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1 Introduction 

Toroidal solenoids (TS) play an imporlant role in physics and technology. As the simplest 
3-dimensional topologically nontrivial objects, they have been used for the experimental 
verification of the Aharonov-Bohm effect [1]. The corresponding calculations ha.ve been 
performed in [21- They possess a number of nontrivial characteristics such as toroidal 
([3,41) and "hidden" ([5]) moments. Exact vector potentials (VP) of finite static TS were 
evaluated by Luboshitz and Smorodinaky ((61), in a non-standart gauge, and in (7], in 
a Coulomb gauge. Similarly to the static magnetic toroidal solenoids outside which the 
electromagnetic field (EMF) strengths disappear, but magnetic VP differs from zero, there 
a.re electric TS outside which EMF strengths a.re zero, but nontrivial electric VP differs 
from zero ([8,91). Further, there exists the toroidal Aharonov-Casher effect which describes 
quantum (not classical) oca.ttering of toroidal dipoles by the electric charge ((IO]). Turning 
to TS with time-dependent currents, one should mention two Page papers ([I I]). Yet, his 
EMF strengths were presented in the integral form, unsuitable for practical applications. 
EMF of TS for a number of time dependences have been studied in [12]. Unfortunately, 
the most interesting case of periodical current was considered for a very special case of 
infinitely small TS. The multipole expansion of EMF for TS with periodical current has 
been given in ([13, 141). However, that presentation was too schema.tic, without practical 
applications. The EMF of infinitely small TS with periodical current has earlier been ob­
tained by Nevessky ((151). His results were generalized to arbitrary time dependences in 
(16]. In the same reference, as well as in [9], the nontrivial charge-current toroidal config­
urations were found outside which nontrivial time-dependent electromagnetic potentials 
were different from zero despite the vanishing of EMF strengths. This makes possible the 
performance of experiments investigating the time-dependent Aharonov-Bohm effect. All 
these studies are summarized in [17]. 

The reciprocity theorem has a long history in physics. It originates from the third 
Newtonian law stating equality of action and reaction. Later, Rayleigh, in the I-st volume 
of his encyclopedic treatise "Theory of Sound" ((181) proved certain relations between 
the forces acting between two physical systems and the displacements induced by them. 
Since there is no time retardation in the Newtonian mechanics, this statement looks 
almost trivial. Further, Rayleigh applied reciprocity theorem to optics ([191). We quote 
him: "SuppOlle that in any direction (i) and at any distance r from a small surface (S) 
reflecting in any manner there be situated a radiant point (A) of given intensity, and 
consider the intensity of reflected vibrations at any point B situated in direction € and at 
distance r' from S. The theorem is to the effect that the intensity is the same as it would 
be at A if the radiant point were t.rausferred to B". He gave no proof of this statement 
referring to the analogy with mechanical systems treated in the "Theory of Sound" and to 
the optical Lambert law. Helmholtz [20] and Lorentz (21] formulated the electric part of 
reciprocity theorem in its modern forrn. This theorem bas numerous applications in the 
electric circuits iheory [22], optiO! (23,24], electron diffraction [25] and in the radiophysics 
science (see, e.g.(26, 271). The magnetic part of the reciprocity theorem was obtained by 
Feld [28] and Tai (29] in the same 1992 year. It was rederived by Monwn [30] in 1996 who, 
without knowing the above papers, pointed out numerous applications of this theorem . 
Other applications of the Feld-Tai lemma were given by Lakhtakia in his lucid book (31]. 

The aim of this consideration is to use EMFs of simplest sources for the studying the 
reciprocity-like theorems. The plan of our exposition is as follows. ln section 2, we present 
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the formalism of elementary vector potentials (EVP). Although they ate exposed in many 
text-books and treatises (see, e.g.,[32-34]), the lack of co-ordination between them is so 
large that we prefer to give self-consistent one-page exposition. In section 3, we apply 
EVP to the pure current time-dependent sources of EMF. Special attention is pa.id to the 
current loop and TS as well as to their interaction with external EMF. Various limiting 
cases of TS with periodical current a.re investigated. The EMF of the time-dependent 
electric dipole and its interaction with external EMF are studied in section 4. More 
complicated point-like EMF sources a.re treated in section 5. In section 6, by applying the 
Lorentz and Feld-Tai lemmM to the charge-current sources studied in previous sections, we 
find that these lemmas a.re fulfilled under more general conditions than it was known up to 
now. Thi.'! obliges us to consider the derivation of the Lorentz and Feld-Tai lemmas more 
carefully. This is done in section 7 where it is shown that the reciprocityslike theorems 
a.re satisfied in the same cases when the equality of action and reaction iB fulfilled. New 
reciprocity-like theorems are obtained in the same section, yet, their physical meaning 
remains unclear to us. Short resume of the results obtained is given in section 8. 

