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1. Introduction

In the previous papexj 1/ the projected wave functions (PBCS) correspond-
ing to a definite number of particles have been used to calculate the ground
state equilibrium deformations, electric quadrupole moments and deformation ener-
gies for even nuclei in the rare earth region. It has been found that the use of
the PBCS wave functions, instead of the BCS ones/ 2/, results in the increase of
the equilibrium deformation (and the quadrupole moment): slight in the middle of the
region and stronger at its boundaries. It also results in an earlier appearance
(already for the 142Ce nucleus) of thc deformation, As the quadrupole moments
calculated  with the help of the BCS wave functions/ 2/ are larger than the
experimental ones in the first half of the region (up to the Dy isotopes) and
smaller in the second half (for Yb and heavier isotopes) the use of the PBCS
wave functions increases the discrepancy in the first part of the region and dec-
reases it in the second part, AU this concerns the results, .hen the explicit
Soulonab taea, corresponding to a charged nucleus with a uniform or a trapezoidal
charge distribution, is included into the energy. However, as it has been pointed
out in a few papers (e.g. refs./ 4.5/ ), some part of the Coulomb energy is probab-
ly taken into account by the use of the single- particle level scheme for protons
different from that for neutrons. It was the reason that the calculation of ref./ 1
was performed in two variants: one including the explicit Coulomb term and the
other not. The values of the quadrupole moments obtained in the second variant
(when the Coulomb term is dropped) show better agreement with experiment,
especially at the beginning of the region. Also the point of appearance of the
deformation (the neutron number N a 86-88) agrees better with the point (N = 88-
90) deduced from such effects as appearance of rotational bands, sharp increase
in the Coulomb excitation cross sections and an anomaly in the binding energy
values of the last pair of neutrons/ 6/ - At last the deformation energy, calculated
in this variant, agrees better with the semi- empirical estimate 7 than in the vari-

ant including the explicit Coulomb term.



The aim of the present paper is to extend the calculations of ref.’/ Y to the
heavy element region, and compare the results with the ones obtained with the
BCS wave functions’ 3 . It is also aimed to check explicitly, at least for a few
isotopes, what is the effect on the equilibrium deformation, quadrupole moment and
deformation energy, of using the single-particle energy scheme for protons other

than for neutrons.

2, Description of the Calculation

2.1. Method of the Calculation

We start with the Hamiltonian inciuding the pairing forces in the approxima-

tion of constant matrix element, i.e.
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for neutrons and protons separately,

Here ¢, is the energy of a twofold degenerate single-particle Nilsson

+
state |v> , ¢, is the corresponding creaticn operator and G is the pairing
force strength, The projected ground state wave function (PBCS - in the nomen-
8 . R Lo . 9
«  ture of ref./ ) is constructed by projecting fixed-particle terms from the BCg /
. R . b
wave function, When normalized it has the form/ 10,8/
+ + . + + (2)
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where Y, =Yy /u,, N BV = ¢, Cpu and the normalization factor
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The indices 1 = 1, .., { enumerate the levels with vy = 1 while the indices
vy (ia €, . k) correspond to the levels with 0< Yo, < 1,i.e, to the levels

between which the scattering of particles, due to the pairing interaction, takes
place. We have the equality 2 (1 + k ) = n, where n is the number of particles
( neutrons or protons). The summation extends over all the combinations of k
states (ordered with respect to the energy) chosen from the states, for which

0 < v < 1, The symbol | vac> denotes the vacuum for the particles described

+

+
by the creation operators ¢, and C"( R



The values of the variational parameters v, ( ui =1l-v,)) in the
wave function (2) are established by minimization of the mean value of the Hamil~
tonian (1) in the BCS ground state/ 9/, under the condition that the mean value

of the number of particles in this state is given, The result is

2
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with Fy =vile, -A) +A .

The chemical potential A and the energy gap 2 A are obtained from

the equations
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where = is the number of particles (neutrons or protons) in the nucleus.

The energy in the state (2) has the form/ 10, 8/
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and the electric quadrupole moment

£ 3
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where 9,, Iis the matrix element of the quadrupole moment operator in the

single- particle state |v> .

For the nuclei we consider here, neutrons and protons occupy states in the
different shells and they are not correlated by the pairing forces. For this reason
we solve egs. (4) for neutrons and protons separately, with different single- partic-
le level schemes and different pairing force strengths assumed, The total ground
state energy of a nucleus is the sum of the energies of the neutron and proton

systems, With Coulomb term 50 included, it is of the form
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where &, and & are given by eq. (5) and correspond to neutrons and
protons, respe 2ly.
The electric quadrupoile ment of the nucleus is viven by eq. {6) with the

summation extended only over the proton states, i.e.

