\prime}} L_{s s^{\prime}} t_{s s^{\prime}}}{w_{i} U_{s 1^{\prime}} q_{s s^{\prime}}}\right]
\end{align*}
$$

It is seen that the oontribution of nondiagonal two-quasiparticle configurations may dominave for the state near spin pole energy, when $\left|D\left(\omega, x_{t}\right)\right| \gg 1$ Pairing interactions increased (through the $\varepsilon_{s s^{\prime}}, L_{-31^{\prime}}$ and $U_{A 3^{\prime}}$ faotors) the role of the particlemhole configurations far off the Fermi surfaoe.

Thus che rin-quadrupole interactions can change noticeably the spectroscopic factor values, which are propertional to the factor $\frac{1}{4}\left(a_{0} y^{\prime}+W_{1 A^{\prime}}\right)^{\circ}$. This ohange is to be cbserved by means of transfer reactions.
 function, especially in the case when one (or several) twoquasipartiale configuration is dominant; if di, i?
3. Decay Properties of 0^{+}and 2^{+}States

Let us consider the probabilities for $\xi^{-} \lambda$ transitions from 0^{+}and 2^{+}state3. The electrisal multipole transition operator

$$
\begin{equation*}
\partial \forall \gamma(\lambda \mu) \cdots\rangle_{i f: p}^{-i} f_{s, s}^{(\lambda \mu)} a_{A p}^{+} \partial x_{s} p^{\prime} \tag{33}
\end{equation*}
$$

utilizing; the canonical transformation and separating the collective pariu may be written in the foris

$$
\begin{align*}
& +\sum_{i=1}^{1} \sum_{i=1}^{i} \sum_{i, 1}^{\prime} g_{i+1}^{i} f_{s, 1}^{(\lambda \mu)}\left(Q_{i}^{+}+\hat{Q}_{i}\right) \tag{34}
\end{align*}
$$

where $\left\{\begin{array}{c}(\lambda \mu) \\ \because\end{array}\right.$ are the matrix elements of the $E \lambda$ transition between the one-particle states. The sums in (34) run over all the proton states. Utilizing the second quantization approximation one can derive the expression the for the $E \lambda$ transition matrix element as follow
where ('p is the proton charge.
Tn cutting off the summation it is necessary to introduce the effective charge and tiak tho contribution of neutron states into account ${ }^{13}$. We introduce the effective charge in tre followtog manner :

$$
\begin{equation*}
\therefore \theta_{i}+r_{e f f}, \quad O_{n}=e_{e f f} \tag{36}
\end{equation*}
$$

Consider Ea-transitions of the type $0^{+}-2^{+}$(excitation of 2^{+}state or decay of 0^{+}state t o the rotational 2^{+}state). Using (35) and (36) we get the reduced probnLility in inngle-particle units x):
x) $\mathrm{B}(E ?)$..p. $=0.3 \mathrm{~A}^{4 / 3} e^{2} f m^{4}$

$$
\begin{align*}
& B\left(E 2,0^{+} \rightarrow 2^{+}\right) / B(E 2)_{1 . p}=0,84 A^{-2 / 3}\left[Z\left(\omega, x_{t}\right)\right]^{-1} \times \\
& \times\left|e_{e_{f f}} P\left(\omega, x_{t}\right)+F_{\text {prot. }}(\omega)+D\left(\omega, x_{t}\right) X_{\text {prot }}(\omega)\right|^{2} \tag{37}
\end{align*}
$$

Here in $F_{\text {prot. }}(\omega)$ and $X_{p r o t}(\omega)$ the summation is over the proton single partiole states. The EO-transition reduced matrix element may be written in the form:

$$
\begin{align*}
\left.\rho_{i}^{2}=\frac{1}{2 R_{0}^{4}} \right\rvert\, & e_{p}^{\prime} \sum_{0 S^{\prime}(p r o t)} U_{o A^{\prime}} g_{i s^{\prime}}^{i} f_{\Delta s^{\prime}}^{(E 0)}+ \\
& +\left.e_{n} \sum_{\Delta 1^{\prime}(\text { neet })} U_{\Delta s^{\prime}} g_{\Delta s^{\prime}}^{i} f_{s s^{\prime}}^{(E 0)}\right|^{2} \tag{38}
\end{align*}
$$

where R_{0} is the nuclear radius. The single partiole matrix elements $f_{\mathrm{g}} \mathrm{s}^{\prime}$ (EO) are derived 10 ${ }^{14}$.

