


1 Introduction

Spin-flippers and spin rotators are very common devices in neutron physics
now. One of such devices is radiofrequency spin-flipper. Its work is de-
scribed by the well known Rabi formula
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derivation of which we shall remind below. Formula (1) gives probability
of spin flipping wy for neutron with velocity vy after passage through
the coil of length D. Inside the coil there is a constant magnetic field,
By = (0,0, By), and a periodically varying in time radio frequency (RF)
magnetic field, By = By {cos 2wt,sin 2wt,0)!, as shown in fig. 1. The terms
wy in (1) denote |uBy 1|/h respectively, where p is the neutron magnetic
moment.

However interaction of neutrons with RF field leads not only to spin
rotation, but also to change of the neutron energy. If energy of the previous
neutron before interaction with the field is Ey = mv3/2, where m is the
neutron mass, then after interaction with RF field it becomes E = Ey+h2w,
which is equivalent to emission or absorption of RF quantum or inelastic
scattering on the field. This change of encrgy is not accounted by (1).

We want to show how to find spin-flip probability taking into account
inelastic interaction with RF field. For simplicity we suppose that all the
fields are confined in some area of space and have no other dependence on
space coordinates.

This problem was formulated before by Kriiger [1], he presented solution
as a combination of 16 waves with 16 unknown coefficients. He could solve
the system of 16 equations only approximately. Complete solution of this
system was given 14 years later [2]. We show how to avoid this formidable
task and to obtain a compact physically transparent solution, from which
all the interesting values can be calculated immediately.

So, let us consider one dimensional elastic and inelastic scattering of the
neutron on magnetic field confined within the slab of space of thickness D:
0 < z < D as shown in fig. 1. The field consists of a constant part directed
along z-axis, By = (0,0, By), and RF part, B| = B)(cos 2wt, sin 2wt, 0), ro-
tating in x — y plane with frequency 2w. The incident neutron is described
by a plane wave 1 = exp(ikox — i&yt)éy, where ky = muy/h, & = Ey/h,

' For convenience we use frequency 2w instead of w. This eliminates factor 1/2 in many formulas. However one should
remember that the quantum of this RF feld is 2w, not k.



Ey = mvd/2, and & is an arbitrary spinor related to an arbitrary polariza-
tion. We need to find transmission, 7, and reflection, p matrix amplitudes,
which contain information about neutron polarization and neutron energy
after the interaction.

2 Scattering of high energy neutrons. Rabi formula

If the neutron energy Ej is suffi-
ciently high, i.e. Ey > h2w, one
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ihd§(t)/dt = —puloBo + o B ()[¢(t), (2)
(0 ={0;,0,,0,} are the Pauli matrices), and by initial condition £(0) = &.
For general solution of this equation we use the representation of o Bj:
o B, (t) = 0, cos 2wt + o, sin 2wt = exp(—iwo,t)o, exp(iwo.t), (3)

and substitute it into (2). As the result we get
idE(t)/dt = [o,wy + exp(—iwo,t)o,w exp(iwo,t)]E(t), (4)

where w; = —pu,B;/h for i =0, 1.
Solution to (4) can be represented in the form £(t) = exp(—iwo,t)¢(t).
Substitution of it into (4) gives

ide(t)/dt = [0, (wy — w) + azw1]¢(t). (5)

The expression in square brackets doesn’t depend on time, thus ¢(t) should
be represented as ¢(t) = exp(iQat)¢(0), where vector Q is (wy,0,dw), and



dw = wp — w. The initial condition £(0) = &; is equivalent to ¢(0) = &, so
the final solution to (4) is

£(t) = exp(—iwo,t) exp(if2at)£(0) = exp(—iwo,t) |cos QU + Q—(;: sin 2¢| o,

‘ (6)
where 0 = /(wy — w)? + Wi,

Let us find spin-flip probability, when initially the spin is oriented par-
allel to z-axis, i.e. 0.&y = €. The factor 2 = dwo, + wio, contains
non-diagonal g, matrix, which flips the polarization. Thus flipping proba-
bility is '
2 2
—w—?:h)—?SiHQ (\/w12+(w—w0)7t1>. (7)
Time t; = D/uvy is the flight time through fields in the area - D. The
equation (7), which coincides with (1), is the well known Rabi-formula for
RF spin rotation. The polarization becomes completely flipped (wy = 1)
at the resonance w = wy, when tjw, = n/2.

