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I. INTRODUCTION

Treatment of the T = 1 pair correlations among nucleons of the same kind in
heavy nuclei is significantly simplified because a simple approximate expression for
the ground-state wave function of the even-even nucleus - the BCS wave function
[1,2] - can be here employed. A specific feature of the BCS wave function is that
it is not an eigenfunction of the particle number operator. However, it is possible
to restore a corresponding symmetry by a projection. The projected wave function
is represented by an expression in which a two-particle-creation operator, whose
structure is determined by the pairing interaction matrix elements and by the mean
field single particle energies, is repeatedly applied to the inert core wave function
to get the corresponding number of particles. Such a description forms a basis for
the generalized seniority scheme [3] or the alternative Broken Pair Approximation
approach [4,5]. Of course, it would be useful to find an analogous simple approximate
expression for the ground-state wave function of an even-even nucleus also in the
situation when the neutron-proton (np) pair correlations (either in the single T = 1
channel or in both the T = 1 and T = 0 channels) are important.

A generalization of the u-v Bogoliubov transformation to the case of the np
pairing has been discussed many times (see e.g. [6-9]). Since the particle number
and the isospin are not conserved, this procedure should be treated with care [10]
particularly when both the T = 1 and T = 0 pair correlations are present.

An useful insight into the role of the np pairing can be obtained within the
framework of exactly solvable algebraic models. The model with both T = 1 and
T = 0 pairing channels has the SO(8) symmetry [10-13]. A simple expression for
the SO(8) ground-state wave function has been constructed in such a way that the
maximum possible number of fermions form correlated four-particle T = 0, 5 = 0
structures [10]. These correlated four-particle structures are characterized by the
same quantum numbers as alpha particles and this result is in a correspondence
with an alpha-cluster model applied to light and medium mass nuclei. However, it
is necessary to note that the four-particle correlated structures that emerge are not
real alpha particles. It is more appropriate to call them alpha-like structures.

In the present paper, we investigate the structure of the wave functions of the
ground and the excited states of the system with np pairing in more details. A simple
one-term expression written with a help of the creation operators of the four-particle
correlated structures is discussed. The case with interplay of both T = 0 and T'= 1
pairing interaction channels is discussed.

II. SO(8) ALGEBRAIC MODEL

The Hamiltonian of the S0(8) algebraic model which includes both T = 1 and
T = 0 pairing terms has the form [13]



O ^ E ^ / (1)

where

Above, a. i LT is fermion creation operator describing nucleon with orbital momen-
tum /, spin projection a, and isospin projection r. The parameter x, which varies
from —1 (pure isoscalar pairing) to 1 (pure isovector pairing), governs a relative
importance of isoscalar and isovector pairing in the Hamiltonian (1).

Similarly to [10], we employ the boson mapping procedure [14] to obtain the
solution of the fermion problem with Hamiltonian (1). Using the generalized Dyson
boson representation of the fermion operators [14-16]

avat

where

C = kE
, = -b\

. ss

ss',btt,] = 6si5siti - 5sti6s>t

we can get a boson image of the Hamiltonian (1). In our case s = lm,^a,{^T.
Introducing boson operators
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we obtain the boson representations of the fermion operators {P*)/, {D^)f, [P^)j,
and (£>„),



where for C we get from (5)
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Using (7) and (8) we obtain the boson representation of the Hamiltonian (1)

H = - ( 1 + a-)(2/ + \)fiv - (1 - ,r)(2/ + i)hd

+ (1 + x)hp(hp + hd - 1)

+ (I - x)hd(hp + nd - 1) (9)

- | ( 1 + .x)(P t • P t ) (P • P) - | ( 1 - ar)(Dt • Di){D • D)

+ i ( l + ! ) ( / ) • • Z)f)(P • P) + i ( l - i K P t • P]){D • D) .

The above boson Hamiltonian is equivalent to the the boson Hamiltonian from [JO]
where a slightly different form has been used.

The hermicity of Hamiltonian (9) can be restored by the following transformation
which conserves commutation relations

r>t-Mi-*)*/>;, D^-Mi-zr^A.-

Applying transformation (10) to the Hamiltonian (9), we get.

(10)



H = -(l+x)(2l + l)h,}-{\-.r)(2l+l)hd
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The Hamiltonian (11) has been diagonalized and the eigenvectors have been con-
structed using the basis

\NJTk) = (Pt • P])k(D1 • £>t)iL=?=r-'!(P1
t)7'(I>I)J|0) . (12)

Here N is a total number of bosons, J is angular momentum, and T is isospin. For
simplicity we have considered as a basis the state vectors with the maximum values
of the spin and isospin projections.

