


1 Introduction

Investigations of the muon capture by atomic nuclei are mainly aimed at determining
the constants of weak nucleon current in nuclear medium. Tle general interest
is concentrated on the weak axial-vector g4 and pseudoscalar gp couplings. The
observables of nuclear muon capture are calculated as functions of g4 and gp and
arc compared to corresponding experimental data. The Radiative Muon Capture
(RMC) is traditionally considered as the most promising source of the information
about gp [1]. The sensitivity to gp could be increased if one considers the ratio of the
total RMC rate to the total Ordinary Muon Capture (OMC) rate [2, 3]. Thercfore,
the problem arises, how to make consistent calculations of the total RMC and OMC
rates within the same nuclear model.

Also, the investigation of total OMC rates is of interest itself because it opens the
way of determining ¢4 independently of the beta-decay. In contrast to the beta-decay
all the final nucleus states with a noticeable transition strength can be populated in
the muon capture. Therefore, small variations in low-energy parts of theoretical
strength functions give no dramatic changes in the calculated OMC rates, as it
happens in the calculations of log(ft) values. An additional advantage of the muon
capture compared to the beta decay is that the total OMC rates are measured for
mauy stable and long-lived nuclei. Therefore, one can by OMC study not only how
g varies with the nuclear mass but morc delicate effects, as the isotopic dependence
of effective constants of weak interactions between the leptons and nucleons.

General situation with studying the total Ordinary Muon Capture (OMC) rates
on nuclei could be described as follows. The total OMC rates were mmeasured for
wmany nuclei with rather a high precision. The measurcinents have been made for a
long time, and for many nuclei the experimental data are available now [4]. But the
uncontroversial interpretation of experimental information is not achicved yet. The
main reason is that the theoretical description of the OMC and RMC requires to
take account of the nuclear response correctly.

The theoretical investigation of nuclear muon capture has rather a long story. Up
to now, threc different approaches have been developed for the calculations of total
{exclusive) OMC rates on complex nuclei. The first approach is based on the closure
approximation and on the related method of sum rules. In both the cases, the cnergy
of an outgoing neutrino is replaced by some average value which is a parameter of
the theory in fact. Afterwards, the OMC rate is obtained by the closure relation
for the states of final nucleus [5, 6]. The sccond approach utilizes the local density
approximation. In this approach, the OMC rate is calcutated for infinite an uniform

nuclear matter as a function of the proton and neutron densitics. The OMC rate



for a finite-size nucleus is then calculated either by integrating this function over the
realistic density distribution or by determining its value for a certain value of the
nuclear matter density [7, 8]. The common drawback of both approaches is that the
nuclear muon capture is considered without any connections to other processes which
take place in a nucleus. Also, the collective nature of nuclear response to external
fields is lost. Therefore, we prefer the third approach. The (exclusive) OMC rates
are calculated for each state of a product nucleus, and the total rate is obtained as

a suin of these rates

Ao = S Ag (1)
f

The calculations of Refs. [9, 10, 11, 3, 12] are carried out within this approach.

In the present paper, we study the total OMC rates on heavy nuclei within the
microscopic approach to the description of the nuclear structure. The one-body effec-
tive Hamiltonian of nuclear OMC is obtained within the Morita and Fujii formalism
[13]. The wave function of a bound muon and the muon binding energy are calculated
by approximate formulae [14] that take account of the finite size of nucleus. The nu-
clear matrix elements of the effective OMC Hamiltonian and the excitation energies
of states of a product nucleus are calculated within the Quaiparticle Random Phase
Approximation (QRPA), an extension of the usual RPA to the nonclosed shell nuclei.
For first the time the velocity-dependent terms are included into calculations with
nucleon single-particle states having the correct asymptotic behaviour, because the
nucleon single-particle wave functions are calculated for the Saxon-Woods potential.

2 Effective Hamiltonian of Nuclear Muon Capture

The total rate of OMC is calculated by summing the rates Ay; for partial transitions
i — f. In a spherically symmetric nucleus Ay; is equal {15] to

2J541
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Tu(ME(w) + Mg (u+ 1) + ME(~u) + MZ(—u — 1)),
where nuclear amplitudes M, (x} are amplitudes of the transition, at which the neu-
trino is created in the state with energy E, and angular quantum number s (x =1
for j =1-1/2 and K = —~{—1 for j = 14+1/2); u is the angular momentum transferred
to the niicleus. These amplitudes are combinations of the weak form factors with



nuclear matrix elements
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The “large” form factors are defined by
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The nuclear matrix elements are defined
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The spherical Bessel function is defined by j,(z) = /7/2z Jup172(r). The tensor
product of two spherical tensor operators is
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The radial wave function of the bound muon is ¢, {7)