The spin-quadrupole interactions affeot significantly $B(E 2)$ quantity near the spin poles of $P\left(\omega, x_{t}\right)$. Then $D\left(\omega, x_{t}\right)$ sharply increases and $Z\left(\omega, x_{t}\right) \sim D^{2}\left(\omega, x_{t}\right) \frac{\partial S(\omega)}{\partial \omega}$ The $B\left(\mathrm{E}_{2}\right)$ quantity can be roughly estimated as

$$
B(E 2) \sim\left[\frac{\partial S(w)}{\partial w}\right]^{-1}\left|e_{\text {eff }} X(\omega)+X_{\text {prot }}(\omega)\right|^{2}
$$

Sinoe the oontributions of the two-quasiparticle states to $X(\omega)$ are non-coherent a sharp decrease of $B(E 2)$ value may be expeoted. From the physioal point of view this corresponds to the switohing off of the quadrupole interaotions, 1.e. to a colleotive state formed only by the spin-quadrupole interaotions.

For the beta-transtion probabilities to the 0^{+}and 2^{+}colleotive states the same formulae as in ref. ${ }^{l l}$, are obtained in whioh two-quasiparticle amplitudes $\Psi_{s s}$, are to be replaoed by $1 / 2\left(g_{s^{\prime}}^{i}+w_{s^{\prime}}^{i}\right)$.

The reduotion of diagonal amplitudes due to the spin-quadrupole interactions may affect the favoured beta-transition rate to the lowest 0^{+}state. One oan expect the trassition rate to this state to be hindered as oompared to the ground state, if the contribution of non-diagonal anplitudes beoome signifioant.
III. Calaulations and Discussion of the Results

For some time past great attention was devoted to the properties of colleotive 0^{+} states in deformed nuclei. Numerical caloulations bave shown that the microsoopio theory with pairing plus quadrupole interactions gives a satisiaotory desoription of lowest 2^{+} Tibrational states. But the properties of 0^{+}vibrational states, predicted by the theory
are in the poor agreement with experimental data. It is not, for example, able to desribe well the energies of 0^{+}states in rare-earth region, using the single coupling parameter for all nuclei.

New low lying 0^{+}states have been recently discovered in a number of deformed nuclei. In samarium isotopes the new 0^{+}states were studied bs means of (p, t) and (t, p) reactions ${ }^{17}$ and in Y^{168} and $H f^{174}$ nuclei - by means of ($p, 2 n$) and (d, d) reactions ${ }^{6}$. Information about the O^{+}states in Er^{164} and Hf^{178} was obtained from beta decay studies ${ }^{\text {I8, }}$ l9 Second excited 0^{+}states also occur in the transuranium region ($\mathrm{U}^{234}, \mathrm{U}^{238}$) ${ }^{20}$.

These new states do not appear to be beta-vibtations. On the other hand the microscopic theory with pairing plus quadrupole interactions predicts the appearance of the second 0^{+}states at energies of the order of 2 MeV . It seems the pairing vibrations are not responsible for the appearance of these states too ${ }^{2 l}$.

Another approach was proposed by Belyaev ${ }^{22}$. He derives two branches of 0^{+}excitations from the pairing interaction gauge invarlance requirement. The E0-transition probabilites for these states are to be quite different. But no any numerical calculations were performed and it $1 s$ difficult to say if the theory can feet the experimental data.

The aim of our calculations is to clarify the efficiency of the spin-quadrupole Interactions as compared to the quadrupole interactions. It is necessary to investigate how the spin-quadrupole interactions affect the properties of low energy 0^{+}states. We will try to answer the question if the spin-quadrupole interactions cauld be responsible for the appearance of the second 0^{+}states below the two-quasiparticle energy.