2 Elementary vector potentials 

Consider charge p(r, t) and current l{r, t) densities confined to the finite volume V. Let 

their time dependence be periodical: 

p = poexp(iwt), J = Joexp(iwt). (2.1) 

When presenting p and J in such a complex form, one should keep in mind the static 
limit of the treated problem. For example, if one operates with pure current densities and 
wants to have in a static limit the time-independent current, then one puts 

., ., (' ) J = Jo exp iwt , p = 0 

and, after all calculations, takes the real parto of EMF strengths (see section 3, where 
the EMF of a current loop and TS are considered). On the other hand, if one desires to 
obtain in a static limit the time-indepedent charge distribution, then one puts 

J = "-'lo exp(iwt), p = ipo exp(iwt), Po= di.vfo 

and, after all calculations, takes the imaginary parts of EMF strengths (see section 4, 

where the EMF of oscillating electric dipole is treated). 
The electromagnetic potentials outside the space region V, to which the charge-current 

densities are confined, a.re given by 

<P(r,t) = -4,rik EMkr)Yim(0,<p)q,,,., .A(r,t) = -
4

,rik EA1m(r,r)a1m(r), 
C 

(2.2) 

where h1(kr) = hPl(kr) = j,(kr) - in1(kr) is the spherical Hankel function of the second 

kind, ii and n1 are the spherical Bessel and Neumann functions (j, = J1+112/;[2;, n, = 
N1+1/2J,r/2x); Yi,,.(0, <ft) are the usual spherical harmonics; A1,,.(r, r) a.re the elementary 
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vector potentials (EVP). Values r = E, L and M correspond to the electric, longitudinal 
and magnetic EVP, resp. Their manifest form is given by 

- IM - l - M) A1m(L) = -k vh1Yim, A1m(E) = ~curl(r X V h1Yim, 
kyl(l+l) 

A1m(M) = - ✓ i h1(r X V)Yim-
l(l + 1) 

(2.3) 

If not indicated, the arguments of the spherical Bessel functions (j,, n1) will be kr, and 
COB 0 will be the argument of the adjoint Legendre polynomials ( P[" ). In what follows, 
we closely follow Rose treatise [32] with the exception that instead of his non-standard 
radial functions, the usual spherical Bessel functions are used. EVP satisfy the following 
equations: 

curl.Aim(M) = ik.Aim(E) curlA1m(E) = -ik.Ai.,.(M). 

It is useful to write out the spherical components of EVP in a manifest form 

[.A"'(E)] = 1 (l + l)h,_1 - lh1+1 d Yi 
1 6 

Jt(l + 1 2l + 1 d0 Im, 

[Am(E)] = m (l + l)h1-1 - lh1+1 Yi [.A"'(E)] = Jt(l + 1_.!._h Yi 
I + . w,;-:; 2[ + l lm, l r k I lm, 

sm0yl(l+l r 

-m im -m ih1 8Yj.,. -m 
[A, (M)]o = ✓ hi Yim, [Ai (M)J+ = ✓ 80 , [Ai (M)]r = 0. (2.4) 

sin 0 l(l + 1 l(l + 1 

The multipole coefficients (or formfactors) a1m(r) entering into (2.2) are defined as 

q1m = f j,}'i:,.pdV, a1.,.(L) = -¼ / j,}'i:,.divJdV = ¼ / j,}'i:,.p = icqim, 

aim(E) = k~f curl(rx V)j,Y/ ]dV = 
l l + I) "' 

= ~ f j,}'i:,.(rJ)dV + k~ / [(l + I)j, - kri1+dYi:,.pdV, 

a1m(M) = ✓ i f i1Yi:,.(rcurlJ}dV = ✓ i f i1Yi:,.div(rx J)dV. 
l(l+l) l(l+l) 

(2.5) 

To escape ambiguities, under p we mean -div7- The EMF strengths are given by 

ii 4rrk
2 

- -= -2]A1m(E)a1m(M)-A1.,.(M)a1,,.(E)], 
C 

A 4-,r~ - -
b = --I]A1,,.(E)a1.,.(E) + A1m(M)a1,,,.(M)]. 

C 
(2.6) 
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For the axial-symmetrical charge-current distributions, only m = 0 components sur-

vive 
qi,., = Omo% a1m(E) = Omoa1(E), a1m(M) = Om.oa1(M), 

[ 
-( _ .'II _ (l + I)h1-1 - lh1+1 1 

Ai E)]e = [A1 (E)]e - [l(l + l)(2l + I)41r}1/2 Pi , 

[.Ai(E)]r = [A1(E)]r = :/(l + 1!~[ + l)]112h,~, 

[.A1(M)l+ = [A11(M)l+ = ·-i[4:i~7+11l'2
h1Pi

1
• 

3 Pure current densities 

When only current densities are present (p = 0), then q1m = O, A1m(L) = O, and 

aim(E) = ~ f i1Yi;,.(rj')dV, 
l(l + I) 

while a1m(M) has the same form (2.5). Taking into account that 

j,(:c) ~ (:c)1/(2l + 1)!!, n1(:c) ~ -(2l- 1)!!/(:c)1+1 for x ➔ 0, 

one gets in the static limit (k ➔ 0) 

k
1
+

1 
I / 

a1m(E) ➔ Jl(l + l) (2l + l)!! r'Yi;,.(r]}dV, 

a1m(M) ➔ ✓ i ( l k' )II f r1Y,;,.div(rx J)dV. 
l(l + 1) 2 + 1 ·· 

(2.7) 