The-iscapin operator 71 s
defined here by v p) o g



From these formulac one can see that the capture rate depends strongly on the
energy of an outgoing neutrino
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For a large Z nucleus, the muon binding energy €;s must be calculated for the finite
size nuclear charge distribution. The excitation energy of the final nuclear state
E* influences the capture rate mainly through the neutrino energy. To calculate
the rates of nuclear OMC, one should know the energy of the considered transition
(in order to determine E,) and matrix elements of one-body operators (3). The
matrix clements of the effective Hamiltonian of nuclear OMC and the energies of
excited states measured from the ground state are calculated in the present paper
within QRPA. Indeed, QRPA is the prescription how one can obtain the excitation
encrgies and matrix clements of one-body transition operators taking into account
the interaction between particle hole excitations. The constants of nuclear residual
interactions are fixed by analyzing the strength functions of charge-exchange spin-
flip excitations. The structure of these exeitations is similar to the structure of the
excitations created in the nuclear muon capture. A large amnount of the experimental

data on spin-flip excitations has been collected up to now.

3 Nuclear Structure Calculations

The energies of excited states of the product nucleus and the matrix elements be-
tween the wave functions of the ground and excited states are calculated in the
framework of QRPA. The Hamiltonian of the nuclear model consists of the mean
field potentials, the monopole pairing interaction between the like particles and the

residual interactions

HM - Z (Hmean(tS) + Hpair(tS)) + Hresida
la=+1/2
here the third projection of isospin t3 is equal to 1/2 for neutrons and (—1/2) for
protons. Mean field and pairing Hamiltonians are presented in the second-quantized
form
Ho(ta) = Hmean(t'li) + Hpair(tﬁ) = Z Ejtga},,lgsajmtg
jm
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The Saxon-Woods potential with spin-orbital interaction is used as the mean field

»otential. Its parameters and the constants of the monopole pairing interaction G
g n,p



are chosen separately for neutrons and protons [16]. We use the cffective isospin-

invariant separable residual interaction
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that is a suin of the products of multipole (Qzar) and spin-multipole (Qrar) single-
particle operators. It’s convenient to decompose the scalar product of isospin Pauli
matrices as

(71« 72) = 48943 + 2e] b5

Afterwards,
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where 7F is the isospin operator from the set i, 0, ¢*, and t7; fo(r) and fry(r)
are the radial form factors of residual interaction operators. There are two popular

radial form factors fi;(r) of single-particle operators [17]. The first form factor is

fu{r) = flr)ps =k (6)
and the second one is
fulr) = f(r)s = fr) = 2 UL), @

where U(r) is the central part of shell potential.

The interaction that contains the product ¢7¢J led to the particle-hole excita-
tions changing the charge of the nucleus. Therefore, this charge-exchange interaction
can be used for describing the 8-decay, u-capture, (b, n)- and (n,p)-reactions. The

corresponding single-particle operators are

Qp= Y. GamalOsutTlipmp)al . ajym,
JrMn, JpMp
and Hermitian conjugated to them. Here Oy is either multipole 47 f;(r)Y ag(#) or
spin-multipole i f1;(r)[Yp{(#) ® o] operator.
Haruiltonian (5) contains scalar producis ([Vi—1{f1) @ o]g, [Yi-1(F2) ® 02]1)
and (Vi 1(7) ® o1lr, (Yo4:1(f2) @ o2];,). The tensor interaction that mixes



[Yi,—1(#1) ® o1]oar and [Yi,41(F2) ® o2 is not included in (5), because it slighﬂy
influences the properties of charge-exchange resonances at reasonable values of the
coupling constant. )

The Bogoliubov transformation for taking into account the pairing correlations

of superconducting type is as follows:
Qjmts = Ujts Cjmig T ("1)J_mvjt3a;',-mt3'
The variational procedure
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gives the u, v-coefficients and allows us to transit to the Independent Quasiparticles
Hamiltonian:

Holts) = Y €jt30tLnus Qi
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where

G
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Averaging was done over the quasiparticle vacuum state: ajmg,|0) = 0.
The residual interaction Hamiltonian is approximately diagonalized by QRPA.
For that purpose, the operator of phonon destruction is introduced
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The normalization and orthogonality conditions for phonon amplitudes ¢§ngjp and
Pt j, are
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The phonon amplitudes and the excitation energies of one-phonon states arc deter-
mined by the variational principle

: . .
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where |} is the plionon vacuum state: %,,|) = 0. The variational principle gives the
homogeneous system of linear equations
R;q,g;r el wtwf] = 0,
—~wigy + R;q,wfl, =0,
where
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The amplitudes of the transitions from the even-even ground state to the excited
states with total spin J, third projection of total spin M and with energies w; are

equal to either
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if the charge of the nucleus is decreased by one as in the (n, p) reaction, for example,
or to
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if the charge is increased during transition, as in the (p,n) reaction.
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Only the effective constants of isovector residual integration & were varied

in our calculations.