The numerical calculations have been carried out for nuclei in the region $150 \leq A \leq 174$, assuming the deformation parameter to be approximately constant ${ }^{23}$. An improved version of the Nilsson scheme ${ }^{24}$ was used in calculating the collective states, as in ref. ${ }^{25}$, ${ }^{26}$. The pairing: interaction parameters were determined from the pairing energy calculations ${ }^{27}$. In all the calculations the blocking effect, the anharmonicity and other corrections were not inserted because we have no method to take them into account consistently.
ire consider at first particular cases of the eq. (26):

$$
\begin{array}{ll}
1 / x_{q}-F\left(\omega_{2}\right) & , x_{t}=0 \tag{40}\\
1 / x_{t} \cdots\left(\omega_{1}\right), & x_{q}=0
\end{array}
$$

The empirical energies of the first 0^{+}states are used to determine the rariation of coupling parameters $d^{\prime} \psi^{\prime}$ and H_{t} from nucleus to nucleus. The results are given in fig.l. It inpeared that feq vary much more from nucleus to nucleus than X_{f}. Furthermore the
H_{t} values are of the same order of magnitude as \mathscr{R}_{q}, i.e. the srin-quadrupole interaotions appear to be much more efficient in deformed nuclei than in spherical nuclet.

Neglecting the mixing term $X(\omega)$ in eq. (26), we obtain two branches of colifective 0^{+} excitations below the two quasiparticle energy ${ }^{x}$. They seem to possesis quite different decay properties. For example, they may be distinguished fudging from B(0 , ${ }^{\prime}$) values. Actually we have no theoretical justification, assuming the quadrupole and spin-quadrupole Interactions to be exclusive. Numerical calculations have shown that the mixing term flays an important role and is to be taken into account. We put some requirement on the choice of the spin-quadrupole coupling parameter H_{f} :
a) The first pole of $P\left(\omega_{1} \mathcal{H}_{i}\right)$ appears at higher energy than the lowest emplyidal 0^{+}level.
b) In some cases the solutions of eqs. (40) are very sensitive to the choice of coupling parameters. The introduction of the spin-quadrupole interactions have to reduce the sensitivity of the solution of eq. (26') to the choice of dre. In this point we have in mind, that the quadrupole interactions dominate in the formition of collective 0^{+}states.
c) We have to explain the lowering of the second n^{+}states in a number of nuclei.
d) The introduction of the spin-quadrupole interactions is to be conolsterit with the empirical $B(E 2)$ values for 0^{+}states.

The calculated entrgies of some 0^{+}states and empirical data are liated in table 1 . The calculations were carried out for pure quadrupde force as well as using the different He $_{t}$ values. The last column gives the energy of the first pole of $\Gamma^{-}(\omega)$). Numerical calculations have shown that it is impossible achieve satisfactory agreement with empirical data by the use of the single quadrupole or spin-quadrupoe-force. The second 0^{+}states, predicted by the pairing plus quadrupole model, $1 i e$ at or about 2 hev. Whe pairing plus spin-quadrupole model predicts the second 0^{+}states at higher encrgy. x) Taking the quadrupole as well as spin-quadrupole interactions into account we obtain a better and wore consistent description of the 0^{+}states by the use of two couplinf jkarimeters for all the nuclei. The detailed agreement may be achieved with the fixed quadrupole coupling constant $x^{\prime} q=5.3 A^{-1 / 3} \hbar \omega_{0}$ and varying slightly the spin-quaurupole coupling parameter. It seems the more reliable te t value is to be obtained if a larger number of x) The mixing term may be dropped if one neglects the off-diagonal contributions in ((a)) As it was shown ${ }^{11}$ this affects noticeably the energies of beta-vibtational states. $x x$) In this case pairing vibrations and spin-quadrupole interactions produce two different modes of collective excitations. They are the solutions of eqs.:

$$
\gamma\left(\omega_{i}\right)=0 ; \quad 1 / x_{i}-\Omega\left(w_{i}\right)
$$

the single particle levels and transition matrix elements is invalved into calculation.
The lowering of the 0^{+}states is the principal qualitative result of the spin-quadrupole interactions. In particular, the tendency of the 0^{+}state enexgy in the isotope families to increase with increasing mass number can change. But the position of the 0^{+}states in some nuclei is extremely sensitive to the choice of the \mathcal{H}_{-t} value, whereas the sensitlvity to the choice of the x_{q} value is decreased.