(3.1) 

(3.2) 

The integrals entering into these equations are usually called electric and magnetic mo­
ments, resp. On the other hand, the toroidal moment correaponding to the current density 

J was defined in [4] as 

..,fil f 1+1rv• r,:- I 9,• ]... ( ) Tim= - c(2l + l) r LJl,-1,m + v l+ll + 3/ 2 l,l+I,m JdV, 3.3 

where Y;°,i,m are the so-called vector spherical harmonics (see, e.g., (32] for their definition). 

In view of the identities 

I l+ln1• fl 1 Y,• ].,.dV -
r LJ 1,1-1,m + v l+1 l + 3/2 1,1+1,m J -

f2l+l 1 / l(- .,::;) i+2 • .,.dV = -v---z-- (l + l)(2l + 3) cur r X v r YimJ = 

= (l + 1):2[ + 3) J2
' 71 

[(l + 3) / r
1
+

2-v,;,.divjdV + 2(21 + 3) I r1
Y,;.(r]}dV (3.4) 
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established in (14], one gets for the pure current densities 

Tim= c(~~) ✓ 2l ~ 1 I rl}'i;,.(?JJdV. (3.5) 

Therefore, a toroidal moment '.I}.,., in the absence of charge density (p = 0), up to a factor 
independent of geometric para.meters of current distribution, coincides with the electric 
moment (2.5) of this distribution .. 

3.1 Electromagnetic field of a current loop 

Let the current loop lie in the z = 0 plane with its symmetry axis along the z axis. Then, 
its current density is given by 

j = /oii,;o(p - d)o(z). (3.6) 

Since iJ = O, only the magnetic form factors differ from zero 

aj(M) = Smoa1(M), a1(M) = ilod[~~~l/
1
?]1l2j1(kd)P,1(0). (3.7) 

Here ff(x) is the adjoint Legendre function. Since P,1(0) = 0 for l even, only odd 
multipole coefficients contribute to EMF of the current loop (PJn+I (0) = (-1r+1(2n + 
l)!!/2"n!). Therefore, for the current loop 

41rk2 
- ) jJ = -}:A1(E)a1(M, 

C 
E = _ 41rk

2 L A1(M)a1(M). 
C 

(3.8) 

From the facts that: (i) rE = 0 and (ii) PAi(E) = (-1i+1.A1(E) it follows [32] that the 
radiation field of the current loop is of the magnetic type (Pis the parity operator). 
When the time dependence of p and J is cos wt, the nonvanishing EMF strengths are given 
by 

E 21r l0dk
2 '°' 2l + 1 ( . . • DI - ·kd) DI ( ) .,=---- .L.., -{({) coswtJ1+smwtnt)r1J1( •1 0, 

e l:odd + 1 

21rlodk
2 '°' 1 1 . ( d) 1( ) H9 = --- .L.., -l(l l) P, JI k P, 0 x 

e l=odd + 
x{coswt[(l + l)n1-1 - ln1+1] - sinwt[(l + I)j1-1 - lj1+1]}, 

H, = 21rlokd L (2[ + l)(n,coswt- j1 sinwt)Piji(kd)P,1 (0) . 
er l:odd 

Consider particular cases. 
1. In the static case (k ➔ 0), one gets 

i1(kd) ~ (kd)1 /(2l + I)!!, n1(kr) ~ -(2l - l)!!/(kri+1
, 

21rlod '°' 1 rf 1 1 ( ) E,, = 0, He= - 2- L, -l - 1 P, P, o , 
er + 1 r 
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__ '1.1rlod L ~PiP,1(0). 
H, - er2 r 

(3.9) 

(3.10) 

I 

The term l = 1 of this sum 

H 1rl0Jl . 0 
6 = cr3 SID ' 

H, = 21rloJl ~cos0, 

corresponds to the field of magnetic dipole of the power m = 'lrlod1 
/ e oriented along the 

Z aXlS. 
2. When the radius d of the loop is so small that kd < < 1, only the l = 1 term contributes 
to (3.9). Then, EMF strengths are equal to 

E 'lfloJlk2 
• e( .,. 1 .. ,.) H 21rl0 Jlkcos0( . • ,. 1 .,,) 

,;=---sID cos'+'--k SID'+', ,= 2 SID'+'+-k cos'+', 
er r er r 

H _ 7rl0 Jl P sin 0 [( 1 ) ., 1 . .,·)] 
6 - ----- 1- -- COS'fl- -SID'+' . 

er k2r2 kr 
(3.11) 

Here ,p = kr - wt. These expressions are valid at arbitrary distances from the current 
loop. 
3. For large distances ( kr > > 1 ), spherical Bessel functions can be changed by their 
asymptotic values 

. ) 1 ( l+l J1(kr ~ -k cos kr - -,.,-11"), 
r # 

l . l + l 
n1(kr) ~ -k sm(kr - -11"). 