4 Parameters of nuclear model

The model describes the excited states of a product nucleus as superpositions of
particle-hole (two-quasiparticle) excitations over the particle-hole (quasiparticle) vac-
uum state. All the information about nuclear structure is concentrated in parameters
of the nuclear model Hamiltonian. There are three groups of paramecters.

The first group contains the parameters of a single-particle potential that repre-
sents the mean field potential and keeps nucleons together. The Saxon-Woods poten-
tials are used. The parameters are determined in order to reproduce the excitations
energies of single-particle states of neighboring odd-mass nuclei. The potentials for
protons and neutrons are selected separately.

The second set of parameters are the paramecters of monopole pairing interactions.
In the nuclei having non-closed shells, this interaction forms the superconducting
pair correlations. We use the approximation of constant pairing interactiou. Its
constant is determined from the even-odd effect in the nuclear binding cnergies. The
pairing constants are connected to the parameters of mean field in the sense that the
theoretical binding energies are dependent on the single-particle energies. One set of
parameters of single-particle potentials and monopole pairing is usnally used in the
calculations of several neighboring nuclei. These scts of paratucters were determined

guite long ago and were published in Ref. [16].



The last set of parameters are the parameters of a nuclear residual interaction
between particle-hole excitations. This interaction causes the nuclear collective move-
ments of small amplitude (vibrations). The residual interaction Hamiltonian is taken
in a separable forin. A detailed discussion of this residual interaction is given by
authors of {17]. Here we would like to stress that the effective coustants of resid-
ual interactions are determined by calculating the excitation energies and transition
strength of collective isovector states and by a subsequent comparison with experi-
mental data. Ouly isovector interactions are important for the purposes of the present
paper because the charge of a nucleus is changed during the considered processes.

To reveal the seusitivity of calculated Ay to the selection of residual interactions
and to the values of their effective constauts, we present the results of calculations
cuiploying both the variants of separable residual interactions (6) and (7) for several

values of isovector coupling constants x&/.

5 Results of calculations

In this section, we present the results of calculations of total OMC rates for spherical

nuclei from different regions of the nuclear mass.

5.1 %Zr and **Mo

The distributions of transition strength of the operator ot~ (Gamow-Teller transi-
tions) over the cxcitation energies have been studied in detail by recactions
DZr(p,n)"Nb [19, 20] and *°Zr(°Li,®He)%'Nb [21]. The strength function has a
prowinent peak at the energy 15.6 MeV. The transition strength in the peak region
is approximately equal to 10. The total transition strength observed below 20 MeV
of excitation is around 20. The total GT strength must be larger than 3(N - Z) = 30,
the value given by the Tkeda sum rule [22].
Table 1 shows how the calculated properties of GT strength function depend
01 21
T

on Ky The model of non-interacting quasiparticles (residual interaction

is switched off by k! = &#' = 0) could not give the correct position of the peak

and &

of strength function. For L = 0 and J = 1, the residual interaction (6) reduces to
the simple (&, &) interaction considered in [18]. The calculations with 01 = ~23/4
recommended in [18] correctly reproduce the position of the maximum of strength
function. The results of calculations with slightly differcnt constants x93 = —25/4
and x{ = —28/A4) presented in Table 1 show that the position of the maximum of
strength function is sensitive to £7. The strength in the peak region does not depend

<01

on xy and considerably exceeds the experimentally observed one. So, the best value

of the effective constant for residual interaction (6) is £0' = ~23/A.



Tuble 1: Properties of charge-exchange 11 excitations in %Zr calculated with two variants of residual interactions.

ot~ as in (p,n) reaction ott as in (n,p) reaction
kP24 | Energy of B~ (GT) Energy of BT (GT)
maximum | total | in max. | below max. | maximum | total | in max. | below max.
0.00 11.84 32.06 | 16.96 13.79 5.34 3.32 2.21 0.00
f(ry=dU/dr
-0.23 14.93 31.89 v 20.88 6.23 5.62 3.15 1.31 0.00
-0.33 15.76 32.03 1 19.88 4.67 5.68 3.30 1.14 0.00
-0.43 16.36 3221 | 18.41 374 5.73 3.47 1.03 0.00
fo(r)=rt
-23.0 15.73 30.63 | 23.83 5.32 5.63 1.89 1.12 0.00
-25.0 16.09 30.56 | 23.98 4.86 5.65 1.82 1.07 0.00
-28.0 16.63 30.05 | 23.86 4.28 5.67 1.72 0.99 0.00




Table 1 shows that the calculated energy of the GT resonance is less sensitive
to x9! for residual interaction with form factor (7). The correct position of the
resonance is reproduced at x3! = —0.33/4. Simultaneously, the strength in the
resonance region and below it is considerably less than of the corresponding strength
calculated with interactions (6) (24.6 to be compared with 29.2) and is closer to the
experimental value. The rest of the transition strength locates at high-excited 1%
states [23]. Recently, the new experimental data about the GT transition strength
at the highest excitation energies were published [20]. The total B(GT) calculated
with residual interaction (7) is equal to 32.0. This value agrees with the experimental
value 34.2 £ 1.6 obtained in [20] by multipole decomposition of experimental cross
sections of °Zr(p, n)**Nb reaction.

