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1 Introduction

Spin-flippers and spin rotators are very common devices in neutron physics
now. One of such devices is radiofrequeiicy spin-flipper. Its work is de-
scrbe by the well known Rabi formuila
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derivation of which we sall rernindl elow. Fornula (1) gives probability
of spin flipping iijj for neutron with velocity vo after passage through
the coil of length D. Inside the coil there is a constant magnetic field,
B0 (0, 0, Bo), and a periodically varying in time radio frequency ()
magnetic field, BI B1 (cos2Lt, sin 2wjt, 0)1, as shown in fig. 1. The terms
W,j in (1) denote jiB01 /h respectively, where pu is the neutron mnagnetic
moment.

However interaction of neutrons with RF field leads not only to spin
rotation, but also to change of the neutron energy. If energy of the previous
neutron before interaction with the field is E = nv,, /2, where m is the
neutron mass, then after interaction with RF field it becomes E = E0 ±h2uw,
which is equivalent to emission or absorption of RIF quantum or inelastic
scattering o the field. This change of energy is not accounted by (1).

We want to show how to find spin-flip probability taking into account

inelastic interaction with RF field. For simplicity we suppose that all the
fields are confined in some area of space and have no other dependence on
space (;oordinates.

This problem was formulated before by Kriiger 11, he presented solution
as a combination of 16 waves with 16 unknown coefficients. He could solve
the system of 16 equations only approximately. Complete solution of this
systemn was given 14 years later [2]. We show how to avoid this formidable
task and to obtain a compact physically transparent solution, from which
all the interesting values canl be calculated immediately.

*So, let us consider one dimensional elastic and inelastic scattering of the
neutron onl magnetic field confined within the slab of space of thickness D:
0 < xr < D as shown in fig. 1. The field consists of a constant part directed

along z-axis, Bo0 (0, 0, BO), and RF part, BI = B (cos 2wt, sin 2wt, 0), ro-
tating in x - y plane with frequency 2. The incident neutron is described
by a plane wave b exp(ikox - i'Eot)~O, where k = mvo/h, t'O =E1h

'For conenience we us feuny 2 instead of -. This eliminate ftor 1/2 i masy fmulas Howevr one should
remmbe.r that the qusut-m 1 this HP lie

0
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E0 = mv20/2, and ~O is an arbitrary spinor related to an arbitrary polariza-
tion. We need to find transmission, f, and reflection, ~3 matrix amplitudes,
*which contain information about neutron polarization and neutron energy
after the interaction.