Now we can see the drawback of Rabi approach. After the interaction,
the neuron wave function is ¥(t) = exp(tkox — i&t)E(ty), i.e. it has the
same initial momentum kg and energy &;. However intuitively we feel that
interaction with the RF field should change the energy due to absorption
or emission of RF quanta 2w.

To see the full picture of the interaction we need to take into account
the change of the neutron energy and velocity. We can do that only by
solving the complete Schrodinger equation. This is the Kriiger problem.
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3 The Kriiger problem

The complete Schridinger equation is
h2 82
2m Oz?
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where

By(z) + Bi(t,x) = ©(0 < x < D)[By + By (1)),
. and we introduced ©-function, which is equal to 1, when inequality in
its argument is satisfied, or 0 in the opposite case. In principle we can
consider the case, when the permanent magnetic field cxists in the whole
space, but it will only result in unimportant mathematical complications,



which will obscure the final results. We prefer to avoid such complications,
and assume that outside the area 0 < z < D the space is empty.

We need to solve equation (8), which means to find reflected and trans-
mitted waves, their energies and polarizations, when the incident wave is

Oz < 0) explikgzr — i&t)Eo. (9)

To solve equation (8) we first suppose that D = oo, i.e. the field exists
in semiinfinite space z > 0, as is shown in fig. 2. In that case we have an
interface at z = 0 between free space and space filled with fields, and we
need to find the waves reflected and refracted at it.

3.1 Reflection and refraction at the interface

at the interface at z = 0. To the
left of it we have free space, and to
e~*7hg | eRrigg the right there is the ra.diofrequency
field B, = Bj(coswt,sinwt,0), and
ikz B, the permanent magnetic field By =
e . :
EEE——— = (0,0,Bp). The p and 7 are reflec-
tion and refraction matrices, & is a
0 T spinor of the incident particle.

lB Fig. 2. Reflection and transmission
0

Now we need to solve the Schrédinger equation
0 2 9?
h—y(t,r) =4 ——7= B B(t)]0(z > 0} t,z), (10
hrbltsn) = {4 ulo B+ o By0]6( > 0 fuen, o)
with incident wave (9). This is a nonstationary equation with time depen-
dent interaction potential, however with some simple transformation we
can reduce equation (10) to a stationary one. :
[ndeed, the term o B, (t) is represented in the form (3), and the solution
of the equation (10) in the form

Y(t,z) = e ™ p(t, x). (11)
Substitution of (11) inte (10) gives

fig+5 40— (000)0( > 0} 6(t,2) =0, (12)

where vector 2y = (wy,0,wy), wg = pBy, w; = pBy, and we chose the
unities A =m = 1.



In equation (12) potential does not depend on time, so we may look for
a stationary solution:

o(tz) = e POz < 0)[exp(il§:x)+exp(—ikr)ﬁ]+@(m > 0) exp(ik'm)%}fo,

. (13)
where
k= k420w, K =vVE =200, Q=(u,0w-w), k*=2E,
(14)

and matrix amplitudes p, 7 are defined by matching the function (13) and
its derivative at the interface x = 0. This matching gives two equations

1+p=7%  *(1-p) =k'7, (15)
where 1 is the unit 2x2 matrix. Equations (15) have the solution
P=(k+ k)2 p=r-1=(k+k)Hk-F) - (16)
After substitution of (13) into (11) we get the total wave-function
v(t,z, E) = .
e Bt Q2 < 0)[exp(ikz) + exp(—ikz)p] + O(z > 0) exp(ik'z)7 }&.
(17)

Of course a linear combination of (17) with different E also satisfies the
cquation (10), and later we shall find that we need not a single wave (17),
but a combination of two such waves with different E.

The first time factor exp(—iEt — iwo,t) in (17) looks very familiar and
innocent, but o, here is very important and describes all the effects. The
exponent in this time factor becomes —i(F+w), if spinor after it is propor-
tional to £ = &, 4, or, in other words, if the neutron is polarized along, &,,
or opposite, £4, to z-axis, where £, 4 are eigen spinors of the Pauli matrix
o, with eigen values £1: 0,§, 4 = +&u 4.