From this consideration one can conclude that the residual interaction (7) pro-
vides a better description of the ot~ strength function than the interaction (6).

The results of recent measurements of the ot* transition strength in °Zr(n, p)%¢Y
[24] could also be compared with the results of calculations. In this reaction, the
charge of the nucleus decreases as in muon capture. The ot strength summed
over experimentally observed states is B (GT") = 1.0 £ 0.3 (24]. The calculation
with interaction (6) gives the following distribution of the transition strength. The
considerable part of transition strength is concentrated at the first 1* state of 30Y.
The other 1% states have excitation energies between 10 and 15 MeV. For each of
these states, BT (GT) < 0.2.

The ot* strength function calculated with f(r) = dU/dr interaction (7) differs
from the strength function obtained with interaction (6). The B{(GT) calculated
with interaction (7) is almost three times of Bf{GT) for interaction (6). This is
due to highly excited states absent in the calculations with f(r) = = interaction.
As before, the strongest transition goes to the first 1+ of 90Y, but the strengths of
transitions, going to 17 states with energies between 5 and 15 MeV, are comnparable
to B{f (GT). So, the transition strength is distributed over the excitation energies
more uniformly, and the shape of the theoretical strength function is closer to the
experimental one.

It should be noted that the energy of the first 11 state calculated for each of
two residual interactions does not depend on x$!, and the corresponding BHGT)
decreases slightly when |sJ!| grows. It shows that already in *®Zr the neutron excess
prevents the creation of low-lying collective 1* states in 90Y. The residual interaction
with f(r) = dU/dr couples single-particle states with wave functions having the
same orbital quantum numbers and different number of nodes in the radial parts.
Due to residual interaction (7), these particle-hole excitations interact with particle-
hole states consisting of the members of the one spin-orbital multiplet and create

11



collective high-excited states [23]. The transitions to those states increase Bg(GT).

It was shown in [3] that the calculated values of OMC rates are rather unsensi-
tive to the constants of multipole residual interactions x7. Nevertheless, the constant
of isovector monopole residual interaction x$ can be determined by the description
of isobar analog state (IAS). The calculated properties of 07 charge-exchange ex-
citations over *Zr are presented in Table 2. The independent quasiparticle model
describes 0% charge-exchange states as a set of non-interacting two-quasiparticles
states. The states that carry the main transition strength are (0gg/2)p(0g9/2)n and
(1dy2)p(tdyja)n for t7 or (p,m) branch and (0f7/9)(0f7/2)n and (Odsse)p(ldssa)n
for t% or (n,p) transitions. The residual interaction of both types creates a collec-
tive state in the (p,n) excitation branch and for x§ = —0.43/A (for f(r) = dU/dr
residual interaction) and s = —35.0/A (for f(r) = r’ residual interaction) its en-
ergy coincides with the experimental energy of IAS equal to 12.0 MeV [25]. In the
both cases, this state consumes almost all the ¢~ transition strength. In the (n,p)
branch, the isovector monopole interaction with f(r) = =% = 1 with constant
&y = —35.0/A could not form the collective state and the strength function is deter-
mined by (0f7/2)5(0f7/2)n and (0ds/3)p(1ds/2)n two-quasiparticles state. The interac-
tion with f(r) = % with k9 = —0.43 is strong enough to create the collective state,
approximately at the same energies where the above mentioned two-quasiparticle
states are. The difference between total ¢~ and ¢* transition strengths is constant
and does not depend on the residual interaction.

Therefore, it is possible to use strength functions for determining the constants of
isovector residual interactions 3 and sY. For the constants of residual interactions
(6) for L > 0, we use the relations

Kb = (~L—) (8)

and the constants of residual interaction (7)
LJ 01
ki = Ky (9)

In the calculations of total OMC rates, the final states with total angular mo-
menta and parities equal to J™ = 0%, 1%, 2% and 3% were taken into account. The
contribution of the final states with J > 3 is found to be less than 1%.

