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1 Introduction

New experimental methods, particularly, based on the multiple coincidence detec-

tion technique [1, 2, 3] stimulate the interest to fundamental theoretical studies of

the dissociative ionization of diatomic molecules by electron impact. In this context

the molecular hydrogen ion can be considered as the basic system in which the re-

moval of the unique electron causes dissociation. Substantial theoretical analysis of

the dissociative ionization of Hj by fast electrons was recently carried out in [4]. As

mentioned in [4], the crucial point of calculating the cross-section of such processes

is that no closed exact analytical wave functions of the continuum states exist. In

[4] the final-state wave function of the ejected electron was found by taking a prod-

uct of two approximate functions that take into account the two scattering centers.

To improve the calculation it seems straightforward to obtain these functions with

the exact numerical solutions of the two-center continuum problem. However, this

approach involves a cumbersome procedure of calculating multi-dimensional inte-

grals of the functions presented numerically that requires huge computer facilities

and may cause additional computational problems. It seems reasonable to search

for direct computational approaches, in which the basis of exact two-center con-

tinuum wave functions is not involved. Note that the potential advantage of such

methods is that they could be generalized over a wider class of two-center systems

starting from the molecular hydrogen ion as a test object. In the present paper

we develop a direct approach to the ionization of hydrogen molecular ion by fast

electrons that involves the reduction of the initial 6D Schrodiriger equation to a 3D

evolution problem followed by modeling of the wave packet dynamics.

Here we develop and apply a direct approach to the calculation of the angular

distribution of scattered and ejected electrons that involves the reduction of the

initial 6D Schrodinger equation to a 3D evolution problem followed by modeling

of the wave packet dynamics. The approach does not make use of the basis of

stationary Coulomb two-center functions of the continuous spectrum for the ejected



electron, whose proper choice is a crucial point of other model calculations. Our

approach can be considered as the linearized version of the phase function method

[5] for the multi-dimensional scattering problem. The evolution problem is solved

using the method based on the split-step technique with complex scaling, recently

proposed by us and tested in paraxial optics [7]. In the present paper the method

as a whole is also tested using the well known problem of electron scattering by

hydrogen atom [6].

Z,z

Figure 1: Coordinate frame

2 Basic equations

The 6D stationary Schrodinger equation for the scattering problem which describes

two electrons in the field of two fixed protons

1.
l-iy7)l + v(P>R)\W,R)=[^ + E0

kl ?,R), (i)

where f*is the radius-vector of the electron initially bound in Hj and finally ejected,

R is the radius-vector of the impact electron, k{ is the momentum of the incident

electron, —EQ is the ionization potential, HQ = — §V£ + U{f) is Hamiltonian of

ejected electron in the field of two protons, V(f,R) — U(R) + Uint(f,R) is the

interaction between the impact electron and molecular ion, U{r) = —1/n — l/r2

is the attractive potential between the ejected electron and the protons, U(R) =
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—1/Ri — I/R2 is one for scattered electron, the distances from nuclei to ejected and

scattered electrons are T\ = \f— flp|, r2 = \f—f2p\ and Ri = \R—flp\, R2 = |J? — r*2pI>

where ?iP is the radius-vector of the i-th proton, Uint(r, R) = l/\f—R\ is the repulsive

potential of interaction between the electrons [4]. The origin of the coordinate frame

is chosen in the center of symmetry of the molecular ion with the Z and z axis

directed along the momentum of the incident electron.

Let us seek the solution of Eq.(l) in the form

*(f, X, Y, Z) = tp{f, Rx, Z) exp(ikiZ).

Under the condition that {k\ + k\ - 2E0)/kf << 1 one can neglect the second

derivative of ip with respect to Z. As a result we get the evolution-like equation for

the envelope function ip(r, Rx, Z)

-V|x - Bo + V{r, R) \ ^{r, RUZ). (2)
dz l u v ' 2

Neglecting the large-angle scattering one can write the initial condition for ip as

To solve the 5D Schrodinger evolution equation(2) we use Fourier transformation

with respect to the variable Rx

^J s± (f, Z) exp(ik±Rx)dRx. (4)

Then Eq.(2) takes the form

) } ^ f ,±(f, Z)dk'L,} J^
(5)

where

VixK (f, Z) = Iexp(-i(k± - k'±)Rx)V(f, Rx, Z)dR± (6)

is the Fourier transform of the interaction potential V(f, Rx,Z).



Further simplification of the problem is possible if the amplitude of the incident

wave is much greater than that of the scattered wave. In this case one can put

rP~k±(r,Z) = 5(kx)M?) (7)

in the integral term of Eq.(5). As a result we get the inhomogeneous equation

(f> z) + ( 2 ^ v ^ (

where Vj- (r, Z) = Vg g(r, Z), with the initial condition ipj-' (&, —oo) = 0.

