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1. INTRODUCTION

Different types and generalizations of the quantum uncertainty relations (UR)
are known. For example, the uncertainty of observables may be described not
by dispersions but in other ways, e.g., see "). For generalization to the case
of non-Hermitian operators see (3,I) . Here I consider the extension of UR to
the case of three and more observables, see Refs. 5 6 3 79. Specifically, I
shall discuss extensions of the so-called Schroedinger URS, see Refs. 10, 11 3,
12, 13. The relation of Schroedinger UR to the well-known Heisenberg UR is
discussed in Sec. 2.

My aim is to elucidate what new information the extension of UR to several
observables provides.

Different kinds of inequalities are known which may be considered as ex-
tensions of UR to several observables, see Refs. 5 6 3 79. In order to explain
which of them are used here (they are called generalized uncertainty relations
(GUR) I present in Sec. 3 a derivation of GUR. It is similar to UR deriva-
tion starting with Cauchy inequality, given by Schroedinger ("). I shall begin
with derivation of the known generalized Cauchy inequality (GCI) (the term
being used in (")), and hence obtain GUR. The reason for this way of GUR
derivation is that I need a separate expression for GCI in order to interprete
GCI in a manner similar to the GUR interpretation. The relation of our GUR
to other extensions of UR known in the literature is discussed at the end of
Sec. 3.

1 show in Sec. 4 what new infrornation GUR and GCI provide. For summary
see Sec. .

2. SCHROEDINGER AND HEISENBERG
UNCERTAINTY RLATIONS

Robertson (") and Schroedinger (1) obtained the inequality

a 2a2 > (V), AAABV,) 12,A -

A and are two observables, and is a state vector;

AA = A - V,, AV,), 0,2 = (V), (AA)2V). (2)
A

Usually 1)is called the Schroedinger uncertainty relation, e.g., see (12,13) The
well-known Heisenberg uncertainty relation

2a 2 > I 0 [A, B] V5) 12 (3)
A -

is a particular case of (1 see below Subsec. 21. Therefore, (1) is natural
subject for generalization to three or more observables. It is the inequality )
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which is implied here when using the term "uncertainty relation" (UR) with-
out adjectives (Schroedinger or Heisenberg).

2.1. Note that (1) relates measurable quantities. This is evident for dis-
persion 2 and 0,2 which are mean values of Hermitian operators. As toA B
(V), AAABV)), it i not real when A and do not commute and AAAB is not

Hermitian. But Schroedinger 00 pointed out a way of measuring (V), AAABV))
in this case. Represent AAAB as

AAAB I JAAAB + ABAA + 1[,NANB - ABAA]
2 2
R + iJ, (4)

R and J are Hermitian operators, i.e., observables. Denoting

(�b, RO) = r, (V), JV)) = j (5)

we have (V), AAABO = r + ij, and Eq. 4 can be rewritten in the form

01 2or 2 > 2 + j2. 6)
A 

if 6) holds, then of course

2 2 > 2O1AOrB -)[A, BV)) 12. (7)
2

Sowe obtain 3) from (1). In the general case,(3) is less informative than (1):
the region of possible values of or 2or2which is allowed by 7 is greater thanA 

the region allowed by 6 In other words 6 is more restrictive than 7 For
example, when A and commute 3 turns into U2 Or2 > which is the trivialA inequality giving no information on 2and 61'2

A . they are positive by definition,
see Eq. 2. Meanwhile 6 shows that in the case Or2 U2 �must be greater thanA 

a nonzero (generally) quantity r 2. However 7 may be useful if one does not
know how to obtain information which is lost when passing from 6 to 7.
Heisenberg UR usually is considerably simpler.than Schroedinger UR.

2.2. The simplest Heisenberg UR a2a2> h 2/4 has the well-,known inter-X P
pretation: the dispersions a 2 and 2in the same state cannot be arbitrarilyX 01�
small: their product cannot be less than h2/4, regardless ?. The interpreta-
tion is not suitable in general for (1) and 3 because their right-hand sides
depend upon , Al and 6,2 B has definite lower bund. When rh sidesA

assume zero values the inequalities (1) and 3) turn into the�trivial inequality
or2 or 2 > . The following meaning of (1) may be more appropriate:A -

"The module of the ratio , AAABV))/OrAOB of measurable quantities
AAABV)) and CrAOB cannot exceed 1, this -upper bound being indepen-

dent of V� A, B".
1(0,2 1/21.Here CrA denotes A

2



2.3. Schroedinger (") obtained (1) starting with the known Cauchy-Bunyakowskii-
Schwarz inequality (which will be called the Cauchy inequality in what follows):