The caleulated OMC rates for °Zr are presented in Table 3 and in Fig. 1. The
residual interactions of both types were used in the caleulations. The OMC rates
shown in the Tables and in the Figures are calculated for gp/gs = 6.0. The capture

rates arc shown in the figures by the running surmns

ME)= Y A (10)
ki Ep<k
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Table 2: Properties of charge-exchange 07 excitations in *°Zr calculated with two variants of residual interactions.

t= t+
k94 | Energy of B~ Energy of B+
maximum | total | in max. | below max. | maximum | total | in mmax. | below max.
0.00 4.62 10.14 8.62 0.00 16.17 0.29 0.07 0.13
f(r)y=dU/dr

-0.33 10.99 10.58 8.30 0.37 18.08 0.72 0.55 0.16

-0.43 12.00 10.70 7.94 0.14 18.34 0.84 0.67 0.16

-0.53 12.81 10.81 7.44 0.07 18.56 0.96 0.79 0.15

fulry=rt

-23.00 10.35 10.04 7.87 1.78 16.91 0.18 0.05 0.07
16.20 0.04

-25.00 10.71 10.03 8.29 1.32 16.92 0.18 0.05 0.07
16.20 0.04

-28.00 11.28 10.02 8.68 0.88 16.92 0.17 0.05 0.07
16.20 0.04

-31.00 11.87 10.02 8.88 0.62 16.92 0.16 0.05 0.06
16.20 0.04

-34.00 12.46 10.01 8.96 0.45 16.93 0.15 0.05 0.06
16.20 0.04

-37.00 13.06 10.00 8.97 0.34 16.93 0.15 0.04 0.05
16.21 0.03




Table 3: The rates of OMC (in 10°s7!) on ?°Zr summed over the final states with

specific spin and parity J”*

kA final states, J” total
oty o 1ty 17y 2F ) 27 ] 33 rate
000 [ 49362431434 |152 193|116 |3.3 125.6
392811931346 121 (154 | 92126 | 100.0%
fry=dU/dr
-0.23 1531221283273 85123 5514 90.8
59[25{31.2(300¢{ 93135 6.01.6|100.0%
-033 {53122]29.1 (251 74112 44|12 85.8
621250339292 86131 52|14 ]100.0%
-0.43 1631221299235 661105 3.7]10 82.8
6.4 126|361 284 80]|12.7| 4512 100.0%
fulr) =7
-23.0 1471192344272 102|122| 7119 88.7
53122264 13061150138 80122 100.0%
-25.0 | 47 191232272100 118 6919 86.9
551222671265 |11.5 (136 7.9 2.2 100.0%
-28.0 1471182301257 96113 | 65|18 84.4
L 5612112721304 111.41134 7.8|2.1 |100.0%
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Running sums of OMC rates (in 10° s)

30 40 50
E (MeV)

Figure 1: Runnins sums of OMC for %%Zr: total and for for the states with J* =
1%, Solid lines: results of calculations with residual interaction (7), dashed lines —
interaction (6).
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The capture rates shown in Fig. 1 were calculated using the spin-multipole constants

determined from (p, n) and {n, p) reaction data, x3* = —0.33/A for the interaction (6)
and x§! = —23.0/4 for the interaction (7). For multipole interactions x? = ~0.43/4
and k9! = —35.0/A. Figure 1 shows that the main difference in the calculated values

of total capture rates originates from the muon captures populating highly excited
states. This difference is biggest for 1 final states. The total capture rates calculated
with both types of residual interactions agree with each other (the difference for
optimal constant sets is less than 5%). But there are large variations in the results
for capture rates feeding the states with specific values J™. In general, the total muon
capture rates on nuclei with A ~ 90 calculated with f(r) = r residual interaction
are larger than the ones calculated with f(r) = dU/dr.

Because for Zr the experimental Ay, = 86.6-10% 57! [4], one can conclude that the
calculations describe the experimental data well. The comparison of the experimental
Ao with the theoretical results obtained in the present paper has a semi-qualitative
character, because theoretical rates are calculated for a specific isotope mainly, but
the capture rates have been measured on the natural mixture of isotopes.

The theoretical Ay’s are not very sensitive to gp/ga: in %Zr Ay varies from
85.5-109s7! to 76.8 - 1055~ ! when gp/g4 increases from 4.0 to 12.0.

The calculations reveal that the contributions of velocity-dependent matrix ele-
ments [lwup] and [Ouup] to Ay are rather small. Ay changes less than 2% when
[1wup] and [Ouup] are discarded. Therefore, the direct test does not confirm the es-
timations made in [11] that the velocity-dependent matrix elements provide 12-15%
of the total OMC rate. _

According to the calculations, the 1% state with an excitation encrgy near 5
MeV, that strongly reveals itself in %°Zr(n,p)%Y reaction gives a small contribution
to the OMC rate. The explanation is that the radial matrix element of zero-order
spherical Bessel function jo(E,r) dominating in allowed 0% — 1T partial transitions
is hindered by the centrifugal barrier for the two-quasiparticle state (0y7/4)x (0g9/2)p-
This example shows that one cannot directly use the matrix elements obtained in
(p,n) and (n, p) reactions for analyzing the muon capture data, the large B(GT) does
not always mean the large As;. The 1% states of product nuclei may have different
appearance in different reactions, and their characteristics could be “combined” only
by the microscopic nuclear model.