The spin-quadrupole interactions affect the decay properties of the 0^{+}states. The calculated E2-transition probabilities are listed in table 2. The calculations we carried out, using the different $H_{q} q$ and α_{t} values, as well as for the empirical energies of the 0^{+}states (the empirical enexgies are used to fix the \mathcal{H}_{q} value for each nucleus). lt was found that the spin-quadrupole interactions affect weakly the $B(E 2)$ walues for nuclei in the beginning of the deformation region. All the calculated $B(E 2)$ values are consistent with the empirical data. However, in the middle of the region the spin-quadrupole interactions lead to the formation of comparatively long-lived (and low lying) 0^{+}states in a number of nucle 1.

Tbe pairing plus quadrupole model predicts very small $B(E 2)$ values for the second 0^{*} - states. The spin-quadrupole interactions affect strongly these values. For a number of nuclei the $B(E 2)$ values for the first and for the second 0^{+}states are of the same ozder of magnitude. Unfortunately, there are very scarce empirical data concerning the $U(E 2)$ values for the second 0^{+}states.

The $\operatorname{BE}(E)$ values are sensitive to the choioe of the \mathcal{H}_{t} value. To show this the E2transition probabilities for 0^{+}states in gtterbium isotopes are computed by use of the different \boldsymbol{C}_{t} values (the caloulations are carried out for the empirical energies of the 1^{+}states and for the different effective charge values). The results are given in table 3. Jt is seen that the spin-quadrupole effect can not be componsated by renormalizing the effective charge parameter.

The spin-quadrupole interactions affect significantly the two-quasiparticle amplitudes in the 0^{\dagger} state wave function. To illustrate this the calculated two-quasiparticle amplitudes $1 / 2\left(y_{s},+w_{s} s^{\prime}\right)$ for the f1rst and the second 0^{+}states in Er ${ }^{164}$ nucleus are tabulated in table 4. The introduction of the spin-quadrupole interactions leads to the decrease of the diagonal two quasiparticle amplitudes. The latter are dominant in the pairing plus quadrupole model oalculations ${ }^{25}$. The spin-quadrupole interactions lead to the substantial increase of the off-diagonal amplitudes, that may affect noticeably the apectroscopic factor value for transfer reactions. Moreover this may hinder favoured beta decay rates to 0^{+}states for a number of nucle1.

To illustrate the relation ship between the values of $f(\omega), S(\omega), X(\omega)$ and $\mathcal{P}\left(\omega_{1} \mathcal{H}_{+}\right)$these functJons for $E r^{264}$ nucleus are plotted on fig. \hat{c}. The value of $X(1$, i is usually 5-10 per cent of $f(\omega)$ or $S(\omega)$. The plot of $P(\omega, x$,$) is given for$ $d+\quad 8,8 A^{-4 / 3} \hbar \omega_{0}$. The solutions of equ (26) may be obtaired by crossing this plot with a level. That corresponds to the ohoice of a certain ff value.

The appearance of the low-lying spin-pole depends strongly on the choice of af f

ile are very limited in choosing the $d{ }^{\prime} q$ and $d t$ values. We obtaln the imagine solution for $E r$ and $J f$ isotopes increasing the H_{i} value. On the other hand, the spin pole shifts to the two-quasiparticle energy with decreasing the tf, value and the main features became almost insensitive to the introduction of the spin-quadrunole interactions. We obtain the imagine solution for wd and sm isotopes increasing the dt g. value. The $B(E 2)$ values for these nucled increase strongly too. On the contrary, the decrpase of the $f_{q} q$ value leads to the poor agreement with empiriril edergies for ar and Y ib isotopes,while the empirical energies in lid and Sin isctopes are fitted a little better.

iv. Conclusion

The calculations performed showed that the int roduction of the spin-quadrupole interactions leads to qualitative chances in tho picture of tre collective excitailona in deforme nuolei, the soin quadrupole interactions may be responsible for the lowerind of the secoind 0^{+}states below the two-quaniparticie energe. Dhey affect strongly the E(b) values in a number of nuclei. The introduction of the apin-quadrupole interactions \therefore ives a better an a mare consistent description of the 0^{t} states than hitherto possinle.

The spin-wandrupole interaction effects may be revaled in transfer reactions ani beta- decay studies. Further theoretical imestifations along this line are necessary.

Unfortunately, at present there is not enough experimental data to aldurit the most reliable te value. The main features obtained depend on the choice of this parameter.

