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1 Introduction

Investigations of the muon capture by atomic nuclei are mainly aimed at determining
the constants of weak nucleon current in nuclear medium. The general interest
is concentrated on the weak axial-vector QA and pseudoscalar gp couplings. The
observables of nuclear muon capture are calculated as functions of g^ and gp and
are compared to corresponding experimental data. The Radiative Muon Capture
(RMC) is traditionally considered as the most promising source of the information
about gp [1], The sensitivity to gp could be increased if one considers the ratio of the
total RMC rate to the total Ordinary Muon Capture (OMC) rate [2, 3]. Therefore,
the problem arises, how to make consistent calculations of the total RMC and OMC
rates within the same nuclear model.

Also, the investigation of total OMC rates is of interest itself because it opens the
way of determining g,\ independently of the beta-decay. In contrast to the beta-decay
all the final nucleus states with a noticeable transition strength can be populated in
the muon capture. Therefore, small variations in low-energy parts of theoretical
strength functions give no dramatic changes in the calculated OMC rates, as it.
happens in the calculations of log(/£) values. An additional advantage of the union
capture compared to the beta decay is that the total OMC rates are measured for
many stable and long-lived nuclei. Therefore, one can by OMC study not only how
<7,i varies with the nuclear mass but more delicate effects, as the isotopic dependence
of effective constants of weak interactions between the Ieptons and nucleons.

General situation with studying the total Ordinary Muon Capture (OMC) rates
on nuclei could be described as follows. The total OMC rates were measured for
many nuclei with rather a high precision. The measurements have been made for a
long time, and for many nuclei the experimental data are available now [4]. But. the
uncontroversial interpretation of experimental information is not achieved yet. The
main reason is that the theoretical description of the OMC and RMC requires to
take account of the nuclear response correctly.

The theoretical investigation of nuclear muon capture has rather a long story. Up
to now, three different approaches have been developed for the calculations of total
(exclusive) OMC rates on complex nuclei. The first approach is based on the closure
approximation and on the related method of sum rules. In both the cases, the energy
of an outgoing neutrino is replaced by some average value which is a parameter of
the theory in fact. Afterwards, the OMC rate is obtained by the closure relation
for the states of final nucleus [5, 6]. The second approach utilizes the local density
approximation. In this approach, the OMC rate is calculated for infinite an uniform
nuclear matter as a function of the proton and neutron densities. The OMC rate



for a finite-size nucleus is then calculated either by integrating this function over the

realistic density distribution or by determining its value for a certain value of the

nuclear matter density [7, 8]. The common drawback of both approaches is that the

nuclear muon capture is considered without any connections to other processes which

take place in a nucleus. Also, the collective nature of nuclear response to external

fields is lost. Therefore, we prefer the third approach. The (exclusive) OMC rates

are calculated for each state of a product nucleus, and the total rate is obtained as

a sum of these rates

Atot = ^ A / i . (1)

The calculations of Refs. [9, 10, 11, 3, 12] are carried out within this approach.

In the present paper, we study the total OMC rates on heavy nuclei within the

microscopic approach to the description of the nuclear structure. The one-body effec-

tive Hamiltonian of nuclear OMC is obtained within the Morita and Fujii formalism

[13]. The wave function of a bound muon and the muon binding energy are calculated

by approximate formulae [14] that take account of the finite size of nucleus. The nu-

clear matrix elements of the effective OMC Hamiltonian and the excitation energies

of states of a product nucleus are calculated within the Quaiparticle Random Phase

Approximation (QRPA), an extension of the usual RPA to the nonclosed shell nuclei.

For first the time the velocity-dependent terms are included into calculations with

nucleon single-particle states having the correct asymptotic behaviour, because the

nucleon single-particle wave functions axe calculated for the Saxon-Woods potential.

2 Effective Hamiltonian of Nuclear Muon Capture

The total rate of OMC is calculated by summing the rates A/; for partial transitions

i —t f. In a spherically symmetric nucleus Ay, is equal [15] to

where nuclear amplitudes MU(K) are amplitudes of the transition, at which the neu-

trino is created in the state with energy Ev and angular quantum number K (K = I

for j — 1 — 1/2 and K = —1—1 for j = / + 1/2); u is the angular momentum transferred

to the nucleus. These amplitudes are combinations of the weak form factors with



nuclear matrix elements

Mu(u) =

Mu(-u

Mu(-u) =

2u + 1
I2u + 1 gv

I2u +l

V 2u

+l

Mu(u + 1) =

The "large" form factors are defined by

Gv = Qv{q2)(l + Evj2M) + gs(q
2

GA = gA(q2) - (gv{q2)

GP = (gP(q2) - gA(q2) - 9T{q2) - 3v(q2) - !

The nuclear matrix elements are defined

[OH = (.//" ' 1

[Iwu] — (J/

[lump] = i{Jj

Ji)/y/2Jj + 1

—

T A
4TT

jw{Eurk) \Yw(rk)
t=i
A

= »(Jf

k=\

The spherical Bosscl function is defined by ju(x) = S/T:/2XJU+[/2(X)- The tensor

]>roduct of two s])herical tensor operators is

[n J5 y!<;('');,7,,,;,. ~ y_^ (\iniinu.w\wn.,,) n,,,l„ ,,.,r (f).