(a,, a,) a2, a2) I l, a2) 12, (8)

where a, and a2 are two vectors and (011, 02) is their scalar product (this
derivation will be reproduced incidentally in Sec. ). Let us rewrite (8) in the
form similar to I 0, AAABO) 12/0,2 0r < , namelyA -

12 I a, 12 12 < 1, ICeII2
lal, Ce2 ja2 - - (oq, at). (9)

In fact, the quantum-mechanical meaning of ls. of 9) is well-known: is it
the probability to find the state oel in the state a2- Inequality 9) ensures that
upper bound of this probability does not exceed for any cel and a2-

3. GENERALIZED CAUCHY INEQUALITY
AND UNCERTAINTY RELATION

My aim now is to present the derivation of the known generalization of the
Cauchy inequality (8) to the case of three and more vectors a,, a2, 03, 

Hence, the generalized uncertainty relation will follow.

3. 1. Let aj, i = 1 2 .. ., n denote several vectors describing possible physi-
cal states. Consider their superposition = paj, where are complex
numbers. We have

1: (o'i o) pi Aj (1 0)
ij

Since ((D, D > the Hermitian form in rhs. of Eq. (10) is positive non-
negative) for all p,. Therefore, the n x n matrix

(Cel, Oil (Cel, 02) (01 03) ...

(012, 01) (012, 02) (02, a3) ...

(00, 01 ) (013, a2) (013 03) ...

must be positive (nonnegative) definite. The necessary and sufficient condi-
tions for its positivity are positivity of all principal minors of (11), e.g., see (11).
The simplest of these determinants are ajaj), i = 1,2,...,n and they are
evidently positive. Positivity of the principle minors of the second order gives
the Cauchy inequalities

la,121oj12 > (oi'oej)j2 (12)
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for each pair ai, aj out of a,, a2, a3.... The notation I , 12 = (ai, a) and the
property (ai, aj = (aj, a)' are used.

The positivity of the third order minors, in particular, of the determinant
of the matrix explicitly written in (11) gives the inequality

Ia, 12 la2 12 1 C13 2+ 2Re(al, a2)(al, a3)(a3, a,)

-I (a,, a2) 2Ia3 12 _I a2 03) 12 la, 12 _I C13, al)121a�12 > (13)

The equality holds if a,, a2, a3 are linear dependent.

3.2. Uncertainty relations may now be obtained by putting

a = (Ai - o AAiO, di (, AiO); (14)

Ai are n observables Al, A2, A3, is a vector. Let us denote

or 2 - 20),(ai, a) (V), (AAi (15)

0, ) (ai a = 0 AAiAAj�b). (16)

One obtains Scroedinger UR (1) for each pair Ai, A out of Al, A2, A3....

2 2 2
Ui a I I (17)

The generalized uncertainty relation (GUR) follows from 13)

or2a 2012+ 2Re(l, 2�2 3(3, 1 -2 3

-1(1 2 120,2 - 1(2 3 120,2 - 1(3, 1) 12a2 > o. (18)
3 1 2 -

3.3. One can derive 17) and (18) for the case when a physical state is
described not by a vector but by a density matrix W, e.g., see (3) and
references therein. The same expressions 17) and (18) result, but with changed
notation for or 2 and (i, j):

or2= SpW(AAi )2, (ii = SpWAAiAAj.i

3.3. It is inequality (18) that is used (and called) here as generalization
of UR for several observables. Other inequalities were deduced ) using
positivity of the matrix with the elements (ij), see (11) and 16). These
inequalities do not coincide with (18). Robertson himself referred to them
as "assuredly weaker" than (18). For example, in the case of three operators
Al, A2, A3 Robertson's inequality for 2or2or2 (see inequality 33) together2 3

with 35) in or inequality (10) in M) turns into the trivial one a2a2or > .2 3 -

I need not comment further on this subject because positivity of principle
minors is the necessary and sufficient condition, and suffice it to interprete
only (18). Robertson treated (18) as unmanageable, but I shall be able to
interprete it in the next section.
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4. INTERPRETATION OF GENERALIZED
UNCERTAINTY RELATION

In the case of three observables Al, A2, A3 we have three usual uncertainty re-
lations 17) which give the following restrictions on the measurable quantities
"Module of te ratios (ij)1ojoj cannot exceed I", see Sec. 2 am going to
demonstrate the validity of the following statement: GUR, see (18), provides
additional restrictions on these three ratios (ij)/0,i0,j-