2 Scattering of high energy neutrons. Rabi formula

If the neutron energy Eo is suffi-

ciently high, i.e. E >~ h2L,&, one
e-ikg tk-)~ may neglect the potential energy

~~~~j I ~~~~-psB 0 and the change of veloc-

ik~6 II ity: V-V Vv~-mp 0o-
0, when the neutron enters

~~I7~~ i the area D. In that case we can

D ~~~~bind the reference frame' to the
L - -- moving particle, and look only

Fig. 1. Reflection and transmission by a slab for time evolution of the neutron
of thickness D with constant Bo0 (0, 0, Bo) spinor ~(t), which is determined
and RF B = B(cos2uwt,sin2wt,0) mag- b h hr crdne qa
netic fields, for a neutron with an arbitrary bytesotclrdgreqa
polarization described by the spinor o. tion

ihd~(t)/dt =:-p[o-Bo + oBj(t)]~(t), (2)

(o,,aa, ,, Ij are the Pauli matrices), and by initial condition (0)= 0
For general solution of this equation we use the representation of aBj:

oP 1 (t) = ,, cos 2wt ± ohysin 2wt exp(-iWUt) or exp(iwja, t), (3)

and substitute it into (2). As the result we get

id<(t)/dt [oaLwo + exp(-iWOat)a',Lwi exp(iwajt)]~(t), (4)

where wi -iiBh/h for i 0, 1.
Solution to (4) can be represented in the form ~(t) exp(-iwoat)O(t).

Substitution of it into (4) gives

ido(t )/dt [oa,(w - w) + a~w1 ]O(t). (5)

The expression in square brackets doesn't depend on time, thus 0(t) should
be represented as 0(t) exp(ia-t)0(0), where vector &k is (wi, 0, &w), and

2



6w o- w. The initial condition ~(O) o is equivalent to O(O) =0 so
the final solution to (4) is

~() exp(-iWU't) exp(fflot)(O) = exp(-iwu~t) LosWt + sin Qt] ~0

(6)
where Q = VI(Coo -L c) 2

I +b 1.

Let us find spin-flip probability, when initially the spin is oriented par-
allel to z-axis, i.e. oa, 0 = o. The factor ouI 3coar + co1cr, contains
non-diagonal oa, matrix, which flips the polarization. Thus flipping proba-
bility is

2 22co1 I+ (L, WO 2 ,sin($Qt 1 ) c ±(o- o) i 2 (c +(o-o)t). (7
W~~~~j -I 5( -WO

Time t D~vO is the flight time through fields in the area* D. The
equation (7), which coincides with (, is the well known Rabi-formula for
RF spin rotation. The 1)olarization becomes completely flipped (fp = 1)
at the resonance w = o, when t1co1 = 7r/2.

Now we can see the drawback of Rabi approach. After the interaction,
the neuron wave function is (t) = exp(ikox - iot)~(tj), i.e. it has the
same initial momentum k and energy So. However intuitively we feel that
interaction with te RIF field should- change the energy due to absorption
or emission of RIF quanta 2w.

To see the full picture of the interaction we need to take into account
the change of the neutron energy and velocity. We can do that only by
solving the complete Schr6dinger equation. This is the Kriiger problem.

3 The Kriiger problem

The complete Schr6dinger equation is

ih-4(t, X) = 2 D~ + I4o-Bo(x) ± o.B (t, )) (, r, 

where
BO(x) + B yr, ) = O(O x < D)[BO + B (t)I,

and we introduced 0-function, which is equal to 1, wex incqulaity i

its argument is satisfied, or in th'e opposite case. III principle wc can
consider the case, when the permnanent niagnetic field exists in the whole
space, but it, will only result in unimportant mathematical complications,
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which will obscure the final results. We prefer to avoid such complications,
and assume that outside the area 0 x D the space is empty.

We need to solve equation (8), which means to find reflected andl trans-
mitted waves, their energies and polarizations, when the incident wave is

e(x < 0) exp(.ikox - 140t)0o (9)

To solve equation (8) we first suppose that D =:oo, i.e. the field exists
in semiinfinite space x > 0 as is shown in fig. 2. In that case we have an
interface at x = 0 between free space and space filled with fields, and we
need to find the waves reflected and refracted at it.

3.1 Reflection and refraction at the interface

Fig. 2. Reflection and transmissionI0 at the interface at = 0. To the
left of it we have free space, and to

e- sk~~xo ctk~~~ ~o the right there is the radiofrequency
eik~~4C~~o field B1 Bi(coswt,sinwt,0), and

Cik.~o B1 the permanent magnetic field Bo =
- CE~~~~~~ (0, 0, Bo). The and ~ are reflec-
I ~~~~~~~tion and refraction matrices, ~,% is a

0 SPinor of the incident particle.

Now we need to solve the Schr~dinger equation

ah( ,(,X ,a oBo+a ,t]~ ,0t ) (10)