.r 2 

Then, 

· 1rlodkcos1p ~(-l}" -1n+ 3 PJ +ihn+1(kd)Pin+1(0), 
E,.=-He=-.---r-L., (n+l)(2n+l) " 

'P (.; fl.=0 

H, = - 2
1rJ~d sin tp I:(-1)"{4n + 3)P2n+1hn+1(kd)PJ.,+1 (0). 
er· 

The energy flux through t.he sphere of the radius r is 

S, =..:.. / dfJ.E.,He = ~(lokdcosiJi)2 L ( 4
~( 

3 
)[i2.,+1(kd)P} +1(0)]2. 

471" e _n + 1 2n + l "-

The energy lost for the period 

S, = ;Uokd)
2 L (n / 1~(~: + l)[i2n+1(kd)Pi,.+1 (0)]2. 

These expressions are valid for arbitrary kd. 

3.1.1 Interaction of current loop with external electromagnetic field 

The interaction of current (3.6) with the external EMF is given by 

1 /.., -ll = -;;- JLA.:..tdV. 

Since divJL = 0, the current density can be represented as 

Jr.,= eurlA-fc., Mr..= hii,0(d - p)S(z). 
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(3.12) 

(3.13) 

(3.14) 



Substituting this into (_3.13) and integrating by partfl, one gets 

. . 1 / u = --;;- MLll=idV. 

For the distances large compared with the loop radius d 

where 

u = -~ll.,.,1 J !ilLdv = -all.,.1, 

- 1 / ,"ldV 1 1· - ..,dV h1rc£l -µ. = - M = - r x J = --n. 
C 2c C 

coincides with the usual magnetic moment. These equations illustrate Ampere's hypoth­
esis according to which the current loop is equivalent to the magnetic moment normal to 
it. When the radius d of the loop tends to zero, 

ML ➔ hm:fnt53(r), J: = curlML, t53(r) = ,S(p)tS(z)/21rp. 

Let now the dependence of this current flowing in the loop be fL(t), i.e., 

1: = fL(t)curliitS3(r) 

(3. 15) 

(3. 16) 

(the factor 1rhc£i is absorbed into h(t)). Then, the EMF potentials and field strengths 
are given by · 

AL = - 2

1 
2 DL(rx iiL), 

C r 

where we put 

- I . 
EL= ~DL(rx iiL), 

"r 
H• 1 [(rnL) -F - G ] (3 7) L = :;- -2-r L-nL L' .1 

r.,-r r 

• C .. 3c · 3c2 
DL = D(h) = !, +-h. FL= F(h) = !, +-h + 2h• 

r r r 

.. C • c2 

GL = G(h) = !1 + -h + -;fL. 
r r 

(3.18) 

The arguments of h functions entering into DL, FL and GL are t, = t- r/c; dots above 
the h, DL, FL and GL functions mean time derivatives. When h does not depend on 
time, one obtains the field of elementary magnetic dipole 

1" P [3_(rnL) - 1 ·1L = - r-- - nL 
r3 r2 

of the power p = fL/c. Obviously, Eqs.(3.15)-(3.18) generalize (3.11) to arbitrary time­
dependences and orientations. 
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3.2 Electromagnetic field of the toroidal solenoid 

Consider the poloidal current flowing on the torus surface (Fig.I ) 

.., gc_ 5(R-R) _ _ .,. _ .• ,. 
Jo=--n+ - , n,;=n,cos'f'-npBlll'f', 

41r d + Rcosip 

The coordinates R, t/1 and ¢ are related to the Cartesian ones as follows: 

x = (d + Rcos,f,,) cos <P, y = (d + Rcos,j,,)sin <P, z = Rain ,j,,. 

(3.19) 

{3.20) 

The condition R = R defines the surface of a particular torus (Fig.2). For fl fixed and ,j,,, <P 
varying, the points x, y, z given by (3.20) fill the surface of torus (p- d)~ + z2 = R2 • The 
choice Jo in the form (3.19) is convenient, because in the static case a magnetic field H 
equals g / p inside the torus and vanishes outside it. In this case, g may also be expressed 
through either the magnetic flux <ti penetrating the torus or the total number N of turns 
in toroidal winding and the current / in a particular tum; 

~ 2NI 
g= =-

21r(d-~) c . 

Let the current in TS winding periodically changes with time: J = Jo exp(iwt). Since 

- .., gctS(R- R)-r X Jo = - . - n .. , 471' , .,, 
and rJo = gcdsin IP ,S(R. - R) 

4,r d+ Rcos,j,,' 

one has 
div(r x J) = 0, a1m(M) = O, aim( E) ;l: 0. 

