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Random matrix theory (RMT) [1] was originally introduced to explain the statistical

fluctuations of neutron resonances in compound nuclei [2]. The theory assumes that the

nuclear Hamiltonian belongs to an ensemble of random matrices that are consistent with the

fundamental symmetries of the system. In particular, since the nuclear interaction preserves

time-reversal symmetry, the relevant ensemble is the Gaussian orthogonal ensemble (GOE).

The use of RMT in the compound nucleus was justified by the complexity of the nuclear

system. Bohigas et al [3] conjectured that RMT describes the statistical fluctuations of

a quantum system whose associated classical dynamics is chaotic. RMT has become a

standard tool for analyzing the universal statistical fluctuations in chaotic systems [4,5].

The chaotic nature of the single-particle dynamics in the nucleus can be studied in

the mean-field approximation. The interplay between shell structure and fluctuations in the

single-particle spectrum has been understood in terms of the classical dynamics of the nucle-

ons in the corresponding deformed mean-field potential [6,7]. However, the residual nuclear

interaction mixes different mean-field configurations and affects the statistical fluctuations

of the many-particle spectrum and wavefunctions. Various nuclear structure models can be

used to study these fluctuations. The statistics of the low-lying collective part of the nuclear

spectrum have been studied in the framework of the interacting boson model, in which the

nuclear fermionic space is mapped onto a much smaller space of bosonic degrees of freedom

[8,9]. Because of the relatively small number of degrees of freedom in this model, it was

also possible to relate the statistics to the underlying mean-field collective dynamics. At

higher excitations additional degrees of freedom (such as broken pairs) become important

[10], and the effects of interactions on the statistics must be analyzed in larger model spaces.

The interacting shell model offers an attractive framework for such studies where realistic

effective interactions are available and where the basis states are labeled by exact quantum

numbers of angular momentum, isospin and parity [11].

RMT makes definite predictions for the statistical fluctuations of both the eigenfunctions

and the spectrum. The electromagnetic transition intensities in a nucleus are observables

that are sensitive to the wavefunctions, and the study of their statistical distributions should
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complement [8,9] the more common spectral analysis. Using the interacting shell model,

B(Ml) and B(E2) transitions were recently analyzed in mNa [12] and found to follow the

Porter-Thomas distribution [13], in agreement with RMT and consistent with the previous

finding of a Gaussian distribution for the eigenvector components [14]- [17].

Most studies of statistical fluctuations in the shell model have been restricted to lighter

nuclei (.A ;$ 40) where complete Ohu calculations are feasible (e.g. srf-shell nuclei). It

is of interest to investigate the statistics in other mass regions. In this paper we study

the fluctuation properties of AT = 0 electromagnetic transition intensities in nuclei with

A ~ 60. We find that B(E2) as well as AJ ^ 0 B(M\) intensities are described by the

Porter-Thomas distribution, but that the AT = AJ — 0 Ml statistics are sensitive to Tz

and show a significant deviation from a Porter-Thomas distribution in self-conjugate nuclei

A=60

FIG. 1. Spectral statistics in A = 60 nuclei, (a) Nearest-neighbor level spacing distribution

P(s) for T = 0 states with J = 2,4 (histograms). The solid line is the Wigner-Dyson distribution

and the dashed line is the Poisson distribution. Bottom: A3-statistic for J = 2 levels with (b)

T = 0 and (c) T = 1. Also shown are the GOE (solid lines) and Poisson (dashed lines) limits.
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(Tz = 0). At the same time the spectral statistics are found to be fully consistent with

- RMT (at a given spin and isospin). Since full p/-shell calculations are currently not feasible

for A ~ 60 nuclei, we perform p/-shell calculations with 56Ni as a core, i.e., we assume a

fully occupied /7/2 orbits and consider all possible many-nucleon configurations defined by

the O/5/2, lp.3/2 and lpi/2 orbitals. The effective interaction is chosen to be the isospin-

conserving F5P interaction [18]. This interaction is successful in describing the mass range

A ~ 57 - 68. The calculations were performed using the shell model program OXBASH

[19].

To test the validity of RMT in the above model space, we first study the spectral fluc-

tuations for states with good spin and isospin. Fig. l(a) shows the nearest-neighbors level

spacing distribution P(s) for the unfolded T = 0 levels. To improve the statistics we combine

the spacings of the J = 2 states and those of the J = 4 states. The calculated distribution

(histograms) is in agreement with the Wigner-Dyson distribution (solid line), and level re-

pulsion is clearly observed at small spacings. The Poisson distribution, which corresponds

to a random sequence of levels (and characterizes regular systems), is shown by the dashed

line for comparison. Another measure of fluctuations is the spectral rigidity described by

Dyson's A3 statistic [1]. The bottom panels of Fig. 1 show A3(L) versus L for J = 2 states

with T = 0 (panel (b)) and T = 1 (panel (c)). The results agree well with the GOE limit

(solid lines).