Qp = Q (8)

b "

The Coulomb term in euy. (”) is assumed to be the electrostatic energy of
che d ellipsoid with a distribution of charge for which the surfaces of cons-
tant density form a family of sumilar concentric ellipsoids, In the case of axial

symmetry the dependence of this ener on the deformation ¢ of the ellipsoid
ym gy P

given, up to the third order in <, by/ 11/
- 4 —2 92 -8 fe
) = - — - . 9
EoE) = (1 € T35 ¢ )gc(’)) (9)

Here & (O) is the electrostatic energy of the sphere from which the elip-
soid is obtained by a volume-preserving deformation. The delinition of the para-
meter ¢ of the deformation of the equi-density ellipsoids is the same as the
definition of the parameter ¢ of the deformation of the equi-potential ellipsoids
given in the Nilsson papexj 12/ .

For each value of the parameter ¢ the deformation ¢ is calculated from

the formula

0 (0 =z + LDk 7 et (10)

where p(r) is the charge density and Q,(¢) is the quadrupole moment obtained

" the help of eq. (6).

2,2, Numerical Calculations

The values of the parameters of the single-particle Nilsson levels, used in

—1/s

the calculations, are given in tuble 1 with = 41 A MeV, A numerical value

x = 0,05 is taken both [or neutrons and for protons (the notation for « and

¢ agrees with the one of the Nilsson paper/ 12/ ). Thus, all the level scheme
iz the same as in the variani 2 of 1-01’./3 . It should correspond to the scheme
that is in the best agreeement with the empirical data on the level spectra of odd-

/4

nuclei .



The values of the pairing force strength G are used also the same as in
ref./ 3/, iie. G,=(26,04/ A) MeV for neutrons and ¢, =(32,20/ A) MeV for protons,
with the 24 levels nearest to the Fermi surface taken into account for the pairing

interaction,

The eqs, (4) are solved for 84 < Z <€ 104 and 128 < N < 158 for seven
values of the deformation 7 = 0,2,3,4,5,6,7, The single~particle energles (and
also the matrix elements q,, for the calculation of @, ) for 7 = 3 and. 5 and
for n = 7 (for which the single-particle energies and wave functions are not
12,4/ ) are obtained from the corresponding values for 3 = 2,4,6, by

a quadratic interpolation and extrapolation, respectively,

given in nef!.

The ground state energy is calculated from eq. (7) for 7 = 0,2,3,4,5,6,7
and the corresponding curves are drawn in two variants: including the Coulomb
term &, (as in eq. (7)) and not including. In both cases the points of minimal

energy (ie. the equilibrium deformations 7, or ¢, with 7 and ¢ defined in

ret/ 12/} are obtained by a graphical lntexpolaﬁor.:

In the present investigation the electrostatic energy of a sphere & c( 0)
(and the integral in eq. (10)) is calculated assuming the radial charge distribution
in the form of a step function with the radius of the sphere R, = 1,2 Al/’ fm,
instead of the trapezoidal form adopted in ref-./ 3/ . The effect of using one or the
other form of the distribution on the equilibrium deformation is sma.ll/ 2/ .

The electric quadrupole moment Q, Is calculated from eq. (6) for 7 = 0,2,
3,4,5,6,7, and the values corresponding to the equilibrium deformation are obtained
by a graphical interpolation,

All the numerical values of the ground state energy and quadrupole moment
as well as the values of A and A’ (for these see also ref. 13 ) calculated for
7 = 0,2,3,4,5,6,7, Z = 84 - 104 and N = 128 - 158 are gathered in separate
tables/ 14/ . The results obtained with the BCS wave functions and in the case of

no pairing forces are also given there, for comparison.