The radial wave function of the bound muon is f/V,(?•). The- isospjn operator r 1 is

defined here by r ' \p) ••- a).



From these formulae one can see that the capture rate depends strongly on the

energy of an outgoing neutrino

For a large Z nucleus, the niuon binding energy t\s must be calculated for the finite

size nuclear charge distribution. The excitation energy of the final nuclear state

E* influences the capture rate mainly through the neutrino energy. To calculate

the rates of nuclear OMC, one should know the energy of the considered transition

(in order to determine E,,) and matrix elements of one-body operators (3). The

matrix elements of the effective Hainiltonian of nuclear OMC and the energies of

excited states measured from the ground state are calculated in the present paper

within QRPA. Indeed, QRPA is the prescription how one can obtain the excitation

energies and matrix elements of one-body transition operators taking into account

the interaction between particle hole excitations. The constants of nuclear residual

interactions are fixed by analyzing the strength functions of charge-exchange spin-

flip excitations. The structure of these excitations is similar to the structure of the

excitations created in the nuclear muon capture. A large amount of the experimental

data on spin-flip excitations has been collected up to now.

3 Nuclear Structure Calculations

The energies of excited states of the product nucleus and the matrix elements be-

tween the wave functions of the ground and excited states are calculated in the

framework of QRPA. The Hamiltonian of the nuclear model consists of the mean

field potentials, the monopole pairing interaction between the like particles and the

residual interactions

HM = Y,

here the third projection of isospin £3 is equal to 1/2 for neutrons and ( — 1/2) for

protons. Mean field and pairing Hamiltonians are presented in the second-quantized

form

r hm (4)
- h V I nJ-m+i'-m'J J „ n

~4~ Z-, {-~1' ajmt3
aj,-mt*aj',-'n'haj',m't3

jmj'rn'

The Saxon-Woods potential with spin-orbital interaction is used as the mean field

potential. Its parameters and the constants of the monopole pairing interaction GT!iP



are chosen separately for neutrons and protons [16]. We use the effective isospin-
invariant separable residual interaction

tfrcsid = ~\ E (*0 +«f(n •r2))Q\MWQLM(2)

,LM
 u u _ t (5)

LJ,M

that is a sum of the products of multipole (QLM) and spin-multipole (QI.JM) single-
particle operators. It's convenient to decompose the scalar product of isospin Pauli
matrices as

( f i • T2) = 4£]̂ 2 + 2 i f t J

Afterwards,

QLM = E O'm'*3l* 'M''

and

E U'mt'i\iLfu(r) [YL ® a]JM

where rfc is the isospin operator from the set 1, t°, t+, and t'~; /z,(r) and ftj(r)
are the radial form factors of residual interaction operators. There are two popular
radial form factors fi_,j(r) of single-particle operators [17]. The first form factor is

fdr) = f(r)L., = rL. (6)

and the second one is

Mr) = f{r)u = fir) = ^U{r), (7)

where U(r) is the central part of shell potential.
The interaction that contains the product if t\ led to the particle-hoie excita-

tions changing the charge of the nucleus. Therefore, this charge-exchange interaction
can be used for describing the /?-decay, //-capture, (p, n)- and (n,p)-reactions. The
corresponding single-particle operators are

and Herrnitian conjugated to them. Here OJM is either multipole iJfj{r)YjM(f) or
spin-multipole iL'}ij(r)\Yi(f) <g> O]JM operator.

Harniltonian (5) contains scalar produces ([KL-IC^I) ® <T{\L, \Yi,~i(r2} ® CT\L)

and (fV/^.i(fi) ® cr\\i, (Ki,-fi(r2) ® o"2]/J- The tensor interaction that mixes



[yj[,-i(n) <g> <TI]LM and [yt+i(r2) ® <y-i\LM is not included in (5), because it slightly

influences the properties of charge-exchange resonances at reasonable values of the

coupling constant.

The Bogoliubov transformation for taking into account the pairing correlations

of superconducting type is as follows:

ajmt3 = ujt3ajmt3 + (~iy~mVjt3a}-mt3-

The variational procedure

5{Q\H0(t3) - XtsNh - J2 Pi(4s + «*, - l)\°) =°
3

gives the u, ̂ -coefficients and allows us to transit to the Independent Quasiparticles

Hamiltonian:

where

Averaging was done over the quasiparticle vacuum state: ajmt310) = 0.

The residua] interaction Hamiltonian is approximately diagonalized by QRPA.

For that purpose, the operator of phonon destruction is introduced

ni - V^
JM / <

The normalization and orthogonality conditions for phonon amplitudes $jnj and

psijn j are

jpjn

The phonon amplitudes and the excitation energies of one-phonon states are deter-

mined by the variational principle

o)j$(j, i) > = 0,

where |) is the phonon vacuum state: f^j^l) = 0. The variational principle gives the

homogeneous system of linear equations

where



fQ ~ e3p + ein, «* = Ujvvu ± vJvu]n and hq = (ip\\Ojir\\]n).