Another nucleus for which the capture rates are calculated is *2Mo, see tables 4
and 5. The comparison of calculated total OMC rates with the experimental ones
shows that for nuclei with A ~ 90, the calculations based on the microscopic nuclear
model with both the types of residual interactions have correctly reproduced the

experimental total capture rate.
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Table 4: Properties.of charge-exchange 11 excitations in 92Mo calculated with two different nuclear residual interactions.

ot~ as in (p,n) reaction ot as in (n,p) reaction

kP'A | Energy of B~(GT) Energy of B*(GT)

maximum | total | in max. | below max. | maximum | total | in max. | below max.
0.00 11.85 | 28.79 16.94 10.70 444 | 5.96 4.75 0.00

fr)y=dU/dr
-0.23 14.98 | 27.42 11.61 12.17 5.04 | 4.59 2.92 0.00
-0.33 15.61 | 27.28 16.94 4.83 5.19 | 4.45 2.57 0.00
-0.43 16.15 | 27.23 16.50 3.42 5.29 | 4.40 2.33 0.00
frlr)=r*

-23.0 15.54 | 26.36 18.36 6.86 5.07 | 3.53 2.56 0.00
-25.0 15.81 | 26.23 19.40 5.61 5.11 | 3.40 2.45 0.00
-28.0 16.25 | 26.06 20.20 4.47 5.16 | 2.23 2.29 0.00




Table 5: The rates of OMC (in 10%s71) on “2Mo summed over the final states with
specific spin and parity J™

nlLJA final state J™ total
ot o 1Fl 17| 2t| 27} 3+ 3 rate
0.00 | 5341|274 522 |18.1}24.2|135]3.8 148.7
36 (2818413511122 (163! 9.1 (2.6 100.0%
flry=4dU/dr
-0.23 | 56 2.5 ]30.5 1333|101 | 15.6 6.5 | 1.7 105.8
5312472881315} 95147 | 6.2 1.6 100.0%
-033 | 56124310306} 88141 53|14 99.2
561243131308 88142 54|14 100.0%
-0.43 | 56|24 315|287 7.8|132| 45 1.2 95.0
59126332303} 83139 48| 1.8 100.0%
fulry=rt
-23.0 |51 (232623367123 ]159; 85|23 106.2
48121246 (316|116 |15.0| 8.0 (2.1 | 100.0%
-25.0 1 5.1 1221260329 12.0] 155 82122 104.1
491211249 (3161151149 | 79|22 | 100.0%
-280 | 51121257 (31.8|11.6149 1 79|22 101.2
511211254 (3151115147 | 7.82.1 | 100.0%
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Figure 2: Runnins sums of OMC for *8Pb: total and for for the states with J™ =
1*. Solid lines: results of calculations with residual inieraction (7), dashed lines —
interaction (6).



There are differences in two calculations how the final states with specific J®
contribute to total capture rates. But, after adding all rates into the total rate. the
differences alinost cancel each other.

Usually, the experimental total OMC rates are known for the natural isotope
mixture. So, our description of the total OMC rate on *?Mo can be considered as
reasonable, because 92Mo is the lightest even isotope of Mo, and the capturce rates

decrease with growing neutron excess. The next subsection demonstrates this.

5.2 OMC on even tin isotopes

Next nuclei to be considered are the even tin isotopes !1%7124Sn.

These nuclei give
a long chain of stable spherical isotopes. Tin isotopes have the completely occupied
0gg/2 protou subshell and subshells Og7/9, 1ds/4, 1dssg and 2s; /9, which are gradually
filled by neutrons. Table 6 presents the total OMC rates calculated with two scts
of parameters of single-particle potentials [16]. These tables show that the calcu-
lated rates depend on the single particle potential more than on the used residual
interactions.

The experimental value of the capture rate on natural tin is 106.7 - 10°s~! [4].
If one takes into account that the natural isotope mixture has more than 50% of
11812089 one can conclude that single-particle potential fitted for A = 121, Z = 51

gives a better description of total OMC rates.

5.3 More nucleons — more problems. 4°Ce and 2°%Pb

The total OMC rates on °Ce and 2%®Pb calculated with both the types of resid-
ual interactions are larger than experimental data, see Tables 7 and 8. The rates
calculated with the nuclear residual interaction {6} are less than the ones calculated
with interaction (7). The diflerence comes mainly from the muon capture populat-
ing the high-excited 1% -states absent in the calculations with f{r) = " interactions.
One remark related to these states should be given here. The experimental energies
of collective TAS and GT (ot™) states are described well with residual forces (6):
using x{ = —28.0/A, one obtains the energy of IAS state equals to 18.94 MceV to
be compared with the experimental value 18.8 MeV [25], and the calculated cnergy
of the GT state is 19.71 MeV with «?! = —28.0/A. Tts experimental value is 19.2
MeV. More than 80% of the total calculated GT strength resides at that peak. With
f(r) = dU/dr residual interaction at &3 = —0.43/4, the calculated excitation en-
ergy of the collective 11 state is 16.85 MeV. This state keeps approximately 50%
of the total calculated GT transition strength, and more than 30% of the transi-

tion strength is shifted to the higher 1% states. The high-excited 17 states keep the
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Table 6: Total OMC capture rates on Sn isotopes (in 10%s71)