It should be stressed that in all the calculations the levels from the N« 7
shell for protons and from the N= 8 shell for neutrons have not been taken into
account. We do not simply know their positions. Some extrapolations for the lowest
levels of these shells, performed with the help of the Nilsson potential on one
hand and with the Woods-Saxon potential, on the other, give different results (in
the sense of the level sequence)/ 15/ . One may expect, basing on these extrapo-
lations, that the inclusion of these levels should not change the results for the
equilibrium deformations, quadrupole moments and deformation energies for Z < 100



it might increase these quantities for the larger values of

Results and Discussion

example of the dependence of the ground state energy on
Cm , The independent particle curve (IP) is obtained by
lergies from the lowest one up to the Fermi energy, i.e.
me way as in reis./ 4’5/. The BCS and PBCS curves are
» of the BCS and PBCS wave functions,. respectively, The
for two cases, when the Coulomb term & in eq. (7) is

‘NC).

hough the PBCS energy is lower for a few MeV than the
ices of the both energies on the deformation do not differ
‘jum deformations in both cases are almost the same and
s are close one to the other, Namely, the BCS deformation
lower than the PBCS one, what represents about 14% of

deformation energy in the NC case and about 9% in tae

s, for comparison, the potential energy curve (MS) of the

emented by the deformation dependent shell correction/ 16,7/

n see also rei./ 17/ ). The values of the seven parameters
are taken from the analysis by Myers and
the parameters are fitted to experimental nuclear masses

S.

» equilibrium deformations ¢ . calculated with the PBCS
h the Coulomb term included and not included, The
obtained in ref./ 3/ (variant 2 corresponding to the same
scheme as in the present paper) with the BCS functions
stained in rei./ 5/ in the independent particle approximation
r comparison, The last values are read from the diagram

/ 5/

The slight differences are such that they may result in

al single-particle level shifts used in ref, are close to
e beginning of the investigated region slightly softer on the

of our additional shifts. It can be possibly seen in table 2

24
for ‘cm  that the inclusion of the pairing interaction

mb term to the ground state energy increases ¢, , le,



that in the competition to change the equilibrium deformation in the opposite direc-
tions, the Coulomb term predominates over the pairing forces. Table 2 shows that
this effect is typical for almost the whole region, excluding only the most weakly
deformed nuclei at the beginning of the region. Moreover, the values of e ob~
tained in the independent particle case are closer to the PBCS ones calculated
without Coulomb term (NC) than to these with Coulomb term (C). The effect was
also observed in the rare earth region, especially for the most strongly deformed

nuclei/ 1/ .

Fig. 2, gives the ground state electric quadrupole moments. The experimen-
tal points obtained from measurements of the lifetimes of the first excited 2 + states
/18]

are cited here after ref. . The points corresponding to Coulomb excitation data

are deduced from the B{E2) values collected in ref./ 19/ . The comparison between
the PBCS and the BCS results {including the Coulomb term) shows that they are
close one to the other, The PBCS calculation predicts the deformation to appear
slightly earlier (see %% ha , e Th ) and gives the Qg values closer to experi-
ment at the beginning of the region. The remaining discrepancy between the

theory and -experiment for these nuclei may be partly due to the fact that the
experimental Q¢ +wvalues are obtained from the measurement under the assumption

of the adiabatinity condition, which in this transition region is not fulfilled well,

Fig, 3 shows the dependence of the quadrupole moment Qo + calculated
with the PBCS wave function, on the deformation for Z = 96, The BCS wvalues
of Qy are quite close to the PBCS ones, so that the corresponding curve would

not be distinguishable from the curve plotted in Fig. 3.

Fig. 4 presents the deformation energies. Two of the five presented curves
are obtained with the PBCS wave functions, including the Coulomb term (C) and
not including (NC). The independent particle curve (IP) is read from the diagram

of ref./ 5/ . The last two curves are deduced from the analysis by Myers and

Swiatedci/ 7 (see also another semi-empirical analysis/ 20/ allowing larger number
of adjustable parameters, It predicts smaller values of the deformation energy).

The curve denoted "semi-emp MS" is obtained from the calculated one ("calc MS")
by taking the experimental mass of a nucleus instead of the mass calculated for

the equilibrium point,

One can see that the PBCS results obtained without the Coulomb term ( NC)
are the closest ones to the semi-empirical estimates, although in comparison with
the situation in the rare region, a tendency of the decrease of the discrepancy
between the semi-empirical estimates and the C variant of the theoretical results
is visible, However, comparing the calculated values with the semi-empirical ones

(especially for the heaviest nuclei), it should be remembered that the last ones



» been obtained under the assumption of the magic numbers N = 184 and

126, closing the deformation region of the heavy elements. The level scheme
/

1 in the present calculation does not reproduce these numbers well 15/.