We now consider the electromagnetic transitions intensities. Denoting by B(pL; %-¥ f)

the reduced transition probability from an initial state \i) to a final state | / ) , with Gi indicat-

ing the electric (E) or magnetic (M) character of the transition, and 2L the multipolarity,

we have [20]

Here Mis(wL) and M^(wL) are the triply reduced matrix elements for the isoscalar and

isovector components of the transition operator, respectively. Note that these matrix ele-

ments depend on Jt, T; and Jf> Tf but not on Tr For AT = 0 transitions (r ; = Tf — T) the

isospin Clebsch-Gordan coefficient in Eq. (1) is simply given by

{TTz10\TTz) = Tzls]T{T + 1) . (2)

It follows that the isovector component in Eq. (1) is absent for self-conjugate (i.e. Tz — 0)
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nuclei. Thus the statistics of the isoscalar component of an electromagnetic transition op-

erator can be inferred directly from the study of AT = 0 transitions in Tz = 0 nuclei.

Consequently, we are able to test the sensitivity of the statistics to the isovector and the

isoscalar contributions. Below we present results for E2 and Ml transitions. The E2 tran-

sitions were calculated using standard effective charges of e^ = 1.5 and en = 0.5. We note,

however, that the isoscalar and isovector components of E2 are (up to a proportionality

constant) independent of the effective charges, and their corresponding statistics are thus

also independent of the particular choice of effective charges.

To study the fluctuation properties of the transition rates, it is necessary to divide out

any secular variation of the average strength function versus the initial and final energies.

We calculate an average transition strength at an initial energy B and final energy E' from

[21,9]

£ - / ^ W - > / ) « - ( E - E i ) V 2 ^ - ( S ' - E ' ) W
 f3>

where 7 is a parameter chosen as described below. For fixed values of the initial (Jf,T) and

final (JJ,T) spin/parity and isospin, we calculate from Eq. (1) the intensities B{pL\ i —¥ f).

All transitions of a given operator (e.g. Ml or El) between the initial and final states of the

given spin/parity and isospin classes have been included in the statistics. We remark that

the energy levels used in (3) are the unfolded energy levels [22], characterized by a constant

mean spacing. The value of 7 in (3) has been chosen to be large enough to minimize effects

arising from the local fluctuations in the transition strength but not so large as to wash

away the secular energy variation of the average intensity. In the present calculations we

used 7 ~ 2.5. We renormalized the actual intensities by dividing out their smooth part

; JjTT, -> J,TTZ)
Vli~ (B{uL;E,E')) ' W

and construct their distribution using bins that are equally spaced in logy. In RMT there

is a large number of weak transitions, and we use logy as the variable in order to display

small values of y (over several orders of magnitude). For each transition operator and each

class of initial and final states we fit to the calculated distribution a x2 distribution in v

degrees of freedom [23]

Pu{y) = (1//2 < y >Y'2y"'2-1e-""2<y>/r(u/2) . (5)
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For v = 1 this distribution reduces to the Porter-Thomas distribution. In systems with

mixed classical dynamics, it is found that v decreases monotonicallyfrom 1 as the system

makes a transition from chaotic to regular motion [21].

We first examine all E2 and Ml 2+,T -> 2+, T transitions (T = 0 or T = 1) in A = 60

nuclei. T = 0 states exist only in Tz — 0 nuclei,- i.e., ^Zn in our case. However, the T = 1

states form isobaric multiplets in 60Co, 60Zn and 60Cu. In the latter case we studied the

statistics in both Tz = 0 and Tz — 1 nuclei. Because of the vanishing of the isovector

Clebsch-Gordan coefficient in Eq. (1), the transitions in 60Zn (Tz = 0) are purely isoscalar.

For each transition operator we sampled 562 = 3136 and 662 = 4356 matrix elements for

T = 0 and T = 1, respectively. The calculated distributions (histograms) of the B{E2)

(left panels) and B(Ml) (right panels) 2*,T -^ 2+,T' transitions are shown in Pig. 2, and

compared with the Porter-Thomas distribution (Eq. (5) with v = 1). The distributions of

A=60
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FIG. 2. The £(£2) (left panels) and B(M1) (right panels) intensity distributions (histograms)

for the 2+,T -+ 2+,T transitions in A = 60 nuclei: (a,b) 2+, 1 -)• 2+, 1 transitions (T2 = 1); (c,d)

2+, 1 -+ 2+ , 1 transitions {Tz = 0); (e,f) 2+ ,0 -+ 2+ ,0 transitions (T, = 0). The solid lines describe

the Porter-Thomas distribution (Eq. (5) with v = 1). Notice the deviation from Porter-Thomas

statistics in (d) and (f).



transitions within the T = 1 states are shown in the top (Tz = 1) and middle (7^ = 0)

panels. Since our interaction is isospin invariant, the energy levels of an isobaric multiplet

are degenerate, and the spectral statistics of T = 1 states must be the same in both Tz = 0

and Tz = 1 nuclei. As discussed earlier these levels display GOB statistics (see Fig. 1).