Let us check the role of this time factor in the incident wave

exp(—iEt — iwo,t) exp(ikz)€y

in expression (17). Since every spinor & can be represented as a superpo-
sition
o = aubu + adba, |awl* + |eal® = 1, (18)

the incident wave becomes

wo(t’l‘, E) — aue—i(E—{-u)teik.,.zé-u + ade—i(E~w)teik_z§d’ k:h — \/kfz—:EZZ,



which means that the two components of the incident wave have different
energies and different velocities vy = k4 depending on frequency of the RF
field, with which 1t have not yet interacted. This looks very strange and
unacceptable.

If we want to consider a neutron with a definite energy Fjy, then we can
define parameter E as E = Ey — w. Then the first part of the function
(19) will look ayeBotethore where ko = 2E,, as we wanted, but the
second component will have different energy Eg—2w and velocity k3 — 4w,
which is also unacceptable. It shows that the solution of the form (17) is
not appropriate for the incident wave with a general spinor £; and fixed
primary energy Ey. If & is a superposition (18), and both components in
free space have the same energy, we cannot use a single stationary solution
of (12) but must take the superposition of solutions (17):

w(t, ‘l‘) = auwu(tv , Eu) + O!dlﬂd(t-, I, Ed) =
age Bt 0 (1 < ) 4 e R 5] 4 Oz > 0) exp(ik,z) Ty ot
ade”iE"i—i“”’t{(-)(;E < 0)[6*” + e'i’;dzﬁd] +O(x > 0) exp(iic,'jx)%d}fd, (20)

with two different £, which we denoted E,, 4 for spinors , 4.
To have the incident wave

Uo(t, ) = exp(—1Egt + ikoz)€y = exp(—iEpt + ikpx){ou€y + agd)  (21)
we must choose F, = Ey — w and Ey = Ey+ w. Then (20) will lobk
Yt ) = auiby(t,x, By — w) + agpa(t,z, By + w) =
0, IO < 0)(e™ 4 e RG] 4 Oc > 0) explik, )}t

age P o IO (o < 0)]e0? 4 o7 py] + Oz > 0) explikz) 4} a,
(22)

where

bua= VR F 2w+ 20w, K =V Tw-209Q, k=2E, (23)

and the vector €2 is defined in (14).
Let us look at the incident wave (21) again, representing it in the form

—iEgt—iwlo,— 1)t ik,
° Fetrg,

wo(t’x) = q,e + (lde_iEot-iw(U’+1)t€ikdrfd. (24)

If we take into account that o, has eigen value 1, when it acts on &, 4, we
reduce (24) to (21). However, let us imagine, that because of interaction



with RF field the spinors &, 4 are flipped upside down. Then &, 4 in (24)
are replaced with £, ,, and instead of (24) we get

U/)f[(t,‘l') — a”()—iEU(—iw(az-l)leikuxgd + (l’dC_iEol_iw(a’+1)t€ik‘iz§u. (25)

Now again we can replace all o,, entering this expression, with their eigen
values, and as a result we obtain

ll’fz(t,-??) — a“{?~i([fg—?w)leik1:r£d + Qde_i(E0+2u)t€ik215u, (26)

where k19 = k¢ F dw. The function (25) contains two waves. The first
one, obtained by flipping from the up state to down state, has the lower
energy hecause of emission of RE quantum. The second wave after flipping
from down to up state is accompanied by absorption of the quantum 2w
~and increase of energy and velocity. .

It is interesting to mention that the up-down flipping proceeds with
emission and down-up with absorption of RF quantum even in the absence
of the permanent ficld By, when the up and down states are degenerate.
Such inequivalence of two degenerate states is related to handedness of
rotation of the RF field and has nothing to do with parity violation.

The result of this subsection is represented by the solution (22), which
is valid for incident neutron of a given energy Ey and an arbitrary polar-
ization. Now we can analyze polarization and energy of reflected neutrons.
It is not difficult, however, if the arca 0 < z < infty is filled only with
fields, this reflection is small, and we can neglect it. Reflection becomes
important, when the space 0 < ¢ < oo contains besides the fields also re-
flecting matter, as was considered in [3]). We shall consider this case later.
As for now, we ncglect reflection amplitude p, and approximate 7 = 1. In
this approximation.we can consider the finite thickness of the space with
the fields, because reflection at the second interface can be also neglected.
Thus we arrive at the original Kriiger problem with the fieldsat 0 < 2 < D,
and start to analyze the wave function for the neutron transmitted through
the fields i.e. at x > D.