Having obtained exact eigenstates, we investigate a possibility to represent, them
within terms of alpha-like two-boson T = 0, ./ = 0 structures. Those are obtained
as the linear combinations of the operators (Pf • pt) and (Z)t • D*):

4t = (p t .p t ) cog 0_(£>t

and the orthogonal one

f i t ^ (14)

First, let us consider eigenstates with J = 0 and T = 0. The lowest state is
approximated by

, 4 t f | 0 > , (15)

The parameter 8 in (13) is determined so as to get a maximum overlap of the state
vector (15) with the lowest J — 0, T = 0 exact eigenstate. The next excited
eigenstate with J = 0, T — 0 is approximated by the form

A^~1A'i\0>, (16)

from which a projection on the vector (15) is subtracted. The higher eigenstates are
constructed similarly by increasing a degree of the A operator in the expression
for the state vector and orthogonalizing this approximate state to the previously
obtained lower-lying alpha-correlated expressions. For every eigenstate we determine
the value of 8, which gives a maximum overlap of the corresponding approximate
state vector with the exact one. Thus, the values of 0 are state-dependent.

The calculations have been done for the total number of bosons N — 6 and the
eigenstates with isospin T = 0 and angular momentum J = 0.

The results of calculations are shown in Fig. 1. All overlaps of the exact and
the corresponding approximate state vectors are larger then 0.975 for all values of a;
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FIG. 1. a) Dependence of an overlap of the exact and approximate state vectors of the
0+ states in the SO(8) algebraic model on the parameter x.
b) Dependence of the angle 6 introduced in the Eqs. (13 , 14) on x.
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between —1 and 1*. The values of 6 do not depend on the state in the dynamical
symmetry limits at x = 0 (SU(4)), x = 1 (S0T(5)), and x = - 1 (S0s(5)). Between
the dynamical symmetry limits, the values of 9 are state dependent but this depen-
dence is not strong. The calculations show that if we take for all eigenstates the
same (average) value of 0, we get for the overlaps the values equal or larger than
0.97 for all values of x.

These results mean that the alpha-like bi-bosons, which are the boson analogs
of the four-fermion T=0, J=0 correlated structures, are very important structure
units. A representation of the eigenstates is simplified significantly with the help of
them. It stresses the important role of the four-nucleon alpha-like correlations in the
regime of np pairing.

The lowest eigenvectors with a nonzero T and J can be described approximately
by the expression

^(P 1
t ) r (£>I ) J | 0 ) . (17)

Again, the calculations confirm almost perfect overlap of this construction with Uie
exact solution.

Similar discussion of the SO(8) wave functions in terms of alpha-like structures
has been performed in [10]. There, the ground-state wave functions have been
analysed. ; The variational principle has been employed and the genuine fermionic
wave functions (both the exact and approximate) have been considered in [10].

In the present study, we search the approximate wave function by the principle
of maximal overlap. In view of the almost perfect agreement of the approximate and
exact solutions, we have found a little difference between the maxima] overlap and
variational procedures.

The another aspect which makes a difference between present calculations and
those of Ref. [10] is our employment of the bosonized and hermitized SO(8) Hamil-
tonian and the comparison of the exact solutions of this Hamiltonian with the bosonic
analogues of the alpha-like correlated wave functions. This approach does nor agree
completely with the genuine fermionic procedure but again the differences are not
large and are of the order up to 1/(1 + | ) .

III. SINGLE j-LEVEL WITH SURFACE DELTA INTERACTION

The SO(8) model comprising the fermion pairs with the values of the angular
momentum J = 0 and J — 1 only is, of course, an idealization of a real situation.
In fact, we should take into account also the fermion pairs with other values of an
angular momentum J. As a rule, fermion pairs with T = 0 and angular momentum

*For x = 0 (SU(4) symmetry limit), an overlap is 100% !



J equal to the maximum angular momentum allowed by a corresponding shell model
configuration have low energy and play an important role. One should clarify whether
the conclusions of the preceding section about a possibility to approximate the exact
wave functions by the four-particle T = 0, J = 0 correlated structures are also valid
in the more general case.