The numerical calculations have shown the importazce of the mixing term Xict) especially on analysis the structure of the phonon wave function. The mixting term weaken. the cohereace of all the processes associated with codective state. The additional stury js necesmay to adjust the accuracy of nur appoximations.

At present it is difficult to offer the physical aperiment, which could reveal pure effects concerninis the spin-quadrunole interactions. Leasurcment of the lifertimen of u^{+} and and a^{+}states, beta-decay study and transfer reactions will be of importance.

The authors wish to express their gratitude to V.G. Soloviev, V.V. Babikov, S.T.Belyaev, S. Bjørnholm, and B.N.Kalinkin for the interest in this work and very usefull discussions. The author wish to thank E.P.Grigoriev and V.A.Morozov for making available their experimental data. We are indebted to A.A. Korneichuk for his help in programming.
I. C.J.Gallagher, S.A.Moszkowski. Phys. Kev. III, I282 (I958).
N. I. Pyatov, Izv. Akad. Nauk SSSR, Ser. Fiz. 27, I436 (I963).
2. N. D.Newby, Phys. Rev. I25, 2063 (I9b2).
3. 2.Bochnacki, S.Ogaza. Nucl. Phys. 69, I86 (I965).
J.D. Hogers. Ann. Rev. of Nucl. Sci., I5, 24 I (I965).
4. N.N. Bogolubor, Lectures on Quantum Statistics, Radjanska Skola, Kiev, 1947.
5. S.T,Belyaev. Kg1. Dan. Vid. Selsk, Mat. Fys. Medd. 3I, II (I959),
6. M. Raranger. Phys. Kev. I20, 957 (I960).
7. S.T.Belyaev, Selected Topics in Nuclear Theory, edited by F.Janouch, Viema, IS63.
8. L.S.Kisslinger, R.A.Sorensen. Rev. Mod. Phys. 35, 853 (I963).
9. D.f.Bés. Nucl. Phys. 49, 544 (I963).

Lu Yang, V.G. Soloviev, A.A.Korneichuk, JETP, 47, 252 (I964).
IO. V.G.Soloviev. Nuc1. Phys. 69, I (I965).
D.R.Bés, P.Federman, E.Mequeda, A.Zuker. Nucl. Phys. 65, I (I965).
II. V.G. Soloviev. Preprint P-1973, Dubna, I965.

Atomic Energy Review 3, II7 (I965).
I2. L.S.Kisslinger. Nuol. Phys. 35, II4 (I962).
I 3. A.Bohr, B.R.Mottelson. Lectures on Nuclear Structure and Enerky Spectra (Institute for Theoretical Physics and NORDITA, Copenhagen, I962). P, Vogel. Journal of Nucl. Phys. I, 752 (I965).

I4. J.O.Rasmussen . Nucl. Phys. I9, 85 (I960).
A. S. Keiner. Nuol. Phys. 27, II5 (I96I).
L.A.Borisoghlebski. Uspekh1 Fiz. Nauk, BI, 27 I (I963).

I5. Y. Yoshizawa, B.Elbek, B.Herskind, M.C.Olesen. Nucl. Phys. 73, 273 (I965).
I6. K.Graetzer, C.B.Hagemann, K.A.Hagemanr, B.Elbek. Nucl. Phys. 76, I (I966).
I7. S.Hinds, J.H.Bjerregaard, O.Hansen, O.Nathan. Phys. Lett. I4, 48 (I965).
N.M.Hintz, Proceedings of the Summer Study Group on the Emperor fanden Van de Gadaf Region, June $2 I-J u l y$ I6, I $965, \mathrm{~V}$, I.
I8. J.Vrzal, K.J.Gromov, J.Liptak, F.Molnar, V.A.Morozov, J. Urbanetz, V.G.Chumin, Preprint P-2820, Dubna 1966.
I9. H.L.Nielsen, K.Wilsky, I.Zylicz, G.Sørensen, Preprint (to be publ. in Nuci. Pnys.).
20. S.Bjornholm, Thesis Copenhagen, I965 and private communioation.