3.2 The waves transmitted through the fields

Let us go back to the original Kriiger problem, in which the fields are
present in space of finite width D as shown in fig. 1. We suppose that at
both interfaces p, 4 = 0 and r, ¢ = 1. Then the transmitted wave at @ > D
according to (22) becomes

‘l/’t"(t,;}?) =



vy o~ iEot—iw(o.=1)t,, iku[z—D]eil};DE +a e——iEot——iu(az+l}teiéd(I—D}eik;Df . (27)
where factor exp(ik’, D) describes propagation inside RF field, and factor
exp(zku,d[:c — D)) describes propagation in free space after it.

The factor exp(=iEgt — wlo, F 1jt) exp(ik,4fz — D]) contains only o,
matrix, so it cannot flip the &, 4 spinors. Only the propagation factor

T.4(0Q) = exp(ikl, 4D) (28)

can do this because it contains ¢, matrix. To find its explicit dependence
on o, and then flipping and nonflipping probabilities, we use the following
relation that is valid for arbitrary function f(z):

flao) = L)+ 200, o=@ f-gl (29)

One can easily check it acting by operator f(go) upon eigen spinors {4,
of the matrix go.
Application of (29) to functions (28) gives

[ i (-)D ol QD QD
T, (o) = 5 [ea(D 4 ikl Hﬁ[e Lal®ID _ ik -2D) (30
where 0 = \/w? + (w — wp)?,

ha= \/k 200, K, (£Q) =k, 720, k,=kF2w (31

Now we can easily find transmitted waves with nonflipped and flipped
polarization, when the incident wave has polarization of the general form
(18). For nonflipped polarization the wave function is

Unp = explikg(z — D] — iEgt)ngt, Eupt = &b+ a0 4 = Buutu,
. (32)
where

1
Bud = §[GXP(ik:t,d(Q)D) + exp(ik, (=) D))+

QQ [exp 1ku d(Q)D) - eXP(ikL,d("Q)D)L (33)

and the sign = is related to u,d components respectively. The spinor &,
of the wave (32) differs from &g, but energy Ej and velocity kg are the same
as in the incident wave.

For flipped polarization we have the wave function

Lz}?l _ ,Yuaue—iEot—iw(a,~1)t€iku(r—D)£d + ,Ydade—iEomw(azH)zeikd(z—u)ém (34)
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where

Yud = gy [exP(EK, () D) ~ exp(ik, o~ D)) (35)

and &}, 4(£€) are shown in (31).

The wave (34) is of the form (25), and everything, which was said there,
is valid for (34). Flipped wave function consists of two plane waves with
different energies and precisely defined polarizations.

Probability of spin flip

wi 1

wha = brudl” = T PP kD) - exp(ik, (- D)[
Wi W= w

can be reduced to (7) only for k2 > 2w + §, which can be expected.

3.3 Application of the Kriiger problem

The wave function (34) is a coherent superposition of a single neutron in
two different energy states. These two states correspond also to two differ-
ent neutron velocities, so with time these two states become separated in
space. This separation can be cancelled with the help of second area with
the fields, identical to the first one shown in fig. 1. After second transmis-
sion velocities of two components become interchanged, slower component
becomes faster and overtakes the second component, which was first fast,
and after second transmission became slower. At the position, where two
components meet, one can observe interference - time oscillation of polar-
ization. This longi:udinal Mach-Zehnder interferometer is described in [4].

Here we want to describe another effect. If the space £ > D to the right
of the area shown in fig. 1 is not empty but filled with the permanent
magnetic field B = (0,0,—B), with such B that uB = 2w, then the
velocities of both components in (34) will be the same v = v;. The wave
function ¥ (x,t) of neutrons with the same velocities but different energies
of two components represents the beam, which polarization on any axis
other than z is oscillating in time. We can observe this time oscillation of
polarization at every point downstream the neutron beam. Indeed, such a
wave function is representable in the form

w(x,w — eiko(x—D) [e—i(Eo—Qw)tCugu + e—i(EU+2w)th§d} o (36)
Let us find the poiarization on axis z. It is

< YPlogl >=|ejeq| cos(2wt — @), (37)



where ¢ is the phase of the factor c,cj. If we put on the beam way an
analyzer of polarization along z-axis, we shall obtain the beam with os-
cillating intensity. The beam with oscillating intensity can be represented
by an intensity wave, which is coherent and can be used [5] for neutron
holography.