We consider a model Hamiltonian with nucleons of both kinds interacting by the
Surface-Delta Interaction (SDI) (1 + y{f[ • fi))S(\lr'i -'fi\)5(rl — i?0) and occupying
isolated single particle level with angular momentum j

ff = - (1 - •r)YlG°-jYlA?JM,ooAJM.oo - (1 + x)Y,Grj £ -4J/w,iMr^JAf.iA/T • (IS)
J M J MMT

Here,
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where a\m 1T is a creation operator of a nucleon with angular momentum j , its

projection ?n, and isospin projection r. Other notations are

Goj = (1 ~ (-l)J)(fj,j + gh), (20)

and

Parameter x regulates a relative role of the T — 1 and T = 0 pairing in the Hatnil-
tonian (18).

The calculations have been done for the single particle angular momentum j = j ,
total number of nucleons equal to 8, and the eigenstates with isospin T = 0 and
angular momentum J = 0. The following fermionic basis have been used for exact
diagonalization of the Hamiltonian (18)

\I,a,l3) = [v?xn1]o\0), (22)

where

VIM = («nOnan«i)/,M' ..

KM = ("laWpal)lM
are ortbonormal fully antisymmetric basis vectors of neutron (n) and proton (p)
subsystems, respectively. These vectors are constructed using OFP's with definite



angular momentum / and have additional quantum number a to distinguish ortho-
normal states with the same /.

We investigate the possibility to approximate exact ground states of the Hamil-
tonian (18) by using the alpha-like correlated structures. The creation operator of
the four-particle T = 0, J = 0 correlated structure is introduced as

In (24) the coefficients c\ should satisfy to the following relation

(25)

in order to get a T = 0 operator. Moreover, the coefficients c,\ in (24) are normalized
so that

^ = 1.

Some of the c\ coefficients are negative.
The lowest state with J — 0 and T = 0 is approximated by

) , (26)

and the coefficients c\ are determined so as to get a maximum overlap of (26) with
the corresponding exact eigenvector. In our case of j = | , there are only two free
parameters in the expression (26).

As it is shown in Fig. 2a, the overlap of exact and approximate ground-state
vectors is larger than 0.93 for all values of the Hamiltonian parameter x. The de-
pendence of the coefficients c\ on the parameter x is displayed in Fig. 2c. For the
x = 1 case with the pure T = 1 pair interaction, the coefficient c\ with A = 0 is much
larger than the other ones. This finding reflects the prevailing role of the T = 1,
J = 0 pair and usefulness of the seniority classification in that case.

Thus for the model with SDI, we obtain a similar picture as in the section II
where the SO(8) algebraic model has been considered. However, the model with SDI
is more realistic than the SO(8) model. What is especially important, it includes
fermion pairs with the angular momentum J ^ 0,1.

IV. INFLUENCE OF THE np-PAIR CORRELATIONS ON SOME
PHYSICAL QUANTITIES

It was discussed above that the ground-state wave functions of the even-even
Z = N nuclei can quite well be approximated by the expressions in which the
maximum possible number of fermions form the correlated four-particle T — 0,
J = 0 structures. All information about the ground state is thus contained in
the structure of the four-particle creation operators (13) and (24). The important
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FIG. 2. a) Dependence of an overlap of the exact and approximate ground-state vectors
on the parameter x in the single-,?' model with SDL
b)Dependence of the squares of the coefficients of the ground-state vector multipole ex-
pansion on the parameter z regulating a strength of the np interaction. The results are
shown for x=0.
c) The same as in b) but for dependence on the parameter a; (z=l) .



question arises whether do a relevant experimental quantities exist in which such an
alpha-like structure would be revealed and which would confirm an importance of
the np pairing degrees of freedom.

In the present section, we discuss the quadrupole sum rule calculated for the
ground state of the even-even Z = N nucleus and the ground-state magnetic moment
of the odd nucleus with Z = N ± 1. The former quantity mainly characterizes (he
E2-transition probability from the ground to the first 2+ state. Both the E2 sum rule
and magnetic moment depend on the angular momenta of the neutron and proton
subsystems. As in the preceding section, we consider 8 nucleons in the j — ̂  (fi)
shell. An additional odd particle is taken to be a neutron.

To investigate an influence of the np pairing forces, we multiply np-interaction
terms both in the T=\ and T=0 parts of the Hamiltonian (18) by a factor z which
varies from zero (absence of the np-pairing force) to one (full presence of the np-
pairing force). Of course, the isospin invariance of the Hamiltonian is broken for
2 ^ 1 . Using this artificial procedure we get some insight into an effect of different
type pairing correlations.