with incident wave (9). This is a nonstationary equation with time depen-

dent interaction potential, however with some simple transformation we
can reduce equation (10) to a stationary one.

Indeed, the term oB (t) is represented in the form (3), and the solution
of the equation (10) in the form

Substitution of (11) into (10) gives

ai ± ' + creW - (42o)O(X > 0)} (t, X) = 0, (12)

where vector D = (wi,0,wo), w = pBo, w 1 iB1, and we chose the
unities h = m = 1.
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In equation (12) potential does not depend on time, so we may look for
a stationary solution:

0(t, X) = e6 iE1.{O(X < )[exp(kx)+exp(-ikx)f]+E)(x > O) exp(ik'x)~}~o,
(13)

where

k = k2 + 2o,2w, k' Vk 2 2 Za , 9 (,, w o - w), k2 2E,
(14)

arid matrix amplitudes 5,?are defined by matching the function (13) and
its derivative at the interface x 0. This matching gives two equations

I =, k(1 -) = k~ (15)

where 1 is the unit 2x2 matrix. Equations (15) have the solution

? = (k +k7)- 1 2k p = i -i = (k +k')-'(k -'). (16)

After substitution of (13) into (11) we get the total wave-function

V) (t, x,E) 

{Oifi~af1(x < 0)[exp(ikx) ± exp(-kx)3] + O(xr > 0) exp(ik'x)-~}~o.

(17)
Of course a linear combination of (17) with different E also satisfies the
equation (10), and later we shall find that we need not a single wave (17),
but a combination of two such waves with different E.

The first time factor exp(-iEt - iwa~t) in (17) looks very familiar and
innocent, but o here is very important and describes all the effects. The
exponent in this time factor becomes -i(E~w), if spinor after it is propor-
tional to dor, in other words, if the neutron is polarized along, ~
or opposite, d, to z-axis, where ~,ud are eigen spinors of the Pauli matrix
a, with eigen values ±I1 = ±~,, d

Let us check the role of this time factor in the incident wave

exp(-iEt - iwost) exp(ikx)~o

in expression (17). Since every spinor ~o can be represented as a superpo-
sition

~O= C&u~. + C14 IcauI + 10 1, (18)

the incident wave becomes

V)a(t, x, E) = ,e-i(E+w)t eik+x u, + ade* (E-w)teik Xd, k± = k21 d2w,
(19)
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which means that the two components of the incident, wave hav& different
energies and different velocities v± = k± depending on frequency of the RIF
field, with which it have not yet interacted. This looks very strange and
unacceptable.

If we want to consider a neutron with a definite energy E0, then wve can
define parameter E as E =FE - w. Then the first part of the function
(19) will look ceu6e-iEotCik,,~ie where k V2EO, as we wanted, but the
second component will have different energy EO - 2, and velocity kT - 4,
which is also unacceptable. It shows that thc solution of the form (17) is
not appropriate for the incident wave with a general spinor ~ ad fixed
primary eergy E0 . If ~fo is a superposition (18), and both components in
free space have the same energy, we cannot use a single stationary solution
of (12) but must take the superposition of solutions (17):

4(t, x) o5(t, x, E.~) + adId (t x, Ed)

a'-iEt" i( < )[C~ ik e -ik~ x&I + O (X > 0) exp(1ikj)T}±

aded 2W7t{~( )id zd]d + O(X > 0) exp(ikd'x)-d}d, (20)

with two different E, which we denoted E,,,d for spinors ~,id*
To have the incident wave

?tO(t, x) = exp(-i'Eot + ikox)~O= exp(-iEot + kox)[a,,~, + ad4d (21)

we must choose E,, -E - w and Ed = EO + cw. Then (20) will look

<'(t, X) a'.Vu(t, Xi FO - W) ± (d<)d(t, X, EO -t W) =

G'eiE1-L~o,-i1f(x < 0)[eik` + c6 X~' + O(r > ) exp(ik'x)'i"}~"+

(ide zctiwau,±1jO (X < 0)[eikoX + kdX Pd] ± e-(X > 0) CXP(ikdX>~d}~d,

(22)
where

kud = /k~0T2w)+ 2 0 zWi kjd rkO2T 2w -2arQ, k2 = 2Eo, (23)

and the vector Q is defined in (14).
Let us look at the incident wave (21) again, representing it, in the form

60)(t, x) = oeuC-iO-W(--eik, + (Ide- 0rti(U+)eidXk (24)

If we take into account that or, has eigern value ±1, when it acts on ~",d, we
reduce (24) to (21). However, let us imagine, that because of interaction
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with RIF field the spiniors ~ud are flipped upside down. Then ~,u,d in (24)
are replaced with HatiI an istead of (24) we get

i4)f(t.x) ==GC i- ±d adCiEt1WC+)eidU (25)

Now again we can replace all a, entering this expression, with their eigen
values. and as a result we obtain