It is also important to note, that the neutrons with precessing spin (pre-
cession frequency w) both components of which are mowing with the same
speed v can be represented by a wave (spin wave) exp(ikr —iwt) (k = w/v),
which is not the de Broglie wave, because its frequency is not muv?/2k. This
plane wave is coherent and its phase is determined by RF field in the area
0 < z € Doffig. 1. Thus this plane wave can be used for neutron hologra-
phy, as pointed out in [4]. This holography can be used without reference
beam or with an artificial computerized reference wave. The computerized
reference wave has phase determined by the phase of the same RF field,
and it can be superposed with scattered spin wave at position sensitive
detector, every sell of which is supplied with time-of flight analyser.

4 The Kriiger problem at total reflection

The next problem, which we shall consider here, is the total reflection from
an interface separating free space and the space filled with magnetic fields
and matter. as shown in fig. 3.

u

I B
Fig. 3. Total reflection from the
interface at r = 0 separating free
space and the space x > 0 filled
By with constant By, = (0,0, By) and
RI' B, = Bi(coswt,sinwit,0) fields
and with the matter described by
. - the optical potential shown in the
e hk e upper part of the figure. The p and
B, 7 are reflection and refraction ma-
trices, £o is a spinor of the incident

exkrgo
- @ particle.

0 z

This problem is related to physics of ultracold neutrons, and it was
solved for separate spin components in [3]. Here we present more com-
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pact solution using the results of section (3.1). The presence of matter
is manifested by an optical potential of neutron-matter interaction, which
can he represented as h%u/2m, where u = 47 Nyb, Ny is atomic density of
the matter, and b is coherent scattering length of neutrons on the matter
nuclei. With this interaction the Schréodinger equation (10) becomes

2

L0 h* o2 h f
1h§ux(t,1,) { 2 a2 [/lUBO +poB(t) + é—n—lu] O(x > O)]} v(t,x),
(38)

and after substitution of ¥(t,z) = e “7:L¢(t, ) with account of (3) it is
transformed to

ot

Solution of this equation with incident wave (21) is represented by (22),
where &/ .¢ inside matter arc now “"d =V F2w-200—u Ifk} <u
reflec tlon of some components is total.

{12+A+0w [0'904-%} (-)(1'>0)}¢(t,x):0. (39)

We can expect three reflected waves. The first one haq the same cnergy
as the incident wave but slightly changed polarization. Two other waves
are completely polarized, and their energies are changed by emission or
absorption of RF field quantum. Reflection of all the waves is described
by reflection matrices p, 4 given by (16)

P = (kud(wo.) + K, (o) (ko alwe,) = &, (o), (40)

where

kwa(wo,) = ki, +2wo,, kK =k, —u—20Q, ki,=kF2w.

We sec that ky g contains only o,, which cannot flipp the spin, while k| ,
contains ¢,, which is responsible for spin flipping.

To find flipped and nonflipped part of reflection we must represent p in
the form A + Be, and find A and B. Such a representation immediately
gives the amplitude of nonflipped reflected component to be A + B, and
that of flipped components to be B, FiDB,,.

To get such a representation we nse (29) and the following relation.
which is valid for arbitrary function f(x):

-1
r%ﬂ=%+%ﬁ]=ﬁéﬁﬁ—$4 fpﬁ.un
y—Jz ¥




From the last relation we can find another one. which is valid for arbirrary

functions f(z) and g(1):

_ 1. . ,
[f(po) + glqa)]™" = f(=pa) + g(-go)]. (42)
where : )
fe=5Uf W £ f=pl g2 = 5lole) £ g(=a)].
N = f(p)f{— _ Y. g, —of 4 P4
N o= fplf=p) Halg)gl—q) +2frgy = 2f g o
Using all these relations we represent (40) in the form

f‘)u,{l =

ol
ud Ty 0
a0 (—w) 4 kL (KL (=) 4 2R kY = 267 k7 S0

+ 2ig Wk

ke atwthy al =) = ki, f(Q)k, (=) + 2677 L 2k kT uid uzQ

(43)

— W
Q
where

1[ /= -
kg = 5 [\/’ffz + 2w+ \/kl{,z — f_)w} ’

= {\/1«1 s —u =20k, —u +QQ} ki = ki F 2w

From {43} it is easy to find reflecred nouflipped, 1.',; - and flipped ('ﬂf parts
of the wave function in the same way as in (32) and (34):