2I. A.Bohr, Comptes Fendus du Congres International de Physique Nucluare, Yaris, IUp, v. I D.R.Bés, R.A.Broglia, Nucl. Phys. 80,289 (I965).
22. S.T.Belyaer. Preprint 25, INP SOAN, Novosibirsk, 1966.
23. O.Nathen, S.C.Nilsson. Colleotive Nuclear Motion and the Unified Model, in Alfa-, Beta-, and Gama-Ray Speotrosoopy, ed. by K.Siegbahn, Copenhagen, 1965.
24. S.G.N1lsson. Mat. Fys. Medd. Dan. Vid. Selk. 29, No I6 (1955).
25. K.M.Zneleqnova, A.A.Korne1chuk, Y.G.Soloviev, P.Vogel, G.Yungklaussen. Preprint D-2I57 Dubna 1965.
26. V.G.Solovier, P.Vogel. Preprint E-256I, Dubna, I966.
27. N.I.Pyatov, V,G.Solovier. İv, Akad. Nauk SSSR, Ser. Fiq. 28, II, I6I7 (1964).
28. N.P.Avotina, B.P.Grigoriev, B.C.Djelepor, A.V.Zoletarin, V.O.Sergeev. Izv. Akad. Nauk SSSR, Ser. Fiz. 30, 530 (I966).
29. B. Harmatz, T.H.Handley, J.W.Mihelich. Phys. Rev. I23, I758 (I96I).
30. G.T.Ewan, R.R.J.Bower. Bull. Am. Phys. Soc. II, II (I966).

JI. K.J.Gromov, F.N.Muhtasimov, XVI-th Ann. Conf. on Nuol. Speotr. and Nuol. Structure, Tesis, Moskva, 1966.
32. C.J.Gallagher, Y.G.Soloviov. Mat. Pis. Skr. Dan., Vid. Selk. 2, No 2 (I962).
33. K.P.Jaoob, J.W.Mihelich, B.Harmaty, T.H.Handley, Phys. Rev. IIh, IIO2 (I960).
34. D.G.Burke, B.Blbek, A Study of Bnergy Levels in Even-Even Ytterbium Isotopes by Means of (d, p) ($d, t),(d, d ')$ Reactions, Preprint, 1966. (to be publ.)
35. O.Hansan, I.H.Bjerregaard, O.Nathan, S.finds, Nuolear Spin-Parity Assignmente, ed. by N.B.Gove, Academic Press, I966. p. 360.

Table I.
Low-energy 0^{+}states oaloulated by use of the different values for coupling parameters beq_{q} and $d e_{t}$ (in units of $A^{4 / 3} \hbar \omega \omega_{0}$). Experimental data are taken from ref. / 15-18,28-35/.

Table 1 (oontinued).