Target &1 A | SW parameters &V A | SW parameters
nuclens | for (7) | 115,49 | 121,51 | for (6) | 115,49 | 121,51
165y -0.23 | 13921 130.1| -23.0| 141.7 ! 123.0

-0.33 ] 130.5 | 12311 -25.0| 1389 | 1208

-0.43 | 1249 1190 ] -28.0| 1352 1174

118Gy, -0.23 | 130.0 | 122.1| -23.0| 131.9 115.0

-0.33 | 1221 | 1161 | -25.0 | 1294 | 112.7

-0.43 | 1171 1124 -28.0| 1259 | 109.5

120Gy, -0.23 | 121.2 | 111.8 1 -23.0| 1226 107.3

-0.33 | 114.2| 109.5| -25.0| 12031 104.1

-0.43 | 109.8 | 106.3 | -28.0 | 117.2| 102.1

122Gy -0.23 | 113.2| 107.8 | -23.0 1140 99.7

-0.33 | 106.9 1 103.2 | -25.0| 118.0 97.7

-0.43 | 103.0 | 100.6 | -28.0 | 108.0 95.0

124Gy, -0.23| 1055 | 1013 -23.0| 105.5 91.7

-0.33 99.9 97.1 ] -25.0 | 103.4 89.9

-0.43 96.5 95.11 -28.0| 100.7 88.3

Table 7: The rates of OMC (in 10°s™!) on "°Ce summed over final states with

specific spin and parity J”

xiA final state J” total
CorJor [t ] ot e [ st [3 ] vate
J(ry=4dU/dr

-0.23 | 11.7 | 3.8 { 55.4 | 39.9 | 20.2 { 21.0 { 10.3 | 3.5 165.7
7.0 123(3341241 122127 6.2 |21 | 100.0%
-0.33 | 11.7 | 3.5 | 57.4 | 38.0 | 17.9  21.3 } 8.7 |29 161.2
721221356235 |11.1 132 54|18 100.0%
-0.43 | 11.7 | 34 | 59.2 1 36.7 { 16.2 | 21.7 | 7.7 |25 159.0
73121373231 110.2|13.7| 48|16 100.0%

frlr)y =" _
-23.0 | 9834414 3582521151 |129]5.1 148.9
6.6 23278241169 |10.1 | 8.7 3.4 100.0%
-25.0 | 9.8(3.341.2135.1 247} 148|125 }5.0 146.3
6.7122]281]24.0|16.9 | 10.1| 86| 3.4} 100.0%
2280 981311408 3412391441120 |48 1428
6.9]221285 12381167 | 10.1 8.4 | 3.4 | 100.0%
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Table 8: The rates of OMC (in 10°s™') on 2°*Ph summed over final states with

specific spin and parity J7

w74 final state J7 total
otJo ] 1] 1- ] 7] 27 3]s rate

Fr) = dU/dr
<023 1157 [ 3.1 705338297295 10458 198.6
79116 (355|17.0]15.0 | 149 521291 100.0%
-0.33 | 15.7 {1 2.7 1 72,5 {1 33.1 | 26.9 | 31.8 9.5 149 197.2
8.0 14368 116.8 11371 16.1 4.8 | 2.5 | 100.0%
-0.43 | 15.7 1241 71.9 | 32.6 | 25.0 { 33.2 9.0 4.3 194.2
8111213701168 129 17.1 4.6 | 2.2 | 100.0%
fulr)=r"
-23.0 1135128469 | 23.8133.7(19.9|11.0] 8.0 159.5
8.5 1171294149211} 124 6.9 { 5.0 | 100.0%
-25.0 | 13.5 | 2.6 | 46.7 1 23.3133.0 | 19.8 ] 10.7| 7.8 157.4
8.6 | 1.7 1297|148 121.0] 126 6.8 | 5.0 | 100.0%
-28.0 | 13.5 | 24 | 46.5 | 22.6 | 32.0 | 19.6 | 10.3 | 7.5 154.5
8.7 | 1.6 | 30.1 | 14.7 | 20.7 | 12.7 6.7 | 4.9 | 100.0%

Table 9: The total OMC rates (in 10°s™!) calculated for gp/gs = 6.0 with two

different radial form factors of residual nuclear interaction.