Therefore, 

- 11rik " - 0 4irk
2 ~ - r1 41rP .,_... -A= --LJA1(E)a1(E), = --L.JA1(M)a1(E), .o = --- L.JA1(E)a1(E) 

C C C 

(3.21) 
(A is the vector-potential). From the facts that: (i) rll = 0 and (ii) PA1(M) = 
(-1)1,4(M), it follows (32,34] that the radiation field of TS is of electric type. 
The electric form factor a1 ( E) for the radiating TS is equal to 

I ✓ 2l + 1 l 
a1(E) = 4gcdRk 'll'l(l + I) i, 

2 .. 

/1 = J i1(ky)P,(x)sinipdip, 
0 

{3.22) 

where y = [d2 + R2 +2dRcos,j,,J112 and x = Rain ,j,,/y. It easy to check that a1(E) = 0 for 
l even. Let the current time dependence be coo wt. Then, EMF is given by the real parts 
ofA,E,il: 

Ao= gd~k2 L l(l: 1/1.P,1{[(! + l)j1-1 - li1+i]sinwt - [(l + l)n1-1 - ln1+i] cos wt}, 

A,= gdRk "(2l + l)/1P,(j1 sin wt - n1 cos wt), 
2r LJ 
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· gdRk3 2L+·1 .. 
H,; = --E-(--)J,P,.1(n1 cos wt - 11 smwt), 

2 l l+l · 

Ee= _gd:k
3 

L l(l: 
1
/1Pi1{[({ + l)j,_1 - li1+i]coswt +[(l + l)n1-1 - ln1+i]sinwt}, 

gdRk2 . 
E, = -~ L(2l + 1)1t/1(J1coswt +n1smwt). 

Consider particular cases. 

1. In the static limit ( k ➔ 0) one gets 

k' c,, 
11 ➔ (2[ + 1)!! 

gcdRk1+1 ✓ 2l + 1 G 
a,(E) ➔ -i(2l + 1)!! 1rl(l + 1) 1' 

Tim= Omo1i, T, = gdR../l 
2([ + 1{1, /

2
"' Rsin,J,• 

C, = y1 Pi(--) sin ,J,•d,p, 
0 y 

13.23) 

(3.24) 

where Tim is the same as in (3.5). This integral can be taken in a closed form. We give 
its value only for l = l 

1rgdR2k2c 
01 = 1rR, a1(E) = ~ 

4v61r 

EMF strengths of TS decrease like k2 

H d 2~ J l l ,; ~ -g Rk ~ l(l + 1) r 1+1 Gil~ ' 
gdRk'}. C, l R' 

Ee~ --2-ctE [ +l r1+2 1, 

gdRk2 l 
E, ~ -

2
-ctEC,P,r1+2 • (3.25) 

On the other hand, the vector potential of TS does not vanish in the static limit 

gdR ~ 01 P.1 _l_ 
An ➔ - 2 ~ 1 + 1 I rl+2' 

gdR I 
A, ➔ 2 L r1+2G1Pi. (3.26) 

The linear time dependence in E (for wt << 1) arises when one differentiates the cos wt 
term in A, and then let w go to zero. For the infinitely thin TS ( R < < d), C, is reduced 
~ . 

G _ ni2n( l}"(2n+l)!! 
2n+l - 1Tfi.(l- - • 

2"n! 
2. Infinitely small toroidal solenoid ( kd < < l ). 

Obviously, only the l = 1 term contributes to sums in (3.23) 

J, = 1rkR 
3 ' 

1rgdR2 k2 l 
E, = 

2 
cos0[cos ,J, - -k sin ,p], 

2r r 

1rgdR2 k3 
• • 1 l 

E6 = -'---sm0(sm ,p(l - k2 ~) +-k cos,J,J, 
4r r· r 

1rgdR2 k3 1 
H,; = 4r sin 0[sin ,P + kr cos ,pJ. 

(3.27) 
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For estimations, let the major radius d of TS be 10cm. We rewrite the condition kd < < 1 
in the wavelength language 

21rd 60 
T:::l-r<< t. 

This means that Eqs, (3.27) will work for .X ~ 5m. 

3. Infinitely thin toroidal solenoid ( R < < d). 
Taking into account that 

one gets 

P2n+1(x) ➔ -Pd .. +1(0)x for x ➔ 0, 

hn+l = -~Pin+1(0)D'l.n+1, 

2 .. 

D'l.n+I = f hn+1(ky)sin4 ,pd,f.,, 
0 

] 2 ✓ 4n + 3 I ( ) 
a2n+1(E) = - 4ycR k 1r(2n + l)2(n+ l)P2,.+l O D2n+l• (3.28) 

For R << d (but for arbitrary kd and kR) D2n+ 1 can be taken in a closed form (see 
Appendix): 

D2 .. +1 = 1r{Jo(kR)j2 .. +1(kd)- ~J2fkR)[h .. +s(kd) + h .. -1(kd)]}. (3.29) 

If, in addition, kR << l, then 

D2n+1 = 1riz,.+1(kd) 

and 
) 1r 2 , / 4n + J I . 

a2 .. +1(E = - 4gcR kV 1r(2n+ l)2(n+ 1t 2,.+1(0)J2n+1(kd). l3.30) 

On the other hand, if kR >> 1, then 

2(21; 1T • . 