Er 164	$\begin{aligned} & I, 245 \\ & I, 698 \\ & I, 765 \end{aligned}$	$\begin{aligned} & I, 75 \\ & I, 84 \\ & 2,00 \end{aligned}$	$\begin{aligned} & I, 7 I \\ & I, 84 \\ & 2,00 \end{aligned}$	$\begin{aligned} & I, 34 \\ & I, 77 \\ & I, 84 \end{aligned}$	$\begin{aligned} & I, I O \\ & I, 77 \\ & I, 85 \end{aligned}$	I, I2	I, 83
Er ${ }^{\text {I6 }}$	I,46	$\begin{aligned} & I, 54 \\ & I, 8 I \end{aligned}$	$\begin{aligned} & I, 46 \\ & I, 54 \end{aligned}$	$\begin{aligned} & 0,98 \\ & 1,54 \end{aligned}$	$\begin{aligned} & 0,65 \\ & I, 49 \end{aligned}$	0,65	I, 55
Er ${ }^{\text {I68 }}$		$\begin{aligned} & I, 56 \\ & I, 78 \end{aligned}$	$\begin{aligned} & I, 56 \\ & I, 62 \end{aligned}$	$\begin{aligned} & I, 23 \\ & I, 57 \end{aligned}$	$\begin{aligned} & I, 02 \\ & I, 57 \end{aligned}$	I, 05	I, 58
Er 170		$\begin{aligned} & I, 46 \\ & I, 79 \end{aligned}$	$\begin{aligned} & 1,45 \\ & 1,74 \end{aligned}$	$\begin{aligned} & I, 38 \\ & I, 48 \end{aligned}$	$\begin{aligned} & I, 2 I \\ & I, 47 \end{aligned}$	1,23	I, 54
Yb 168	$\begin{aligned} & I, I 56 \\ & I, I 96 \\ & I, 543 \end{aligned}$	$\begin{aligned} & I, 53 \\ & I, 74 \\ & I, 85 \end{aligned}$	$\begin{aligned} & \mathrm{I}, 52 \\ & \mathrm{I}, 57 \\ & \mathrm{I}, 76 \end{aligned}$	$\begin{aligned} & I, I 6 \\ & I, 53 \\ & I, 75 \end{aligned}$	$\begin{aligned} & 0,92 \\ & I, 48 \\ & I, 75 \end{aligned}$	0,94	I, 55
Yb 170	$1,065$ $-$	$\begin{aligned} & I, 56 \\ & I, 7 I \\ & I, 83 \end{aligned}$	$\begin{aligned} & I, 55 \\ & I, 67 \\ & I, 75 \end{aligned}$	$\begin{aligned} & \mathrm{I}, 36 \\ & \mathrm{I}, 56 \\ & \mathrm{I}, 73 \end{aligned}$	$\begin{aligned} & I, I 9 \\ & I_{1}, 56 \\ & I_{2} 72 \end{aligned}$	I,20	I,57
$Y_{6} 172$	$I, 045$	$\begin{aligned} & I, 44 \\ & I, 73 \\ & 2,06 \end{aligned}$	$\begin{aligned} & I, 44 \\ & I, 74 \\ & I, 83 \end{aligned}$	$\begin{aligned} & I, 42 \\ & I, 75 \\ & I, 80 \\ & \hline \end{aligned}$	$\begin{aligned} & I, 34 \\ & I, 46 \\ & I, 75 \end{aligned}$	I, 38	I, 53
Yb ${ }^{\text {I74 }}$	$\text { I, } 32$	$\begin{aligned} & I, 43 \\ & I, 73 \\ & I, 94 \end{aligned}$	$\begin{aligned} & I, 43 \\ & I, 73 \\ & I, 80 \end{aligned}$	$\begin{aligned} & I, 43 \\ & I, 49 \\ & I, 74 \end{aligned}$	$\begin{aligned} & I, 34 \\ & I, 44 \\ & I, 74 \end{aligned}$	I,39	I, 45

Table 2
Caloulated and experimental / I5, I6/ B(B 2) values (in single particle units) for the firgt and seoond 0^{+}states.
I. $x_{t}=0 ; \quad x_{q}=5,3 \quad 4^{-4 / 3} \hbar \omega_{0}$
2. $x_{t}=0 ; x_{q}=x_{q}\left(\omega_{0}+\right.$ experim. $)$
3. $\operatorname{te}_{t}=8,8 \mathrm{~A}^{-h / 3} \omega_{0} ; \quad d e_{2}=d e_{q}$ ($\omega_{0^{+}}$oxperim.)
4. $x_{t}=8,8 \AA^{-4 / 3} \hbar \omega_{0} ; x_{2}=5,34^{-4 / 3} \hbar \omega_{0}$.

The oorresponding energies of O^{+}states are listed in table I.

Table 2 (continued).