Table 3 gives the values of the density deformation parameter ¢ obtained

1 the help of eq. (10) from the quadrupole moments Q, calculated from the
wulae (6) and(8) for the deformations of the potential ¢ = 0,10, 0,20 and
), It is seen that for Z = 88~ 104 the difference between ¢ and ¢ does not

eed 10 %,

As mentioned in the intreduction, it is interesting to check explicity what

! of the Couwlomb repulsion is already taken into account by the use of the
3sle- particle energy levels for protons different than these for neutrons. With

. aim, the calculation of the grwund state energy for N neutrons with the help
‘he neutron single- particle level s-heme and of the ground state energy for 2
tons with the help of the proton scheme is performed. The dependence of the
srence A&, =&, ) -&,( N-[,®-6,(0)] on the deformation for N= Z= 96,
104 is plotted in Fig.5. The decrease A&, =& () ~ & (0) of the elec-
static Coulomb term 6C calculated from the formula (9) is drawn for compari-

1.

The form of the curves suggests that the /_\@'" term has stronger effect on

n energy than on the equilibrium deformation. For example, the effect

2344 348
this term on the equilibrium deformations of the three nuclei: Cm , ct and

deform: _.

' (104) is Ae < 0,01 (while the effect of the A6, term is  Ae = 0,03),
AQ, € 0,4 barn,

1344
ie corresponding effect on the deformation energy is 2,0 MeV for Cm and

m 388
¢t 1,1 MeV for (104), so that the subtraction of the A§ ~ term from

at corresponds to the change in the quadrupole moments

» ground state energy decreases the discrepancy between the C variant of the

lculation and the semi- enpirical estimate by about 50% for these three nuclei.

If the effect of the AE;“ term on the equilibrium deformations and hence on
> quadrupole moments of the other nuclei in the heavy element region and also
the rare earth region is as small as for the three nuclei considered, one should
ok for other reasons for the obtained discrepancies betwcen the calculated
ladrupole moments and the experimental ones., A possible one is a too high
crease of the restoring force of the closed shells in the wvolume-preserving
irmonic oscillator potential (and also in the Nilsson potential) with the increasing

ass number A, As the energy of a nucleus with closed shells in this model is
/3 1 a2 g st
5,211, = haw g (e)A “[I—T‘ -3¢ ] A,

10



the restoring force is proportional to A. In the liquid drop- plus-shell correction

modell 16,7/

, which reproduces the boundary points of the deformation regions and
even the values of the quadrupole moments quite well, the restoring force is pro-
portional to something between Az/. ( surfase term) and A (shell correction).
An explicit comparison of the dependences of the BCS and PBCS ground state
iergies and of the potential energy in the semi-empirical modell 7/, on the

deformation, is given in Fig. 6 for " ce , "of"; and e, . It is seen that

the BCS and PBCS calculations predict the restoring force for e much lower
than the one predicted by the semi-empirical model, Only after the reduction of

the semi- empirical restoring force by the Coulomb term A& all the three curves

C ’
become close one to each other, It is probably the reason why the Qg results
of the NC variant of the PBCS calculation are closer to experiment at the beginn

ing of the rare earth region, than the results of the C variant.

For 10 Pt {this nucleus is not the best example, as it is far enough from
the double magic nucleus, to be deformed) and M pg we obtain the opposite
situation: the BCS and PBCS restoring forces are larger than the semi-empirical
restoring force and possibly for this reason even the C variant of the PBCS
calculations gives too low Q; values in the second half of the rare eath region

and in the whole heavy element region,

4, Conclusions

The calculations of the equilibrium deformations, electric quadrupole moments
and deformation energies, performed both for the rare earth region and the heavy

element one, lead to following conclusions:
4.1, Equilibrium Deformations and Quadrupole Moments

(a) It seems that the equilibrium deformations and the quadrupole
moments should be described by the variant of the calculation which includes the
Coulomb term & (variant C), but in which the A& term is subtracted from
the energy. The considered examples of nuclei ( Mem et and . (104))
suggest that the subtraction of the A@pn term has only slight (in comparison
with the subtraction of the A@C term) effect on the equilibrium deformation and
thus on the quadrupole moment. The fact that the NC variant gives better results
for the beginning of the rare earth region up to Dy isotopes, is probably due to
the too low restoring force implied for these nuclei by the volume-preserving
model we use. Dropping the Coulomb term we only increase this too low restoring

force,

11
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6. The ground state energy curves obtained in the BCS and PBCS calcula-

tions and the potential energy curves calculated in the liquid drop- plus-
shell correction model

5. The difference Ag/pn of the ground state energies of protons and N
neutrons as a function of the deformation. N « Z = 96, 98, 104, The
dependence of the electrostatic Coulomb term A&, on the deformation

is plotted for comparison. The arrows indicate the equilibrium points for
the nuclei: *‘cm , ™%ct  and  *"(104).
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