D2n+I = kdVkRcos(kR- 4)[(n+l).12n+2(kd)+nJ 2,.(kd)J. (3.31) 

For kd > > 1, Eqs. (3.27) are not applicable. For example, ford= 10cm and .\ = 1cm, 
kd :::l 60. The possible outcome is to take the minor radius of TS as small as possible. 
Equations (3.23) with a,(E) given by (3.28) and (3.29) are valid for arbitrary frequencies 
if R :5 2cm (ford= 10cm). The advantage of electric formfact.orn (3.28) and (3.29) is 
that they do not involve inte~ration that is very cumbersome for hi~h frequencies. 
To estimate the number of ac(E) contributing to sumo in (3.23), we need the a.symptotic 
behavior of Jv(x) for x fixed and 11 >> 1. It is given by (see [35], Chapter 8) 

1 xey_ 
lv(x) ~ ✓21r11 (2v (3.32) 

For x = kd the same aa above (kd :::l 60), lv(kd) :::l 10-10 for L' = 100, that corresponds 
ton~ 50. It follows from (3.32) that the number of terms contributing to (3.23) with 
a1(E) given by (3.28) and (3.29) should be slightly greater than 0.7kd. 
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4. Large distances (kr >> 1). 
Then, 

gdRk2 
• ~ ,. 4n + 3 1 

Ee= H, = -~sm,p L..,(-1) (2n+ I)(n+ l)/2,.+1P2 .. +11 

E, = g~: cosit>E(4n+3)(-1)"12n+1P2n+I• (3.33) 

The energy flux through the sphere of the radius r is 

S. = ..:....r2 f dO.E H = c(gdRP sin ,Ji )2 ~ 4n + 3 12 . 
' 4,r 9 f 2 L.., 2(n + 1)(2n + I) Zn+! 

Correspondingly, the energy lost for the period is 

S. = .:(gdRk
2 

)2 ~ 4n + 3 /2 
' 2 2 L..,2(n+1)(2n+l) Zn+i· 

3.2.1 Interaction of toroidal solenoid with external electromagnetic field· 

The interaction of TS with external EMF is given by 

1 I., -U = -~ JTA.,,1dV. (3.34) 

Since divJT = 0, the polodal current (3.19) flowing on the toms surface can be represented 
in the form ((91) 

., - .. , 
)T = curlM, divM = 0, M = iir~~e(R- ✓cp--::-df}. + z2), divM = 0. 

41rp 
(3.35) 

That is, the magnetization M has only the azimuthal component and differs from zero 
only inside the torus (middle part of Fig. 3). Since divM = O, the magnetization M, in 
its turn, can be.written as 

where 

M =curlT, di!JT i= o, 

T = ii,T, T = gc[0(d- ✓R2 - z2 _ p)ln d+ JW=z2 
41r ~- d- ✓R2-z2+ 

+e(d+ ✓R2 - z2 -p)0(p-d+ ✓R2-z2)ln d+ ~]. 
µ . 

Thus, T differs from zero in two space regions (see the lower pa.rt of Fig.3): 

(3.36) 

(3.37) 

a) Inside the torus hole defined as O ~ p s d-~. whe,re T does not depend on p 

gc d+ ✓R2 - z2 

T. = - ln ---.====· 
47r d - .,/ W - z2 

b) Inside the torus itself ( d - ✓ R? - z2 :5 p :5 d + ✓ R2 - z:i) where 

gc d+ ✓R2- z2 

T=-ln----. 
47!" p 
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(3.38) 

(3.39) 

In other space regions, T = 0. Therefore, 

)T = curlcurlT, divT i= 0. {3.40) 

Substituting (3.40) into (3.34), one gets 

1 I. U = - cZ ETdV 

(dot above E means time derivative). For the distances large compared with TS' large 
radius 

1 . 
u = - r?E I TdV (3.41) 

Despite the fa.ct that T is rather complicated, the volume integral looks very simple 

f TdV = iiz 1rcg:R
2 

(3.42) 

Physically, Eqs. (3.35), (3.36) and (3.40) mean that the poloidal current J given by 
Eq.(3:35) is equivalent (i.e., produces the same magnetic field) to the toroidal tube with 
the magnetization M defined by (3.36) and to the toroidization T giYen by (3.37). This 
is illustrated in Fig. 3. Obviously, these equations generalize Ampere's hypothesis. 
Now let the minor radius R of a torus tend to zero (this corresponds to a.n infinitely thin 
torus). Then, the second term in (3.37) drops out, while the first one reduces to 

For infinitesimal R 

Therefore, in this limit, 

g C rn;:,---;; 
T--+ -d0(d - p)v R2 - z2 • 2,r 

l 
✓R2 - z2 --+ 21rR28(z). 