Dy 162	$\begin{aligned} & 0,14 \\ & 0,09 \end{aligned}$			$\begin{aligned} & 0,1 \\ & 0,1 \end{aligned}$	
Dy ${ }^{164}$	$\begin{aligned} & 0,01 \\ & 0,02 \end{aligned}$			$\begin{aligned} & 0,04 \\ & 0,01 \end{aligned}$	-
$\mathrm{Br}^{\text {I64 }}$	$\begin{array}{r} 0,24 \\ \sim 10^{-3} \end{array}$	$\begin{aligned} & 2,3 \\ & 0,5 \end{aligned}$	$\begin{aligned} & 0,6 \\ & 0,4 \end{aligned}$	$\begin{aligned} & 0,12 \\ & 0,2 \end{aligned}$	$>0,05$
Erg^{166}	$\begin{aligned} & 0,03 \\ & 0, I \end{aligned}$	$0,5$	$0,4$	$\begin{aligned} & 0,04 \\ & 0,03 \end{aligned}$	
Er ${ }^{\text {I6 }}$	$\begin{aligned} & 0,02 \\ & 0,15 \end{aligned}$			$\begin{aligned} & 0,05 \\ & 0,02 \\ & \hline \end{aligned}$	
Ex 170	$\begin{aligned} & 0, I \\ & 0,03 \end{aligned}$			$\begin{aligned} & C, I \\ & 0,04 \end{aligned}$	
Yb^{168}	$\begin{aligned} & 0,04 \\ & 0,3 \end{aligned}$	$\begin{aligned} & 3,0 \\ & 2,7 \end{aligned}$	$\begin{aligned} & 0,04 \\ \sim & 10^{-3} \end{aligned}$	$\begin{aligned} & 0,04 \\ & 0,03 \end{aligned}$	-
$\mathrm{Yb}{ }^{170}$	$\begin{aligned} & 0,03 \\ & 0,3 \end{aligned}$	$\begin{gathered} 3,0 \\ - \end{gathered}$	I,9	$\begin{aligned} & 0,06 \\ & 0,02 \end{aligned}$	
Yb ${ }^{172}$	$\begin{aligned} & 0,2 \\ & 0,2 \end{aligned}$	$\mathrm{I}, 7$	$1,5$	$\begin{aligned} & 0,2 \\ & 0,1 \end{aligned}$	
Yb^{174}	$\begin{aligned} & 0,05 \\ & 0,2 \end{aligned}$	$\begin{gathered} 0,8 \\ - \end{gathered}$	$0,6$	$\begin{aligned} & 0,06 \\ & 0,04 \end{aligned}$	$\leqslant 0,5$

Table 3.

Caloulated $B\left(E 2, \mathrm{O}^{+} \rightarrow 2^{+}\right.$) values (in single particle units) for the first 0^{+}states in Ytterbium isotopes. The caloulations are made by use of the different $d e_{t}$ and $e_{\text {eff }}$ values and experimental energies of 0^{+}atetes $/ 15,16,34 /$

Nucleus and energy of 0^{+} state	$\mathscr{e}_{t} A^{4 / 3}$ $\hbar \omega_{0}$	e_{e+f}			$\begin{aligned} & \mathrm{B}(\mathrm{E} 2)_{\text {s.p.u }} \\ & \text { exper1m. } \end{aligned}$
		0.2	0.3	0.4	
$\begin{gathered} Y b^{168} \\ I, I 56 \mathrm{MaV} \end{gathered}$	0.0	2.34	3.03	3.81	$\begin{gathered} -3.6 \cdot 10^{-3} \\ (\sim 1.0) \end{gathered}$
	8.3	1.77	2.29	2,88	
	8.8	0.03	0.04	0.06	
	9.0	I. 02	I. 31	I. 63	
$\begin{aligned} & Y b^{170} \\ & 1,065 \mathrm{MeV} \end{aligned}$	0.0	2.30	2.98	3.76	
	8.3	2.02	2.62	3.31	
	8.8	I. 47	I. 92	2.42	
	9.0	0.66	0.86	I. 08	
$\begin{gathered} 4 b^{I 72} \\ I, 045 \mathrm{MeV} \end{gathered}$	0.0	I. 31	1.73	2.20	,
	8.3	I. 25	I. 65	2. 11	
	8.8	I. 16	1. 53	I. 96	
	9.0	1.03	I. 35	I. 73	
${ }_{\mathrm{I}, 32} \mathrm{MeV}$	0.0	0.58	0.75	0.95	$\leqslant 0.5$
	8.3	0.56	0.73	0.93	
	8.8	0.48	0.61	0.77	
	9.0	0.12	0.16	0.20	

Table 4.
Two-quasiparticle amplitudes $\frac{\mathrm{I}}{2}\left(\mathrm{~g}_{5 s^{+}} \mathrm{ws}_{5}\right)$ in O^{+}state phonon wave funotion in nualeus Br I64. The caloulations are made using experimental energies of o^{+}states /I8/.

Fig. I. The quadrupole and spin-quadrupole coupling parameters, estimated from empirical energies of the first 0^{+}state.

F1g.2. Typical plots of functions $F(\omega), S(\omega)$ and $X(\omega)$. The plot of $P\left(\omega, x_{t}\right)$ is given for $X_{t}=8,8 A^{-4 / 3} \hbar \omega_{0}$.