L nlj”[ = (Xp(_ZIWJ'l "'/E )gnﬂ Enfl = (l;f,,—{—-(}(rlf,[, ”:;_d = 31,1‘74“11.(17 (44)

where
or ku_d(—i-})ku d('_@') - k;,d(Q) ( Q) + 2k’ dk“d T 2]('“ k W(Js: W

kua(w)kwal=w) +k, (Qk, (=) + 2k kE — A' ako dT
(45)
where upper sign in the numerator is related to 37, and lower one  to 3],
The spinor &,z of the wave (44) differs from &;, but energy E; and
velocity kg are the same as in the incident wave.
The wave function with flipped spinor is

5(1 + 'Ydad( 1Egl~iw(az+l)t(f—il}dz£uﬂ (46)

vl .r —iFEgt—iw(o,~1) t —ikyz
Lﬂ = TuGuC 0 (



where
W

. —ﬁ[ ‘L,d(Q) - :L,d(‘Q)]ko

S = Wy — w?’

Ko a(w)kua(=w) + K, (K, (=) + 2Kk — 2k ko,

(47)
where kg = /2E. The wave (46) is of the form (25), and everything, which
was said there, is valid here too. Flipped wave function consists of two
plane waves with different energies and precisely defined polarizations. The
flipped amplitudes are proportional to wy, and they naturally disappears,
it RF magnetic field is absent.

At resonance, w = wy, when Q = wy, and w; is negligeable comparing to
other parameters all the formulas simplify. From (45,47) we obtain

k() - k';c _ 20.11 ko(ko - k’q:)
ko + KL T 2wk (ke + k)

Bud = (48)

where ky = /2(Ey £ 2w), and k = /2(Ey + w) — u. If one or both 2(Ey+
w) < u, we have to replace k), by ik}, where k] = \Ju - 2(Ejtw). In
that case we have total reflection of one or both spin components from the
interface.

Because of inelastic interaction with RF ficld, and conservation of the
momentum of the incident particle parallel to interface, the reflected beam
is splitted in three beams, which have different energy, angle of reflection
and polarization. The specularly reflected beam has the same energy as
the incident one, and a little bit different polarization. The bean, which is
reflected at larger angle has higher energy and is polarized along internal
magnetic field, and the beam reflected at lower angle has lower energy
and is polarized oppositely to the internal field. It is important to tell,
that angular splitting is determined by the magnetic field in the matter,
and can be mach larger than angular splitting, which takes place at elastic
reflection from a magnetic mirror, when magnetization is not collinear to
the external field [6]. In the last case the angular splitting is determined
by external field, which, as a rule, is lower, than the internal field.

5 Conclusion

We have demonstrated an analytical method of solution of the Kriiger prob-
lem. This problem is equivalent to one dimensional scattering of neutron
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on RF field confined in a limited space region. The scattering produces
three components: elastic one, and two inelastic components on both sides
of it. Inelastic components are produced by ahsorption and emission of
quantum of RF field, and they are completely polarized in opposite di-
rections. The well known Rabi formula for RF reverse of polarization is
reproduced in the limit of high energies. when energy of RF quanta can be
neglected.

References

[1] E. Kriiger. “Accelleration of polarized neutrons by rotating magnetic

field.” Nukleonika 25. 889-893 (1980).

[2] R. Golub, R. Giler, T. Keller, A plane wave approach to particle bearn
magnetic resonance, AJP 62, 779, 1994.

[3] Frank A.L, Kozlov A.V. Neutron reflection and refraction on matter
with rotating magnetic field. Proc. of V-th International seminar on
[nteraction of Neutrons with Nuclei. JINR E3-97-213, Dubna, 1997, p.
411.

[4] J. Felber. R. Galer, R. Golub, P. Hank, V. Ignatovich, T. Keller, U.
Rauch, Neutron Time Interferometry. Foundations of Physics, 29, No.
3. 381. 1999.

[5] E. Bakshi TCD-extending the limits of neutron diffraction, Pys. Lett
A 283 (2001) 243.

[6] Korneev D.A.. Bodnarchuk V.I. and Ignatovich V.K. Off specular nen-
tron reflection from maguetic media. Proc. of the International Symp.
on Advance in Neutron Optics and Related Research Facilities. {Neu-
tron Optics in Kumatori 96) J. Phys. Soc. Japan, v. 63, Suppl. A,
1996, p. 7-12.

Received on May 21, 2002.