J = curlcurlT, 
gcR2 

f = nz4d8(z)0(d - p). 

(3.43) 

· {3.44) 

i.e., the vector Tis confined to the equatorial plane of a torus and is perpendicular to it. 
Let now d ➔ 0 (in addition to R --+ 0 ). Then, 

1 d 
-e(d - p)--+ -8(p) 
d 2p 

and the current of an elementary ( i.e., infinitely smcll) TS is 

J = curlcurlT, T = ¾1rcgdR283(r)nz. (3.45) 

Let now the dependence of the current flowing in the toroidal solenoid be h(t), i.e., 

J~ = h(t)curlnT83(r). (3.46) 
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(the factor ¼,rcgdTR~ is included into h(t)). Then, EMF potentials and field strengths 
are given by 

XT = _! [-nTGT + ..!.
2

rl'mT)FT}, 
'--r r · 

ii 1 · I . 
/:JT = 4r[riTGT - 2rl'mT)FT}, 

C r 

jJ 
1 .. 

T = -::.(rx nT)DT, 
4c.-r 

(3.47) 

where DT = D(h), FT= F(!T), GT= G(fT). When his independent oft, only the 
vector potential survives 

AT= --
1
-h[nT - ~r(mT )J. 

4cr3 r 2 

Clearly, Eqs. (3.47) generalize (3.27) for arbitrary time dependences and orientations. 

4 Electromagnetic field of electric dipole 

Consider two point charges at the points ±aan. Its charge density is given by 

Pd = eW(r - aan) - S'(r + aan)J. 

For an infinitely small dipole, this takes the form 

Pd.= -2ea(nVW(r'), v - a 
.- ox,· 

Now let the charge density depend on time 

Pd = J(t)(nV}63(r') 

(factor -2ea is included in J(t)). The corresponding current density is given by 

jd = - i(t)no3(r'). 

The following EMF strengths correspond to these densities: 

ild. = .} /rx n)Dd, 
er 

Ed.= -
2

1 
[nGd, -

1
2

(nr')rF,i]. 
c r r · 

Now let the time dependence of charge density be cos wt: 

Pd= -2ead,COSwt(nV}o'(r'), jd. = -2ead.wsinwtno3(r'). 

For the unit vector n alon_g the z axis, one gets 

(4.1) 

(4.2) 

(4.3) 

2eaJk2 
• sin t/> 

H# = ---sm0(cost/>- --), 
2ea.ik2 

• 1 sin t/> 
E.is = ---sm0[cos,p(l- -)- -J, 

r kr r k2r2 kr 

4eadk . 1 
E,j = - 2-cos0(sm I/>+ -k costf.,), I/>= kr - wt. 

r r 
(4.4) 
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[n the static limit (k ➔ 0) one gets the field of electric dipole 

E 
2ade . 

0 d8 ➔ -
3
-stn , 

r 
4ead 

Edr ➔ -J-cos0, 
r 

Ha,; ➔ O. 

For the oscillatin~ electric dipole with a finite ad, oriented along the z a.xis 

Pd= iexp(iwt)Pdo, Pdo = 'l 2e. e5(r - ad)[o(0) - o(,r - 0)}, 
.,rad sm 

Ja = ii.-Jd, Jd = -wexp(iwt)Jdo, 
P. 

)do,= 
2 2

• 
0

8(ad-r)[o(0)-o(,r-0)] 
,rr sm , (4.5) 

If we desire t.o obtain, in the static limit, the static electric density Pao, we should take,at 
the end of all calculations, the ima11)nary parts of the EMF strengths (since Pd in ( 4.5) 
contains the imaginary unit factor i). It turns out that af'(M) = 0, i.e., only the electric 
fonnfactors with l odd contribute to the EMF strengths 

a/(E) = om.0a1(E), a1(E) = -2ec✓l(l: l) F,(kad), (4.6) 

'"'d 
Fi(kad) = f j1(x)xdx + kad (l + l)i1-1(kaa)- lj1+1(kaa) 

0 2[ + 1 . 

For kad ➔ 0 this reduces to 
l + 1 1 

Fe ➔ (2[ + l)!! (kad). 