1 'fjt, x) tb 1 Cfl- C' d±Oeow2 (26)

where k 2 k VU T4L. The function (25) contains two waves. The first
one, obtained by flipping froin the up state to down state. has the lower
energy because of enission of RIF quantum. The second wave after flipping
froni (own to ill) state is accomnpaniied b asorption of the quantlini 2w
and increase of energy aind velocity.

It is interesting to mention that tlie up-down flipping proceeds witli

emission and down-up wvith absorption of RF quantumn even in te absence
o(f te p~ermnanenit field B0. when the up and down states are degenerate.
Such inequivalence of two degenerate states is related to handedness of
rotation of the RIF field and has nothing to dlo with parity violation.

The result of this subsection is representedl by the solution (22), which
is valid for incident neultron of a given energy O and an arbitrary polar-
ization. Now we can analyze polarization and eergy of reflected neutrons.
It is not difficult, however, if the area 0 x < inf ty is filled only with
fields, this reflection is small, and we c-an neglect it. Reflection becomes
important, when the space 0 x < oo contains besides te fields also re-
flecting matter, as was considered in [3]. WVe sall consider this case later.
As for now, we neglect reflection amplitude p, and approximlat T z 1. In

this approximation-we can consider the finite thickness of thle space with
the fields, because reflection at the second interface c-an lbe also neglected.
Thus we arrive at the original Kriiger prob~lem with the fields at 0) x D.
andl start to analyze the wave function for the neutron tranisiinitted through
.the fields i.e. at x > D.

3.2 The waves transmitted through the fields

Let us go back to te original Kriiger problem, in which time fields are
pre1sent in spa~ce of finite width D as sowmi in fig. 1. Wve 5lippoHo t hat at
both interfaces Pti,,d 0 anrl Tud = 1. Then te t ransumit ted wave atm' > D
according to (22) become1s

xbr~~)



a~~e~~E~t C ~,+ C~d C(27)

where factor exp(i'k,'dD) describes propagation inside RF field, and] factor

exp(ik,,d[X - D]) describes propagation in free space after it.
The factor exp(--iEot - iw[u.z 1 eXP(ikU,d[X - D]) contains only oy,

matrix, so it cannot flip the &,,d spinors. Only the propagation factor

T,,d(0af) exp(ik'dD) (28)

can do this because it contains crx matrix. To find its explicit deperilence
on ax and then flipping and nonflipping probabilities, we use te following
relation that is valid for arbitrary function f (X):

f (qo) - f (q) + qo-f- q), f± = - 4f (q) ± f (-q)]. (29)
q2

One can easily check it acting by operator f (qo-) upon eigen spinors ±q
of the matrix qar.

Application of (29) to functions (28) gives

T,,,d (Or)=IIik,()D + ik'~d(-)D]I + aQ IC -k,) Cik~',(-)D 1 (30)
T~~d~crQ 2 2

where Q VI~ ( 02

k ,d =k]2- 2afZ kd(±Q) = k 2 r 2Q, ki 2 ko T 2w. (31)

Now we can easily find transmitted waves with nonflipped an(I flipped

polarization, when the incident wave has polarization of the general form
(18). For nonflipped polarization the wave function is

~,,i=exp(iko~x - D] - iEotk~,j, ~nf K ±'~ + Oedd VUi3~Gd

(32)

w\h ere

-[ud exp(ik,, d(Q)D) + exp(zk"(-Q)D)]±

2Q exp(ik' d(f2)D) - exp(ikud(-Q)D)I, (33)

and the sign ± is related to u, d components respectively. The spinor ~,pf
of the wave (32) differs from ~G but energy E0 and velocity k are the same
as in the incident wave.

For flipped polarization we have the wave function

-tr au iEot-iw(o-,-)t ikn(rD) d + Yd cde- O'' +1 leik,(-D)~. (34)
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wvhere

21 exp(ik$,(Q)D) - exp(ikd(-Q)D)I, (35)

and k(±)are shown in (31).
The wave (34) is of the form (25), and everything, which was said there,

is valid for (34). Flipped wave function consists of two plane waves with
(lifferent energies and precisely defined polarizations.

Probability of spin flip

fl 2 W~2 12
Wud = V~~u~dI 2 (1 2A L)FL_ exp(ik' d(Q)D) - ex (ik',,(-Q)D)

can be reduced to (7) only for k » 2 w + Q, which can be expected.

3.3 Application of the Kruger problemn

The wave function (34) is a coherent superposition of a single neutron in
two different energy states. These two states correspond also to two differ-
ent neutron velocities, so with time these two states become separated in
space. This separation can be cancelled with the help of second area with