However, while the B(E2) distributions are all in agreement with the GOE prediction, the

Ml distributions are sensitive to Tz. For Tz = 1 nuclei the distribution of the Ml intensities

is Porter-Thomas (Fig. 2b), but in self-conjugate nuclei (7^ = 0) we find that the Ml

distribution deviates significantly from the GOE limit (Fig. 2d). Since various transition

operators probe different components of the wavefunctions, it is possible that deviation from

the statistical limit will occur for some of these operators. Such a deviation from a Porter-

Thomas distribution suggests that some approximate selection rules might still be effective

in an otherwise statistical regime [23]. A deviation from the RMT limit is also observed

in the Ml distribution for the 2+,T = 0 -+ 2+ ,T = 0 transitions (Fig. 2f), while the

B(E2) probabilities are distributed according to Porter-Thomas (Fig. 2e). In both cases

(i.e. T = 0 and T = 1) the deviation from the GOE limit occurs for the Ml transitions in

self-conjugate nuclei (e.g. ^Zn), where the matrix elements are purely isoscalar. In Tz = 1

nuclei, both isoscalar and isovector components contribute to the Ml transitions. However,

since the isoscalar Ml matrix elements are much weaker than the isovector Ml [20], the

latter dominate and the distributions are restored to their GOE form.

To check that our conclusion does not depend on the size of the model space, we per-

formed similar calculations in a model space with 6 active particles, i.e., for A = 62 nuclei.

The results are shown in Fig. 3. Again, we observe that the distributions of the Ml tran-

sitions in the self-conjugate nucleus Tz = 0 (i.e., 62Ga) deviate from Porter-Thomas (Fig.

3d,f).

Our conclusions are not restricted to the p/-shell. Adams et al [12] calculated the

distributions of electromagnetic transitions for the N = Z (Tz = 0) nucleus 22Na in the sd-

shell (where the number of active nucleons is 6), and found Porter-Thomas distributions for

both E'2 and Ml transitions. However, the Ml distribution they show includes contributions

from both isoscalar and isovector transitions. In Fig. 5 we show distributions of the 1+, T —>

1 + ,T transitions in two A = 22 nuclei: MNe {Tz = 1) and 22Na (Tz = 0). Similarly to our

results in the p/-shell, we see deviations from the Porter-Thomas distribution for the purely
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FIG. 3. As in Pig.2 but for A = 62 nuclei.

isoscalar Ml transitions between states with selection rules AJ = AT = 0 in the self-

conjugate nucleus ^Na (Fig. 4(d),(f)).

The deviations from Porter-Thomas statistics are seen only for the isoscalar Ml transi-

tions between states with AJ = 0. The A J = 1 isoscalar Ml transitions satisfy the R.MT

statistics as can be seen in Fig. 5(a},(b) for A = 60 and A = 62 Tz = 0 nuclei.

The Ml operator is composed of orbital and spin parts. The isoscalar Ml is particularly

simple and can be written (in units of nuclear magneton /zjy) as

^ _ _ n L + £ p _ E S > (6)

where L and S are the total orbital angular momentum and spin, respectively, and g^n,

g*n are the proton and neutron orbital and spin g factors. Since the transition matrix

elements of the total angular momentum J = L + S between different states vanish, the

orbital and spin contributions to the isoscalar Ml matrix elements always have opposite

signs. Consequently, the off-diagonal elements are small. However, the A J = 0 transitions
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FIG. 4. As in Fig.2 but for A = 22 nuclei.

include diagonal matrix elements where the interference between the orbital and spin can be

constructive, leading to larger matrix elements. The combination of a small number of large

matrix elements and many small matrix elements can explain the deviation from the Porter-

Thomas statistics. Indeed we have verified that a Porter-Thomas distribution is recovered

(see Fig. 5(c),(d)) when only off-diagonal matrix elements are included in the analysis. In

the case of the isovector Ml matrix elements, the relative phase of the orbital and spin

contributions is more random [24], and the corresponding statistics are Porter-Thomas.

In conclusion, we have studied AT = 0 B{E2) and B{M1) transition strength distrib-

utions in pf -shell nuclei with A = 60,62. While most of the calculated distributions are in

close agreement with the Porter-Thomas distribution predicted by the GOE, we find that

the AJ = 0 Ml transitions in self-conjugate nuclei (Tz = 0) deviate from the RMT limit.

For these nuclei the Ml transitions are purely isoscalar and relatively weak compared with

Ml transitions in Tz = 1 nuclei, which are dominated by the isovector component of Ml.
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FIG. 5. B(M\) intensity distributions for isoscalar T = 0 -> T = 0 transitions in J4 = 60 (left

panels) and -A = 62 (right panels) % = 0 nuclei: (a,b) 0+ -» 1+ transitions; (c, d) off-diagonal

2+ -> 2+ transitions.

Similar deviations of the AJ = 0 isoscalar Ml distribution from Porter-Thomas statistics

are observed in srf-shell nuclei, indicating that this is likely a generic effect.
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