4.1. The hs. of (18) depends upon three real quantities a, 02, J3 and
three complex ones (ij) (six real). It is remarkable that (18) can be repre-
sented as an inequality containing three complex (six real) ratios ij)ICU,
considered above (indeed, divide hs. of (18) by 0r2 C71 or 2 )

1 2 3 Let us denote

(i, j) lajaj = pij exppij. (20)

Note that usual URs 17) restrict only pij pij 1) imposing no restriction on
the phases �ojj. In terms of pij and �pjj inequality (18) takes the form

1 + 2P12P23P31 COS r- P2 P23 P31 :�' 0, r- 012 + (P23 + �031- (21)

We can see that really Ihs. of 21) depends on four real variables: pij and E.
If Al, A2, A3 commute, then (ij) are real, positive or negative. In the

case, oj assume only two values (�ojj = or 7r) and COS E is equal to ±1.
One may verify that 21) is satisfied if all pij do not exceed 12. This is

the example of allowed values of pij. Let us demonstrate that not a pij values
(from intervals (0, 1)) satisfy 21).

Consider at first instead of 21) its weakened consequence

2 _ 2 2
1 2P12P23P31 -_ P12 23 P31 > 

(the inequality CO E < I is used). One may verify that Ihs. of 22) is not
positive in the following region:

v/3 < P12 V3 < P31 1, < P23 < (23)
2 2 2

as well as in the analogous regions obtained from 23) by substitutions p12
P23, P31 �-2 P23- So 23) is the example of forbidden pj values. As 22) gives
less information than 21), we expect that when CO E < I the forbidden region
is even larger as compared to 23).

Note that Ihs. of 21) is the function (of four variables) the explicit form
of which does not depend on a particular choice of Al, A2, A3, 0 So does the
bound of allowed values of pij and E which is determined by equality 21) (cf.

Subsec 22).
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4.2. Let us mention a particular GUR application. Let Al, A2, A3 be some
projections of spin operators of three particles 1 2 3 which originate in a
reaction of the type a b I 2 3 In this case (i, j) are called correlations
of polarizations. It was shown above that the measured values of the ratios
J(ij)J1cioj cannot get into, e.g., the region 23).

4.2. In order to interprete generalized Cauchy inequality (GC1) 13) let us
rewrite it in terms of the following variables pj and �pij

pijexpVij (24)

1 use in Eq. 24) the same letters as in Eq. 20), but nw p2 are probabilitiesij
which are < due to 12). In terms of pij and Wij inequality 13) assumes the
form 21). The restrictions which this inequality imposes on the probabilities
pij have already been discussed in Subsec 41.

Let us mention a particular case of GO which is specific of the probabilistic
interpretation. Let a2 and a3 be orthogonal vectors, then P23 = and the
inequality under discussion assumes the simple form p2 + p2l

12 3 < Tis is the
restriction on the possible values of the probabilities p 2 2

12 and p3, to find 0 or
Ce3 in the state a,: they both cannot be close to .

5. SUMMARY

In the case of three observables Al, A2, A3 we have three conventional uncer-
tainty relations (URs) for each pair (Al, A2), (A2, A3), (A3, Al) out of Al, A2,

A3, see 17). In addition we have the generalized uncertainty relation (GUR),
see (18), including dispersion of all observables. It is demonstrated that GUR
gives new information. Namely, GUR provides restrictions on possible values
of the quantities = 0, AAiAAjV))J/oiuj. The restrictions complement the
constraints pi, which give conventional URs for each pair out of' Al, A2,

A3-

The known Cauchy inequality I ,1 12 JC12 12 >J (0 1, 02) J2 may be given quantum-
mechanical interpretation: it ensures that the ratio I al, a2) 12/la, 12 la2 12 can
be interpreted as probability to find the state described by the vector e in
the state a2. Generalizations 13) of the Cauchy inequality for three and more
vectors cel, Ce2, Oe3.... are known. It is shown that they provide (in complete
analogy to the above GUR) regions of forbidden values for the corresponding
probability amplitudes (aice,)/JaJJajJ.

The above restrictions are universal in the sense that they do not depend
upon a particular choice of Al, A2, A3, V). They are consequences of most
basic quantum postulates (such as "physical state is to be described by a
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Hilbert space vector"), but do not include dynamical assumptions, e.g., the
Schroedinger equation.
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