The amplitudes of the transitions from the even-even ground state to the excited

states with total spin J, third projection of total spin M and with energies OJ1 are

equal to either

if the cliarge of the nucleus is decreased by one as in the {n,p) reaction, for example,

or to

W ) E UWOt-WJK^} P)

if the charge is increased during transition, as in the (p, n) reaction.

Only the effective constants of isovector residual integration K\ or K'{J were varied

in our calculations.

4 Parameters of nuclear model

The model describes the excited states of a product nucleus as superpositions of

particle-hole (two-quasiparticle) excitations over the particle-hole (quasiparticle) vac-

uum state. All the information about nuclear structure is concentrated in parameters

of the nuclear model Hamiltonian. There are three groups of parameters.

The first group contains the parameters of a single-particle potential that, repre-

sents the mean field potential and keeps nucleons together. The Saxon-Woods poten-

tials are used. The parameters are determined in order to reproduce the excitations

energies of single-particle states of neighboring odd-mass nuclei. The potentials for

protons and neutrons are selected separately.

The second set of parameters are the parameters of monopole pairing interactions.

In the nuclei having non-closed shells, this interaction forms the superconducting

pair correlations. We use the approximation of constant pairing interaction. Its

constant is determined from the even-odd effect in the nuclear binding energies. The

pairing constants are connected to the parameters of mean field in the sense that the

theoretical binding energies are dependent on the single-particle energies. One set of

parameters of -single-particle potentials and monopole pairing is usually used in the

calculations of several neighboring nuclei. These sets of parameters were determined

quite long ago and were published in Ref. [16].



The last, set of parameters are the parameters of a nuclear residual interaction

between particle-hole excitations. This interaction causes the nuclear collective move-

ments of small amplitude (vibrations). The residual interaction Hamiltonian is taken

in a separable form. A detailed discussion of this residual interaction is given by

authors of [17]. Here we would like to stress that the effective constants of resid-

ual interactions are determined by calculating the excitation energies and transition

strength of collective isovector states and by a subsequent comparison with experi-

mental data. Only isovector interactions are important for the purposes of the present

paper because the charge of a nucleus is changed during the considered processes.

To reveal the sensitivity of calculated Atot to the selection of residual interactions

and to the values of their effective constants, we present the results of calculations

employing both the variants of separable residual interactions (6) and (7) for several

values of isovector coupling constants K!{J .

5 Results of calculations

In this section, we present the results of calculations of total OMC rates for spherical

nuclei from different, regions of the nuclear mass.

5.1 9 0 Zr and 9 2 M o

The distributions of transition strength of the operator at~ (Gatnow-Teller transi-

tions) over the excitation energies have been studied in detail by reactions
90Zr(p,n)90Nb [19, 20] and 90Zr(6U6He)90Nb [21]. The strength function has a

prominent peak at the energy 15.6 MeV. The transition strength in the peak region

is approximately equal to 10. The total transition strength observed below 20 MeV

of excitation is around 20. The total GT strength must be larger than 'i{N — Z) = 30,

the value given by the Ikeda sum rule [22].

Table 1 shows how the calculated properties of GT strength function depend

on K\{ and re'f1. The model of non-interacting quasipartides (residual interaction

is switched off by re,1 = K\X = 0) could not give the correct, position of the peak

of strength function. For L = 0 and ,7 = 1, the residual interaction (6) reduces to

the simple (a, a) interaction considered in [18]. The calculations with K^1 = -23/^4

recommended in [18] correctly reproduce the position of the maximum of strength

function. The results of calculations with slightly different constants Kj1 = —25/A

and K®] — — 2S/A) presented in Table 1 show that the position of the maximum of

strength function is sensitive to «"'. The strength in the peak region does not depend

on K] and considerably exceeds the experimentally observed one. So, the best value

of the effective constant for residual interaction ((>) is K"1 = — 23/A.



Table 1: Properties of charge-exchange 1+ excitations in 90Zr calculated with two variants of residual interactions.

©

Ol/i

0.00

-0.23

-0.33

-0.43

-23.0

-25.0

-28.0

at

Energy of

maximum

11.84

14.93

15.76

16.36

15.73

16.09

16.63

as in (p, n) reaction

B-{GT)
total

32.06

31.89

32.03

32.21

30.63

30.56

30.05

in max.

16.96

20.88

19.88

18.41

23.83

23.98

23.86

below max.

13.79

at+ as in

Energy of

maximum

5.34

(n.p) reaction

B+(GT)

total

3.32

f{r) = dU/dr
6.23

4.67

3.74

Mr)=r
5.32

4.86

4.28

5.62

5.68

3.15

3.30

5.73 3.47
L

5.63

5.65

5.67

1.89

1.82

1.72

in max.

2.21

below max.