the fields, identical to the first one shown in fig. 1. After second transmis-
sion velocities of tvo components become interchanged, slower component
becomes faster and overtakes the second component, which was first fast,
and after second transmission became slower. At the position, where two
components meet, one can observe iterference - time oscillation of polar-
ization. This longicudinal Mach-Zelinder iterferometer is described in [4].

Here we want to describe another effect. If the space x > D to the right
of the area shown in fig. I is not empty 1)lt filled with the permanent
magnetic field B (0,0,-B), with such B that uB = 2w, then the
velocities of both components in (34) will be the same v vo. The wave
-function V9(x, t) of neutrons with the same velocities but different energies
of two components represents the beam, which polarization on any axis
other than z is oscillating in time. We can observe this time oscillation of
polarization at every point downstream the neutron beam. Indeed, such a
wave function is representable in the form

4b(X, t) = iko(x-D) ~e i(E,- 2w)t Cu~u ± e-i(EO+2w)1 Cd~dJ (36)

Let us find the polarization on axis x. It is

< )*10qxl) >== JC*UCdj cos(2wt - 1i), (37)
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where 05 is the phase of the factor cc'. If we put on the beam way an
analyzer of polarization along x-axis, we shall obtain the beam with os-
cillating intensity. The beam with oscillating intensity can be represented
by an intensity wave, which is coherent and can be used [5] for neutron
holography.

It is also important to note, that the neutrons with precessing spin (pre-
cession frequency Lw) both components of which are mowing with the samne
speed v can be represented by a wave (spin wave) exp(i'kr - iut) (k 
which is not the de Broglie wave, because its frequency is not mu 2 /2hi. This
plane wave is cohercnt and its phase is determined by RF field in the area

0 < < D of fig. 1. Thus this plane wave can be used for neutron hiologra-
phy, as pointed out in 4]. This holography can be used without reference

beam or with an artificial computerized reference wave. The computerized
reference wave has phase determined by the phase of the same RIF field,
and it can be superposed with scattered spin wave at position sensitive
detector, every sell of which is supplied with time-of flight analyser.

4 The Krilger problem at total reflection

The next problem. which we shall consider here, is the total reflection from
an interface separating free space and the space filled with magnetic fields
and matter, as shown in fig. 3.

Fig. 3. Total reflection from the
interface at x 0 separating free
space andl the space . > 0 filled

Bo ~~with constant B = (,0, B0 ) and

RF B, = B, (coswt, sinwi, 0) fields
and with the matter described by

e~ik~ko tkr, the optical potential shown in the
P~~o _____________ upper part of the figure. The ,3 and

B, are reflection and refraction ma-
Ckr~ trices, o is a spinor of the incident

C:~~~~~ ~particle.

0 

This problem is related to physics of ultracold neutrons, and it was

solved for separate spin components in [3]. Here we present more com-
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pact solution using the results of section (3.1). The presence of matter
is manifested by aii optical potential of neiitronii-natter interaction, which
c:an be relpresented as 1' 

2u/2rn. where 4N~ob, N0 is atomic density of
the iiatter, and b is coherent scattering length of neutrons on the matter
nuclei. With this interaction the Schr-dinger equation (10) becomes

a 2 32 [
i h-h( x) - _ + ipoBo +. 1toB1 (t) + -1 ( )at 2in Ox 2 2

(38)

and after substitution of V(t~x) = ciwa'f0(t, x) with account of (3) it is
transformed to

at 2 2 u

Solution of this equation with incidlent, wave (21) is represented by (22),
where 'k',,d nside matter ar o k~= k2 T 2Lw - 2 -1it. If k <

reflection of some components is total.
We can exipect three reflected waves. The first one has the samne energy

as the incident wave but slightly changed polarization. Two other waves
are completely polarized, and their energies are changed by emission or
absorlption of RF field quantum. Reflection of all the waves is (lescribedl
by reflection mnatrices Pu,d given lby (16)

(k,1 ,dpwa) + k' (40(

where