As it is seen from Fig. 2b, the values of the coefficients c\ depend strongly on
the parameter z. Of course when z is less than 1, the isospin invariance is broken
and the relation (25) does not hold. For z — 0, i.e. for only nn- and pp-pairing
forces, the coefficient CQ = 1 and the neutron and proton subsystems have got zero
angular momenta separately. This finding can be explained by the separation of
the neutron and proton degrees of freedom and by the seniority conservation for
the SDI in single-j shell. With increasing z, CQ decreases and cfs with A ̂  0
increase. Therefore with increasing z, neutron and proton parts of the four-particle
correlated structures possess nonzero angular momenta and can influence the ground-
state magnetic moment and the quadrupole sum rule.

In Fig. 2c, similar correlations are observed between the values of c,\ and the
parameter x. However, as it follows from (25), CQ < 1 when z = 1 even for x — +1,
i.e. for only T = 1 pairing force being present in the Hamiltonian. The reason for
this is the presence of the T = 1, J = 0 neutron-proton pair correlations which create
some angular momentum in the neutron and proton subsystems separately.

The square of the quadrupole proton operator (̂ 2̂

Qp _ v^ njm t „. ,
111 — 2-i ^3-m',2iiajm,pajm.',p

m,Tn'

averaged over the ground state

<0f|(Q§-g5)|0f> (27)

give us a value of the quadrupole sum rule. The dependence of the quantity (27) on z
and x is illustrated in Figs. 3a and 3b. No significant change of the sum rule with x is
observed. Therefore, the quadrupole sum rule can not be used to get an information
on the T = 1 and T = 0 pairing competition. The sensitivity of this quantity on z is
more pronounced. The sum rule value is larger when the np-correlations are absent.
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FIG. 3. Dependence of the ground-state quadrupole sum rule of the N — Z nucleus on

the parameters z (;c=0) (a) and x (2=1) (b) in the single-.;' model calculations.
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FIG. 4. The same as in Fig. 3 but for the ground-state magnetic moment of the
N = Z + 1 odd nucleus.
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For the ground-state wave function of the odd nucleus adjacent to the T = 0 line,
we use the alpha-like correlated form

U\0)- (28)

The magnetic moment operator is written as

A = 9j,nJn,z + 9j,p3p,z (29)

with j,,(P),= being the 2-component of the neutron (proton) angular momentum. For
the f-L shell, <?,,,,=-0.55 and grjiP=1.66.

Using the state vector (28) and its expansion in the basis (22), we obtain for the
magnetic moment by a direct calculation

/x = UMln) = a.nj - (a.n - ^ ^ P

where {/2)p is an average value of the squared angular momentum of the proton (the
same for neutron) subsystem of the even-even core described by the state vector

Adn(.4t)2|0).
The first term in (30) is the single particle magnetic moment of an odd neutron.

The second term is a contribution of the protons and neutrons forming the four-
particle T = 0, J = 0 correlated structures. Of course, this Z = N core contribution
appears due to the nonzero angular momenta of the proton and neutron subsystems
of the core. It is proportional to the core average of the squared proton (neutron)
angular momentum operator. If the proton and neutron subsystems of the even-even
Z = N nucleus have zero angular momenta, the core term is equal to zero and the
magnetic moment approaches its single particle value. This is illustrated in Fig.
4a where the dependence of the magnetic moment y, on the Hamiltonian parameter
z is displayed. For z equal to one, i.e. for the np-correlations fully included, the
contribution of the core nucleons becomes essential.

A sensitivity of the magnetic moment to parameter x, shown in Fig. 4b, is weak
and insufficient to study T = 1 and T = 0 pairing competition. This finding is
connected with the fact that both the isovector and isoscalar np-pair correlations
introduce nonzero angular momentum into the neutron and proton subsystems and
cause deviation of the magnetic moment from the single particle value.

V. CONCLUSIONS

We have discussed the T = 0 and T = 1 pairing correlations within the framework
of two simple models: SO(8) algebraic model and the single-j model with the Surface
Delta Interaction. We investigate a possibility to represent the wave vector of the
ground state by the simple one-term expression obtained by using a creation operator
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of the four-particle T — 0, J = 0 correlated structures. In the cases studied, an
accuracy better than 93% of the overlap of the exact and approximate wave functions
has been obtained. Thus, a possibility opens to formulate an approximate approach,
similar to the Broken Pair Approximation for nuclei with like nucleon pairing, to
describe nuclei in which both like-nucleon and np pair correlations are important.

Employing this approximation, we have investigated an influence of the different
kinds of the pair correlations on the ground-state magnetic moments of an odd nu-
cleus and on the electric quadrupole sum rule. The magnetic moment appears to
be quite sensitive to the presence of the np-correlations. However, both the mag-
netic moment and quadrupole sum rule are not sensitive enough to the competition
between the T = 1 and T = 0 pair correlations.
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