0.00

1.31

1.14

1.03

0.00

0.00

0.00

1.12

1.07

0.99

0.00

0.00

0.00



Table 1 shows that the calculated energy of the GT resonance is less sensitive
to «j! for residual interaction with form factor (7). The correct position of the
resonance is reproduced at K®1 = — 0.33/A Simultaneously, the strength in the
resonance region and below it is considerably less than of the corresponding strength
calculated with interactions (6) (24.6 to be compared with 29.2) and is closer to the
experimental value. The rest of the transition strength locates at high-excited 1+

states [23]. Recently, the new experimental data about the GT transition strength
at the highest excitation energies were published [20]. The total B(GT) calculated
with residual interaction (7) is equal to 32.0. This value agrees with the experimental
value 34.2 ± 1.6 obtained in [20] by multipole decomposition of experimental cross
sections of 90Zr(p, n)90Nb reaction.

Prom this consideration one can conclude that the residual interaction (7) pro-
vides a better description of the at~ strength function than the interaction (6).

The results of recent measurements of the at+ transition strength in 90Zr(n,p)90Y
[24] could also be compared with the results of calculations. In this reaction, the
charge of the nucleus decreases as in muon capture. The at+ strength summed
over experimentally observed states is B^,(GT) = 1.0 ± 0.3 [24]. The calculation
with interaction (6) gives the following distribution of the transition strength. The
considerable part of transition strength is concentrated at the first 1+ state of 90Y.
The other 1+ states have excitation energies between 10 and 15 MeV. For each of
these states, B+(GT) < 0.2.

The crt+ strength function calculated with f(r) = dU/dr interaction (7) differs
from the strength function obtained with interaction (6). The B^(GT) calculated
with interaction (7) is almost three times of B£(GT) for interaction (6). This is
due to highly excited states absent in the calculations with /(r) = rL interaction.
As before, the strongest transition goes to the first 1+ of 90Y, but the strengths of
transitions, going to 1+ states with energies between 5 and 15 MeV, are comparable
to B^(GT). So, the transition strength is distributed over the excitation energies
more uniformly, and the shape of the theoretical strength function is closer to the
experimental one.

It should be noted that the energy of the first 1+ state calculated for each of
two residual interactions does not depend on KJ1, and the corresponding B^(GT)
decreases slightly when l̂ j11 grows. It shows that already in 90Zr the neutron excess
prevents the creation of low-lying collective 1+ states in 90Y. The residual interaction
with f(r) = dU/dr couples single-particle states with wave functions having the
same orbital quantum numbers and different number of nodes in the radial parts.
Due to residual interaction (7), these particle-hole excitations interact with particle-
hole states consisting of the members of the one spin-orbital multiplet and create

11



collective high-excited states [23]. The transitions to those states increase B£{GT).

It was shown in [3] that the calculated values of OMC rates are rather unsensi-

tive to the constants of multipole residual interactions K.f. Nevertheless, the constant

of isovector monopole residual interaction K\ can be determined by the description

of isobar analog state (IAS). The calculated properties of 0+ charge-exchange ex-

citations over 90Zr are presented in Table 2. The independent quasiparticle model

describes 0+ charge-exchange states as a set of non-interacting two-quasiparticles

states. The states that carry the main transition strength are {Qgq/2)p{®y<s/2)n a n ( l

(Wi /2)p(ld1/2),i for J- or (p,n) branch and (0/7/2)j>(0/7/2)n and (0dr>/2)v(ld-,/2)n

for t+ or (n,p) transitions. The residual interaction of both types creates a collec-

tive state in the (p,n) excitation branch and for Kj = —0.43/A (for f(r) — dU/dr

residual interaction) and K? = —35.0/A (for f(r) = rL residual interaction) its en-

ergy coincides with the experimental energy of IAS equal to 12.0 MeV [25]. In the

both cases, this state consumes almost all the t~ transition strength. In the (n,p)

branch, the isovector monopole interaction with f(r) = r L = 0 = 1 with constant

K? = —35.0/A could not form the collective state and the strength function is deter-

mined by (0/7/2^(0/7/2)71 and (0rfs/2)p(lo!5/2)n two-quasiparticles state. The interac-

tion with / ( r ) = ^ with KJ = —0.43 is strong enough to create the collective state,

approximately at the same energies where the above mentioned two-quasiparticle

states are. The difference between total t~ and t+ transition strengths is constant

and does not depend on the residual interaction.

Therefore, it is possible to use strength functions for determining the constants of

isovector residual interactions K®1 and «[. For the constants of residual interactions

(6) for L > 0, we use the relations

and the constants of residual interaction (7)

In the calculations of total OMC rates, the final states with total angular mo-

menta and parities equal to •/*" = 0± , 1*, 2± and 3* were taken into account. The

contribution of the final states with J > 3 is found to be less than 1%.

The calculated OMC rates for 90Zr arc presented in Table 3 and in Fig. 1. The

residual interactions of both types were used in the calculations. The; OMC rates

shown in the Tables and in the Figures are calculated for gp/§A ~ 6.0. The capture

rates are shown in the figures by the running sums

A(E)= Y, A*- ( 1 0 )

12



Table 2: Properties of charge-exchange 0+ excitations in 90Zr calculated with two variants of residual interactions.

0.00

-0.33

-0.43

-0.53

-23.00

-25.00

-28.00

-31.00

-34.00

-37.00

t~

Energy of

maximum

4.62

10.99

12.00

12.81

10.35

10.71

11.28

11.87

12.46

13.06

B~

total

10.14

10.58

10.70
10.81

10.04

10.03

10.02

10.02

10.01

10.00

in max.