~~~2 Ii(I 12 A2

We see that kd contains only o, which cannot. flipp the spill. while k,,
contains or, which is responsible for spin flipping.

To find flipped and nonflipped part of reflection wec must relpresent p in
the form A ± 3or, and find A and B. S1i. at rep~resen~tatiol imhlediately
gives the amplitude of nonflipped reflected component to be A4 ± B_. andl
that of flipped components to ibe B, ± BY.

To get such a rep~resenltationl we use (29) and the following relation.
which is valid for arbitrary function f (x):

f~pa)~ 1f±±y-f-j f 2 - 2 f2~~f (41)'

(PC.) P +~~~~~~~I



From the last relation we can find another one. xvinch is- valid for onr)jtrarv
functions f (x) and (x):

[f (py) + g~q1-[f'(-par) -i 9d-qoW.] (42)
X

where

2% = f'(p)jf(- p) + g(q)y (- q) + 2w+!j - 2 p
1p1

]Using all these relations werepresenr (401) n the ori

k~(..)kd( -k'( )L + 2k1
) t 2 ks'1 1 , -,k,, + uAiA---

k~d()k~d -. 1. ,,()k 1 (-I?) -+ 2k'Td k+, - 2k'7kJ

xwle re

u~d 2 2 1,2 2 ±w V,, 

From (43) it is easy to find rflecte I noniflipped. f. and flipped /rff Iat S
of the wave function in the samne way as in (32) ad (34):

tnfl e'Xp( -Ikox- IEt)&,fj. $,qj = a, o", Q 3'iu~ d (.(44)

w le re

ku.d(w,)k. d(-') - k'Ud(Q)k%(-u) 2kTd 2k~d ud- 

u.d=- 
ku.d(w)ku.(-)+ k' d(Q)k,, d(-M) + 2kT'kZV - 2k'-dk-7d 

(45)
where upper sign in the numerator is related to ,3r, and lower onie to i3jr

The spinor ~nfI of the wvave (44) (differs from ~(, butt energy EO and
vrelocity k are the same as in the inietwave.

The wave function with flipped spinor is

1 2



whlere

[AiT'k~d(Q) - k,,d(-Q)ko

kd(W,)kL,,(-LW) + k'dQk(-)±2k kd- 2k'7k7~_ 

(47)
wher k V2E(. The wave (46) is of the form (25), and everything, which
was sai there, s validl here too. Flipped wave function consists of two
plane waves with different energies and precisely defined polarizations. The
flipped amplitudes are proportional to LWI, and they naturally disappears,
If RF magnetic field is absent.

At resonance, W) = .11, when Q w1 , and WI) is negligeable comparing to
other parameters all the formulas simplify. From (45,47) we obtain

-3, =ko - kl: 2 LW1 k (ko - PO 48

kod k0 ±k' u~( ?± 2k'(kT +~ (48

where k± 2 (E0 ± 2), andI k, V2(Eo± W) - u. If one or both 2(Eo±

~)< u, we have to replace kV by ik , where = ~Iu -2(E 0 ±w) In
that case we have total reflection of one or both spin components from the
interface.

Because of inelastic interaction with RF field, and conservation of the
momentum of the icident particle parallel to interface, the reflected beam
is splitte1 in three beams, which have different energy, angle of reflection
and polarization. The specularly reflected beam has the same energy as
the incident one, and a little bit different polarization. The bean, which is
reflected at larger angle has higher energy and is polarized along internal
magnetic field, and the beam reflected at lower angle has lower energy
and is polarized oppositely to the internal field. It is important to tell,
that angular splitting is determined by the magnetic field in the matter,
and can be mach larger than angular splitting, which takes place at elastic
reflection from a magnetic mirror, when magnetization is not collinear to
the external field 6]. In the last case the angular splitting is determined
by external field, which, as a rule, is lower, than the internal field.

5 Conclusion

We have demonstrated an analytical method of solution of the Kriiger prob-
lem. This problem is equiivalent to one dimensional scattering of neutron
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on RF field confined in a liniited space region. The scattering p~roduces(
three components: elastic one, and two inelastic components on both sidles
of it. Inelastic components are produced by absorption and eissioin (if

quantum of RE field. and they are completely polarizedl in opposite dIi-
rections. The wvell known Rabi formula for RY reverse of' plariza-tio1 is
reproduced in the limit of high energies. when energy of RE quanta an be
neglected.
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