To calculate the integral with respect to transverse variables in the expression

for Vg (f, Z) it is easier to start from the known integral

/
_ _ 1 _ 47T 47T , ,

exr>(—ikR)—dR = — = (9)
Carrying out the inverse Fourier transformation

For molecular ion one gets

V- (r, Z) = —

Here fcx = k{ sin 0,, is the transverse momentum component of the scattered electron,

6S is the scattering angle, ±d are the positions of the nuclei with respect to the center

of symmetry, d= J>2~'>1. Note that the first two terms in (11) determine the elastic

scattering of the incident electron by the nuclei.

Due to the exponential decrease of the source term with \Z\ the integration may

be actually carried out within a certain finite interval (—^maxĵ mox)- Hence the

zero initial condition should be imposed at the point -2mm.

Note that the approximation (7) is actually equivalent to the first Born approx-

imation [6]. Multiply Eq.(8) by the complex conjugate function of the continuous

spectrum of Ĵ o and integrate over all r. Then

(12)



where

Cs± (ke, Z) = J r(l, Wii (r, Z)dr

is the probability density amplitude for the transition of the initially bound electron

into the state with the momentum ke. Let us substitute

Cs±(fce, Z) = Ch(ke, Z) exp(ikzZ),

where kz is the increment of the longitudinal component of the momentum of the

impact electron determined by the relation

This relation is actually equivalent to the energy conservation law written neglecting

the terms of the order of kz. The substitution yields

ikidC%^Z) = j ~ exp(-ikzZ) J r(L Wk, (r, Z)M?)dr, (14)

and

where ks = ki — K is the momentum of the scattered electron, K = (—kx, —ky, —kz)

is the momentum transfer.

Provided that the ejected electron has the momentum ke, the asymptotic form of

the solution of Eq. (1) for the wave function of the scattered electron when R —> oo

is

'^s(Rj = exp(ikiZ) H =-̂ —fkt{9$!<f>s)- (16)

The scattering differential cross-section(DCS) can be then expressed as

(17)

On the other hand, the asymptotic form of the wave function resulting from the

solution of Eq.(8) under the condition Z —¥ oo can be presented as

tyV(R) = expfikiZ) +exp(ikiZ) j Cc (ke,oo)exp(ik±R± + ikzZ)dk±. (18)
Ke J K±
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Making use of the fact that the integrand has a stationary point we finally get

<f!f(R) = exp(ikiZ) + - exp I i (k{
 e-+—^-—- j Z + i^R'i \ (-2Triki)Cp (ke, oc),(19)

Z { \ ki J 2Z ) J.

where k°± = kisin63(cos(j>s,sm<f>a), R± = 7?sin^s, Z — Rcos0s. The expression (18)

agrees with (16) within the accuracy of the order of 6'j if we set

c ± ' 2n J J

(20)

The latter expression is similar to the formula for fa (9S, <j>s) derived in [6] using the

first Born approximation.

3 Calculation of the angular distribution

The asymptotic expression of the radial part of the wave function corresponding to

the continuous spectrum of .ffo can be written as

iP%{r,t) = J— exp{-iEt + i f v{r')dr') (21)
\/v(r) r JT°

where t = Z/k is the evolution variable, v{r) = ̂ 2{E - Uas{r)), E=£ + ^-Eo,

Uas(r) — -Z'/r, Z' = 2 is charge of two protons, 0 < r0 < rmax. In the asymptotic

limit one can take only the radial component of the momentum of the ejected electron

into account. Then, according to [8], the expression for calculating the amplitude

A(k, 6,4>) takes the form

AsJke,ee,t.) = - L r dt'j(^±(r,e,4>,t'),rE(r,t')) , (22)
x V27T Jt0

 x r=r m o l

where

is the flux introduced in [8], t0 = -Zm^/kt and t\ » Zmax/ki. The approximate

relation (22) becomes exact when t\ —> +oo and simultaneously rmax —> +oo.



The amplitudes defined by (22) are related with the coefficients introduced in

Eq.(lo) by

Using (17),(20) and (24) we get the final expression for the differential cross-section

a£e(^»'0») = (2ft)2kski A^±(ke, 9e, fa)\ . (25)

In the region where r > rmax we made use of the complex scaling technique [9]

to suppress the non-physical reflection from the grid boundary.

4 Numerical scheme

The inhomogeneous Schrodinger equation in spherical coordinates (here axis of co-

ordinate system z' || rf) after the substitution *(r, 0, fa t) = rip(r, 0, fa t) and replace

r) = cos 0 can be written as

dt

where Hamiltonian reads as

A solution within the second-order terms in At may be get by using of the

numerical scheme

bjj'^i — SjfW [t) —F (tj;.

(28)

j'k - ^Fijk(t + At).