8.62

8.30

7.94

7.44

7.87

8.29

8.68

8.88

8.96

8.97

below max.

0.00

Energy of

maximum

16.17

f{r) = dU/dr
0.37

0.14

0.07

Mr) = r
1.78

1.32

0.88

0.62

0.45

0.34

18.08

18.34

18.56

16.91

16.20

16.92

16.20

16.92

16.20

16.92

16.20

16.93

16.20

16.93

16.21

B+

total

0.29

0.72

0.84

0.96

0.18

0.18

0.17

0.16

0.15

0.15

in max.

0.07

0.55

0.67

0.79

0.05

0.04

0.05

0.04

0.05

0.04

0.05

0.04

0.05

0.04

0.04

0.03

below max.

0.13

0.16

0.16

0.15

0.07

0.07

0.07

0.06

0.06

0.05



Table 3: The. rates of OMC (in 10s s"1) on 90Zr summed over the final states with

specific spin and parity J"

K\JA

0.00

-0.23

-0.33

-0.43

-23.0

-25.0

-28.0

0+

4.9

3.9

5.3

5.9

5.3

6.2

5.3

6.4

4.7

5.3

4.7

5.5

4.7

5.6

o-
3.6

2.8

2.2

2.5

2.2

2.5

2.2

2.6

1.9

2.2

1.9

2.2

1.8

2.1

1+

24.3

19.3

28.3

31.2

29.1

33.9

29.9

36.1

23.4

26.4

23.2

26.7

23.0

27.2

inal states, J"

1-

43.4

34.6

f(r)
27.3

30.0

25.1
29.2

23.5

28.4

27.2

30.6

27.2

26.5

25.7

30.4

2 +

15.2

12.1

2 -

19.3

15.4

= dU/dr

8.5

9.3

7.4

8.6

6.6

8.0

10.2

11.5

10.0

11.5

9.6

11.4

12.3

13.5

11.2

13.1

10.5

12.7

12.2

13.8

11.8

13.6

11.3

13.4

3+

11.6

9.2

5.5

6.0

4.4

5.2

3.7

4.5

7.1

8.0

6.9

7.9

6.5

7.8

3 "

3.3

2.6

1.4

1.6
1.2

1.4

1.0

1.2

1.9

2.2

1.9

2.2

1.8

2.1

total

rate

125.6

100.0%)

90.8

100.0%

85.8

100.0%

82.8

100.0%

88.7

100.0%

86.9

100.0%

84.4

100.0%
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Figure 1: Runnins sums of OMC for 90Zr: total and for for the states with J"

I*. Solid lines: results of calculations with residual interaction (7), dashed lines

interaction (6).
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The capture rates shown in Fig. 1 were calculated using the spin-multipole constants

determined from (p,n) and (n,p) reaction data, K®1 = -0.33/^4 for the interaction (6)

and Kj1 = -23.0/A for the interaction (7). For multipole interactions K° = -0.43/A

and Kj1 = — 35.0/A Figure 1 shows that the main difference in the calculated values

of total capture rates originates from the muon captures populating highly excited

states. This difference is biggest for 1+ final states. The total capture rates calculated

with both types of residual interactions agree with each other (the difference for

optimal constant sets is less than 5%). But there are large variations in the results

for capture rates feeding the states with specific values J \ In general, the total muon

capture rates on nuclei with A ~ 90 calculated with f(r) = rL residual interaction

are larger than the ones calculated with / ( r ) = dU/dr.

Because for Zr the experimental Atot = 86.6-105 s"1 [4], one can conclude that the

calculations describe the experimental data well. The comparison of the experimental

Atot with the theoretical results obtained in the present paper has a semi-qualitative

character, because theoretical rates are calculated for a specific isotope mainly, but

the capture rates have been measured on the natural mixture of isotopes.

The theoretical Atot's are not very sensitive to gp/gA'- in 90Zr Atot varies from

85.5 • 105 s"1 to 76.8 • 105 s"1 when gp/gA increases from 4.0 to 12.0.

The calculations reveal that the contributions of velocity-dependent matrix ele-

ments [lump] and [Oimp] to Atot are rather small. Atot changes less than 2% when

[lump] and [Omtp] are discarded. Therefore, the direct test does not confirm the es-

timations made in [11] that the velocity-dependent matrix elements provide 12-15%

of the total OMC rate.

According to the calculations, the 1+ state with an excitation energy near 5

MeV, that strongly reveals itself in 90Zr(n,p)90Y reaction gives a small contribution

to the OMC rate. The explanation is that the radial matrix element of zero-order

spherical Bessel function jo{Evr) dominating in allowed 0+ —> I4" partial transitions

is hindered by the centrifugal barrier for the two-quasiparticle state (Of^/aWOryg^p-

This example shows that one cannot directly use the matrix elements obtained in

(p, n) and (n,p) reactions for analyzing the muon capture data, the large B{GT) does

not always mean the large A/{. The 1 + states of product nuclei may have different

appearance in different reactions, and their characteristics could be "combined" only

by the microscopic nuclear model.