—

Target wH! A for dU/dr &¥I A for - expr.

nucleus | —0.23 | —=0.33 | —0.43 | —23.0 | -25.0 | —28.0 | [4]
907, 90.8 | 858 828 887| 868 844 | 866
2Mo | 105.8| 99.2 | 950 106.2 | 104.1 | 101.2 | 92.2
16gn | 130.1 4 123.2 | 119.0 | 123.2 | 120.8°| 117.4
H8gy | 1221} 116.1 | 112.4 | 11501 112.7 | 109.5
1208y | 114.8 | 109.5 1 106.3 | 107.3 | 105.1 | 102.1 | 106.7
122gn } 107.8 1 103.2 | 1006 | 99.7| 97.7| 950
1248y | 1013 9711 951 ] 91.7] 89.9| 88.3
90Ce | 165.7 | 161.2 | 159.0 | 148.9 | 146.3 | 142.8 | 114.4

| “®Pb | 1986 | 197.2 | 1942 | 159.5 | 1574 | 154.5 134.5 |
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Table 10: Fractional contributions of different multipoles to Ay for 2°8Pb (either
contributions of the orbital momentum transfer or contributions of the transitions
to the states with specific J7).

Reference AL
0 1 2 3
(9] 26 14 48 | 12
[10] 29 13 52 7
[11] 23 34 34
(a) 45 35 ~18 | =2
(b) 38 ~ 29 ~ 27 ~ 5
J7
oF 1t io- {17 |2° |2t 3" ] 3"
(12 513 |6 |14]12|28 ) 4
() 8 13721716145
(b) 8 |30 2 |15]12(21]7
(a) - present paper, calculations with residual interactions (7), f - A = —0.43;
(b) ~ present paper, calculations with residual interactions (6), xf7 - A = —25.0.
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collective state in the region below 18 MeV even if |x}!] is doubled.

The experimental value of Ay for 28Pb is 135-10%s~! [4]. So, both the calcula-
tions overestimate the total capture rate considerably. Therefore, it is intercsting to
compare our results to the ones of previous papers where a good description of the
experimental data was achieved [9, 11]. There is a difficulty in comparison because
the authors of [9, 10, 11] have presented the relative contributions to Ay of different
transfers of orbital momentum L. To compare these data to our results, we assume
that the transitions to 0" and 1% final states go by L = 0, the transitions to 07,17,2~
are accompanied by the transfer of L = 1 orbital momentun, and so on. By this
assumption, we suppose that {[1 J — 1 J]| >> |[[1J + 1 J]|. Test shows that deleting
of [1J + 1 J] reduces the corresponding Ay; less than 10%. The obtained fractional
contributions are collected into Table 10, that shows that the numbers obtained in
this paper differ from the ones of [9, 10, 11] mainly by the contributions of the tran-
sitions 0+ — 1*. The dominating role of 07 — 17 transitions is revealed in recent
calculations of {12], too. The total OMC rate on 2%8Pb calculated in the present work
with residual interaction (6) agrees well with the value Ay (?°®Pb) = 161 - 10%s~!

obtained in {12] with é-function residual interactions.

6 Discussions

This paper presents the first attempt to calculate explicitly the velocity-dependent
terms with single particle wave functions having the correct asymptotics. Previous
works gives only estimations, see for example {11]. The gradient terms are directly
calculated now, and their contribution to the AT is shown to be small. Certain
confusion may be here. In general, the notion of “velocity-dependent” terms is used
for all terms conmiing from small components of nucleon 4-spinors. Under derivation
of the effective muon capture Hamiltonian [15], part of these terms are transformed

with the law of momentum conservation

—

yiE=A+7, |g~0, and A=p-7

Sy

As a result, or;ly the gradient acting on proton wave functions is left. We have explic-
itly shown that the matrix elements with proton gradient give a minor contribution
to the capture rate. So, one can conclude that the main effect of velocity-dependent
terms is already accounted in the effective Hamiltonian by the momentuin conserva-
tion.

Common people (in nuclear physics) have general feelings that the total OMC
rates could be described correctly without any problem. There are some papers

showing it, for example, [11]. So, our failure in reproducing the total OMC rates on
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19Ce and 2%Pb must be explained. A similar problem with reproducing the total

OMC rate for 2P is faced by authors of recent paper [12], too.

7 Conclusions

Our calculations show the that total OMC rates are not sensitive to the constants
of muclear residual interactions. Simultaneously, theoretical total OMC rates may
strongly depend on the nuclear residual interactions used in the calculations. The
main distinctions in Ay calculated with different residual interactions come from
the differences in the description of GT transitions, 0% — 1%, cspecially, at high
excitation encrgies.

The theoretical Ay being compared to the experimental rate shows that the
caleulations with free values of g4 and gp describe reasonably the experimental
data for the medimm nuclei (*Zr, '16-121Gy), Therefore, there is no need in the
renormalization of g4 in these mass regions.

For heavier muclei (MOCC, 208P)y), the theoretical Ayy's exceed considerably the
experimental values. Therefore, some renormalization of g4 is essential for repro-
ducing the experimental Ay in heavy nuclet. But this renormnalization is mmodel-
dependent, because its value depends on the nuclear residual interactions, as Tables

7 and 8 show.
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