H e r e z = l,..,N,j= \,..,L, k = 1....M, i' = l,..,N,f = 1,..,L, m= -M/2 +

1,.., 0,.., M/2, where L is the number of splines, M and TV are the numbers of grid
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points in cj> and >, respectively. For the r) variable using expansion of function on

Z?2-splines, i.e.

j j,m

and

3

where bj is j-th B2-spline with nodes ?7j-2, -^Vj+i- The S is the overlap or mass

matrix

-i

A finite-difference Hamiltonian is

1

= J bj bf dq. (29)

(30)

For r is used simple three-point finite-difference scheme

Other matrixes in (30) are

1

: b'j, dr); (31)

— 7} ) Of UTj] \y^)

Qidjl = jbjU{ri,r})brdr): (33)
- l ; • • . . . • • . •

Direct solution of the set of equations (28) requires NL2M operations at each

step in t. To reduce the number of operation we propose a double-cycle split-step

scheme [7]. A double-cycle partial coordinate splitting scheme can be formulated as

follows



y =

Parts of initial Hamiltonian reads as

(34)

S-lAm)i>jr, (35)

where H$jj, = {SH^A)WJJI + 6"'(-ff™)jj'- The radial R and angular A operators

have following forms

Am - - -
2 rf

(36)

(37)

here U{ = Uas(ri). It is reasonable to choose the r-dependent weighting function

p(r) as a cubic polynomial

p(r) = (38)1, r < ra;

0, r >ra + ap\

where ra is the radius of the vicinity of r — 0 where the splitting is absent, ap is the

width of the area of partial splitting.

This scheme needs only N(aL + @L2)M + jNLM\og2M operations, where /? <§;

a, conserves a norm

(39)
ijmj'
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and approximately conserves the average energy

<£) = 2TT £ r ' + l ~ r ' ~ ' yi*mH$jj.V
i'?m, (40)

ijmi'j'

when inhomogeneous term is absent.

Actually, the program works in two regimes: "integrating" regime, in which

needs small step in time A{;ni, and "flowing out" regime with step Ai/j. The

angular distribution must be calculated in "flowing out' regime.

5 Numerical calculations and results

The method was tested using the well-studied example of the impact ionizatioii of

atomic hydrogen. We compared our results with those given by the well-known

expression obtained in the first Born approximation [10]. Good agreement was

demonstrated in the energy interval of interest Ee from 1 to 3 a.u., Ee being the

energy of the ejected electron. The Figs.2 demonstrate convergence of the method

with respect of the grid parameters.

Our numerical studies concerning the molecular hydrogen ion focused on the

variation of the multi-fold differential cross section (MDCS) concerning a coincidence

detection of the two emerging electrons and one of the protons witli the ejection angle

6e at different orientations of the molecular axis, provided that the scattering angle

is small. The examples of our results illustrated by Figs.3 are obtained under the

following conditions: the momentum of the impact electron ki =12.13 a.u. (E, ~

2000 eV); the angle of scattering 9S = 1°; the energy of the ejected electron Ee = 1.85

a.u.=50.3 eV. The impact and ejected electron trajectories and the molecular axis

are supposed to lie in one plane. The latter restriction is not imposed by the method

as such, it is just an example. Generally, one gets full information about the ejected

electron after each run of the code at given values of the impact energy, scattering

angle and molecular axis orientation.
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Figure 2: a)The multi-fold differential cross section (MDCS) of the ionization of

atomic hydrogen versus the ejection angle 9e: theoretical result(solid line), dashed

line is the results given by proposed method for grid with parameters N = 100,

L = 15, M - 4, Atint = 0.02, At/, = 0.2; dotted line is one for N - 200, L = 30,

M = 8, Atint — 0.01, Atfi — 0.1; b)discrepancy for rough(solid line) and more

accurate (dashed line) grids. The momentum of the impact electron hi =12.13 a.u.

(Ei ~ 2000 eV); the angle of scattering 6S = 1°; the energy of the ejected electron

Ee = 2 a.u.

6 Conclusion

We have developed a procedure which determines the multiply differential cross

section of the (e,2e) ionization of hydrogen molecular ion by fast electron impact,

using a direct approach which reduces the problem to a 3D evolution problem solved

numerically. Our method avoids the cumbersome stationary perturbative calcula-

tions, and opens the way for near future applications to the (e,2e) ionisation of more

complex atomic and molecular targets.

Authors thanks to RFBR for supporting by grants No-00-01-00617, No-00-02-

16337.
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Figure 3: The multifold differential cross section (MDCS) of the ionization of H£

versus the ejection angle 0e. for different angles 9d: a)6d = 139.2° that corresponds

to d |l K; b)0d = 49,2° that corresponds to d ± K\ c)6d = 0°; d) 6d = 90°. The

momentum of the impact electron k, =12.13 a.u.; the angle of scattering 9, = 1°; the

energy of the ejected electron Ee = 1.85 a.u. Parameters of grid N = 200, L = 30,

M = 8, Atint ^ 0.01, At/, = 0.1
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