Another nucleus for which the capture rates are calculated is 92Mo, see tables 4

and 5. The comparison of calculated total OMC rates with the experimental ones

shows that for nuclei with A ~ 90, the calculations based on the microscopic nuclear

model with both the types of residual interactions have correctly reproduced the

experimental total capture rate.
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Table 4: Properties of charge-exchange 1+ excitations in 92Mo calculated with two different nuclear resirlual interactions.

KfA

0.00

-0.23

-0.33

-0.43

-23.0

-25.0

-28.0

at

Energy of

maximum

11.85

14.98

15.61

16.15

15.54

15.81

16.25

as in [p, n) reaction

B~(GT)
total

28.79

27.42

27.28

27.23

26.36

26.23

26.06

in max.

16.94

below max.

10.70

at+ as in

Energy of

maximum

4.44

f(r) = dU/dr

11.61
16.94

16.50

12.17

4.83

3.42

Mr) = r
18.36

19.40

20.20

6.86

5.61

4.47

5.04

5.19

5.29
L

5.07

5.11

5.16

[n,p] reaction

B+(GT)

total

5.96

4.59

4.45

4.40

3.53

3.40

2.23

in max.

4.75

below max.

0.00

2.92

2.57

2.33

0.00

0.00

0.00

2.56

2.45

2.29

0.00

0.00

0.00



Table 5: The rates of OMC (in 10s s"1) on 92Mo summed over the final .states with

specific spin and parity J"

4JA

0.00

-0.23

-0.33

-0.43

-23.0

-25.0

-28.0

0+

5.3

3.6

5.6

5.3

5.6

5.6

5.6

5.9

5.1

4.8

5.1

4.9

5.1

5.1

0"
4.1

2.8

2.5

2.4

2.4

2.4

2.4

2.6

2.3

2.1

2.2

2.1

2.1

2.1

1 +

27.4

18.4

30.5

28.8

31.0

31.3

31.5

33.2

26.2

24.6

26.0

24.9

25.7

25.4

final state J '

1"

52.2

35.1

2+

18.1

12.2

r

2~

24.2

16.3

f(r) = dU/dr
33.3

31,5

30.6

30.8

28.7

30.3

10.1

9.5

8.8

8.8

7.8

8.3

fL{r) = rL

33.6

31.6

32.9

31.6

31.8

31.5

12.3

11.6

12.0

11.5

11.6

11.5

15.6

14.7

14.1

14.2

13.2

13.9

15.9

15.0

15.5

14.9

14.9

14.7

3+

13.5

9.1

6.5
6.2

5.3

5.4

4.5

4.8

8.5

8.0

8.2

7.9

7.9

7.8

3~

3.8

2.6

1.7

1.6

1.4

1.4

1.2

1.8

2.3

2.1

2.2

2.2

2.2

2.1

total

rate

148.7

100.0%

105.8

100.0%

99.2

100.0%

95.0

100.0%

106.2

100.0%

104.1

100.0%

101.2

100.0%
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Figure 2: Runnins sums of OMC for 208Pb: total and for for the states with ,F

1±. Solid lines: results of calculations with residual interaction (7), dashed lines

interaction (6).
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There are differences in two calculations how the final states with specific .7"

contribute to total capture rates. But, after adding all rates into the total rate:, the

differences almost cancel each other.

Usually, the experimental total OMC rates are known for the natural isotope

mixture. So, our description of the total OMC rate on 92Mo can be considered as

reasonable, because tJ2Mo is the lightest even isotope of Mo, and the capture rates

decrease with growing neutron excess. The next subsection demonstrates this.

5.2 OMC on even tin i sotopes

Next nuclei to be considered are the even tin isotopes 1H>~~124Sn. These nuclei give

a long chain of stable spherical isotopes. Tin isotopes have the completely occupied

Qgg/2 proton subshell and subshells Or/7/2, W5/21 W3/2 a n d 2s1/2, which are gradually

filled by neutrons. Table 6 presents the total OMC rates calculated with two sets

of parameters of single-particle potentials [16]. These tables show that, the calcu-

lated rates depend on the single particle potential more than on the used residual

interactions.

The experimental value of the capture rate on natural tin is 106.7 • 10s s""' [4].

If one takes into account that the natural isotope mixture has more than 50% of

"8 '120Sn, one can conclude that single-particle potential fitted for A = 121, Z = 51

gives a better description of total OMC rates.

5.3 More nucleons - more problems. 140Ce and 208Pb

The total OMC rates on 140Ce and 208Pb calculated with both the types of resid-

ual interactions are larger than experimental data, see Tables 7 and 8. The rates

calculated with the nuclear residual interaction (C) are less than the ones calculated

with interaction (7). The difference comes mainly from the muon capture populat-

ing the high-excited I +-states absent in the calculations with f(r) ~ r1' interactions.

One remark related to these states should be given here. The experimental energies

of collective IAS and GT (crt") states are described well with residual forces (6):

using re° = —28.0/A, one obtains the energy of IAS state equals to 18.94 MeV to

be compared with the experimental value 18.8 MeV [25], and the calculated energy

of the GT state is 19.71 MeV with K?1 = -23.0/A Its experimental value is 19.2

MeV. More than 80% of the total calculated GT strength resides at that peak. With

/ ( r ) = dU/dr residual interaction at. K!\} = -DA'S/A, the calculated excitation en-

ergy of the collective 1+ state is 16.85 MeV. This state keeps approximately 50%

of the total calculated GT transition strength, and more ihan 30% of tin; transi-

tion strength is shifted to the higher 1 + states. The high-excited 1"* states keep the
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Table 6: Total OMC capture rates on Sn isotopes (in 105 s

Target

nucleus
l lBSn

l l 8Sn

12l)Sn

122Sn

12"Sn

K°t
] A

for (7)

-0.23

-0.33

-0.43

-0.23

-0.33

-0.43

-0.23

-0.33

-0.43

-0.23

-0.33

-0.43

-0.23

-0.33

-0.43

SW parameters

115,49

139.2

130.5

124.9

130.0

122.1

117.1

121.2

114.2

109.8

113.2

106.9

103.0

105.5

99.9

96.5

121,51

130.1

123.1

119.0

122.1

116.1

112.4

111.8

109.5

106.3

107.8

103.2

100.6

101.3

97.1

95.1

for (6)

-23.0

-25.0

-28.0

-23.0

-25.0

-28.0

-23.0

-25.0

-28.0

-23.0

-25.0

-28.0

-23.0

-25.0

-28.0

SW parameters

115,49

141.7

138.9

135.2

131.9

129.4

125.9

122.6

120.3

117.2

114.0

118.0

108.0

105.5

103.4

100.7

121,51

123.0

120.8

117.4

115.0

112.7

109.5

107.3

104.1

102.1

99.7

97.7

95.0

91.7

89.9

88.3

Table 7: The rates of OMC (in 105s"1) on H0Ce summed over final states with
specific spin and parity Jw

n'f'A final state ,7*
0+ 0- 1+ 1" 2+ 3+ 3"

total
rate

-0.23

-0.33

-0.43

-23.0

-25.0

-28.0

9.8

6.6

9.8

6.7

9.8

6.9

3.4

2.3

3.3

2.2

3.1

2.2

41.4

27.8

41.2

28.1

40.8

28.5

/(»•) =
!9.9

!4.1

18.0

!3.5

16.7

13.1

h(r)
35.8
24.1
35.1
24.0
34.1
23.9

dU/dr
11.7

7.0

11.7

7.2

11.7

7.3

3.8

2.3

3.5

2.2

3.4

2.1

55.4

33.4

57.4

35.6
59.2

37.3

39.9

24.1

38.0

23.5

36.7

23.1

20.2

12.2

17.9

11.1

16.2

10.2

21.0

12.7

21.3

13.2

21.7

13.7

10.3

6.2

8.7

5.4

7.7

4.8

3.5

2.1

2.9

1.8

2.5

1.6

165.7

100.0%

161.2

100.0%

159.0

100.0%

25.2
16.9

24.7

16.9

23.9

16.7

15.1
10.1

14.8

10.1

14.4

10.1

12.9
8.7

12.5

8.6

12.0

8.4

5.1
3.4

5.0

3.4

4.8

3.4

148.9
100.0%

146.3

100.0%

142.8

100.0%
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Table 8: The rates of OMC (in 105s"') on 208Pb .summed over final states with

specific spin and parity ,V'

K'{JA

-0.23

-0.33

-0.43

-23.0

-25.0

-28.0

O +_J

15.7

7.9

15.7

8.0

15.7

8.1

13.5

8.5

13.5

8.6

13.5

8.7

o-

3.1

1.6

2.7

1.4

2.4

1.2

2.8

1.7

2.6

1.7

2.4

1.6

1 +

70.5

35.5

72.5

36.8

71.9

37.0

46.9

29.4

46.7

29.7

46.5

30.1

Inal state .F

1-

f(r) =
33.8

17.0

33.1

16.8

32.6

16.8

23.8

14.9

23.3

14.8

22.6

14.7

2't- 2"

= dU/dr

29.7

15.0

26.9

13.7

25.0

12.9

) = rL

33.7

21.1

33.0

21.0

32.0

20.7

29.5

14.9

31.8

16.1

33.2

17.1

19.9

12.4

19.8

12.6

19.6

12.7

3+

10.4

5.2

9.5

4.8

9.0

4.6

11.0

6.9

10.7

6.8

10.3

6.7

3 '

5.8

2.9

4.9

2.5

4.3

2.2

8.0

5.0

7.8

5.0

7.5

4.9

total

rate

198.6

100.0%;

197.2

100.0%

194.2

100.0%

159.5

100.0%

157.4

100.0%

154.5

100.0%

Table 9: The total OMC rates (in 10s s~') calculated for gF/gA - 6.0 with two

different radial form factors of residual nuclear interaction.

Target

nucleus
90Z r

9 2Mo
I 1 6Sn
U 8 S n
J 2 0 S n

122Sn
124 Sn
140Ce
208pb

K\}A for dU/dr

-0.23

90.8

105.8

130.1

122.1

114.8

107.8

101.3

165.7

198.6

-0.33

85.8

99.2

123.2

116.1

109.5

103.2

97.1

161.2

197.2

-0.43

82.8

95.0

119.0

112.4

106.3

100.6

95.1

159.0

194.2

K>

-23.0

88.7

106.2

123.2

115.0

107.3

99.7

91.7

148.9

159.5

'JA for j

-25.0

86.8

104.1

120.8

112.7

105.1

97.7

89.9

146.3

157.4

.L

-28.0

84.4

101.2

117.4

109.5

102.1

95.0

88.3

142.8

154.5

expr.

[4]
86.6

92.2

106.7

114.4

134.5

22



Table 10: Fractional contributions of different multipoies to AtOt for 208Pb (either

contributions of the orbital momentum transfer or contributions of the transitions

to the states with specific J") .

Reference

[9]
[10]

111]
(a)

(b)

[12]

(a)

(b)

AL
0
26

29

23

- 4 5

- 3 8

0+

5

8

8

1+

36

37

30

1

o-
6

2

2

14

13

34

- 3 5

- 2 9

1"

14

17

15

T"

2"

12
16

12

2

48

52

34

- 1 8

- 2 7

2+

28

14

21

3+

4

5

7

3

12

7

8

- 2

— 5

3 -

2

3

5

(a) - present paper, calculations with residual interactions (7), K \ J • A ••

(b) - present paper, calculations with residual interactions (6), refJ • A ••

-0 .43;

: -25.0.



collective state in the region below 18 MeV even if \K®1\ is doubled.

The experimental value of hm for 208Pb is 135 • 105 s"1 [4]. So, both the calcula-

tions overestimate the total capture rate considerably. Therefore, it is interesting to

compare our results to the ones of previous papers where a good description of the

experimental data was achieved [9, 11]. There is a difficulty in comparison because

the authors of [9, 10, 11] have presented the relative contributions to Alot of different,

transfers of orbital momentum L. To compare these data to our results, we assume.

that the transitions to0 + and 1+ final states go by L = 0, the transitions to 0~, 1~,2~

are accompanied by the transfer of L = 1 orbital momentum, and so on. By this

assumption, we suppose that |[1 J — 1 J]\ >> |[1 J + 1 J]\. Test shows that deleting

of [1 J + 1 J] reduces the corresponding A/, less than 10%. The obtained fractional

contributions are collected into Table 10, that shows that the numbers obtained in

this paper differ from the ones of [9, 10, 11] mainly by the contributions of the tran-

sitions 0+ —> 1 + . The dominating role of 0+ —> 1+ transitions is revealed in recent

calculations of [12], too. The total OMC rate on 208Pb calculated in the present work

with residual interaction (6) agrees well with the value Atot(2C8Pb) = 161 • 10s s"1

obtained in [12] with <5-function residual interactions.

6 Discussions

This paper presents the first attempt to calculate explicitly the velocity-dependent

terms with single particle wave functions having the correct asymptotics. Previous

works gives only estimations, see for example [11]. The gradient terms arc directly

calculated now, and their contribution to the AtJjt°r is shown to be small. Certain

confusion may be here. In general, the notion of "velocity-dependent" terms is used

for all terms coming from small components of nucleon 4-spinors. Under derivation

of the effective muon capture Hamiltonian [15], part of these terms are transformed

with the law of momentum conservation

p + fi = n + u, \jl\ ~ 0, and n = p — u.

As a result, only the gradient acting on proton wave functions is left. We have explic-

itly shown that the matrix elements with proton gradient give a minor contribution

to the capture rate. So, one can conclude that the main effect of velocity-dependent

terms is already accounted in the effective Hamiltonian by the momentum conserva-

tion.

Common people (in nuclear physics) have general feelings that the total OMC

rates could be described correctly without any problem. There are some papers

showing it, for example, [11]. So, our failure in reproducing the total OMC rates on
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110Ce and 208Pb must be explained. A similar problem with reproducing the total

OMC rate for 2()sPb is faced by authors of recent paper [12], too.

7 Conclusions

Our calculations show the that total OMC rates are not sensitive to the constants

of nuclear residual interactions. Simultaneously, theoretical total OMC rates may

strongly depend on the nuclear residual interactions used in the calculations. The

main distinctions in Ati0, calculated with different residual interactions come from

the differences in the description of GT transitions, 0+ —> 1 + , especially, at, high

excitation energies.

The theoretical AU)1. being compared to the experimental rate shows that the

calculations with free values of g.j and gp describe reasonably the experimental

data for the medium nuclei (9"Zr, ' l 6~ l 2 ' 'Sn). Therefore, there is no need in the

renormalization of g^ in these mass regions.

For heavier nuclei (H0Ce, 208Pb), the theoretical Atot's exceed considerably the

experimental values. Therefore, some renormalization of g,\ is essential for repro-

ducing the experimental Atot, in heavy nuclei. But this renormalization is model-

dependent, because its value depends on the nuclear residual interactions, as Tables

7 and 8 show.
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