Taking the imaginary parts of the EMF strengths (3.18) with a1(E) given by (4.6), one 
obtains 

H,; = -2ek
2 L l~:: :) (coswtj, + sin wtn1)Pz1 Fl(kad), 

Ee= -2ek2 L l(l: l) {coswt[(l + l)n.1-1 - ln1+d - sinwt[(l + l)j1-1 - lji+d}P,1 F,(kad), 

Er= -
2
ek L(2l + l}(coswtn.1 - sinwtj,)PiF,(kaa)• 
r 

(4.7) 

We evaluate the square bracket entering into the definition of toroidal moment (see the 
last line in (3.4)) for the electric dipole charge-current density given by (4.5): 

(l + 3) f t+2Y,• d . ., dV + 2(2l + 3) / 'y;• (-"' )dV - r 2ewl(l + 1) t+i r Im WJd. r Im rJd - omo (l + 2) ad , 

(factor exp(iwt) is omitted). 
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4.1 Interaction of electric dipole with external EMF 

Substituting the cha~e-current of densities of the elementary electric dipole 

Pc1. = f(t)(iiV)o3(r- r:i), Jc1. = - i(t)iio3(r- rc1.) 

into the expression for interaction energy 

I 1-, -
U = [pc1.(r)~.,,1(r) - ~Jc1.(r)A..,1(r)]dV, 

one gets 

u = -fc1.(t)(nV)~,,,,1(r:i) + ~ ic1.(t)iiA,,,1(r:i). 
C 

(4.9) 

Let the external EMF be the field of TS with a constant current in its windin~. Then, 
outside the TS, ~ut = 0, E..,t = 0, H,,,t ~ 0, A.,,,t f. 0 and 

1 . -
U = -- fc1.(t)nA..,,1(F;.). 

C 
(4.10) 

It is surprising enough that the interaction energy differs from zero in the space region 
where Ee:,;t = H.,,1 = 0. Despite the fact that EMF strengths vanish outside the static 
TS, the VP A cannot be eliminated by a gauge transformation everywhere in this region. 
This is due to the fact that f Ads along any closed path passing through the TS hole, 

is equal to the magnetic flux inside TS. However, the space region where A differs from 
zero, depends on the gauge choice (see, e.g., [17]). On the other hand, the interaction 
energy (4.10) should not depend on the gauge choice. The origin of this inconsistency is 
unclear for us. 

5 More complicated elementary toroidal sources 

In this section we give without derivation EMFs of more complicated toroidal sauces 
obtained earlier in (16]. They are needed for the evaluation of integrals entering in the 
Lorentz and Feld-Tai theorems. Unfortunately, their omission makes the text to be un­
readable. Consider the hierarchy of TS each tum of which is again TS. The simplest 
of them is the usual TS obtained by the replacement of a single turn, representing the' 
current loop, by the infinitely thin TS. We denote this TS by TS1 ( the initial current 
loop will be denoted by TS0 ). The next-in-complexity case is obtained when each turii of 
TS1 is replaced by an infinitely thin toroidal solenoid ts 1 with the time-dependent cu~nt 
in its winding. Thus obtained current configuration denoted by TS2 is shown in Fig. 4. 
We see on it the poloidal current J flowing on the surface of a particular torus ts 1• Only 
one particular turn with the current J and only the central line of ts1 are shown (for the 
torus (p - d)2 + z2 = R, the central line is defined ns p = d, z = 0). The a.rising time­
dependent magnetization ( due to the current J flowing in ts 1) coincides with the central 
line of ts 1 and lies on the surface of TSi, in its meridional plane. Since there are many 
turns in T S'i, ( each of them is the same as ts1 ), the superposition of their magnetizations 
gives the overall magnetization Af, filling the surface of TS1 (see Fig. l or upper part 
of Fig.3, where J now means M). This distribution of magnetization is equivalent to the 

16 

I 

closed chain of toroidal moments f aligned along the central line of TS1 (see the middle 
part of Fig.3, where M now means 'I'). The closed chain of toroidal moments leads to the 
appearance of higher order toroidal moment shown in Fig.4 by the vertical arrow. When 
the dimensions of just obtained configuration TS2 tend to zero, we get {see (10,16]): 

]2 = h(t)curl('l(iio3(r)), cur[C3l =curl· curl• curl. (5.1) 

The corresponding VP and field strengths are given by 

- 1 n<2l(- ) E- 1 n<3J(- ) il _ 1 al2J 1 ;:(-)v<2) A2 = -
4 2 2 r x n , •2 = --5 2 2 r X n , 2 = n-:.- 2 - --;---3 r\rn r 2 • 

c r t: r c..-r C"r 
(5.2) 

Here subscripts at D, F and G functions mean that they depend on the f function with 
this index, while the superscript means the time derivative of the order equal to this 
superscript. For example, 

n<n) = :!:..n(f, ). 
m dtn. m 

By comparing Eqs.(5.1),(5.2) wiih (3.16),(3.17) we conclude that for the current configu­
rations TS0 and TS2 the electromagnetic fields coincide everywhere except for the origin if 
the following relation between time-dependent intensities ill fulfilled: JJ2l = - fo / c2

• This 
means, in particular, that the EMF of the static magnetic dipole (!0 = const) coincides 
with that of the current configuration TS2 if the current in it quadratically varies with 
time ( h = - f 9c2t2 /2). It follows from this that the magnetic field of the usual magnetic 
dipole can be compensated everywhere {except for the origin) by the time-dependent 
current flowing in TS2 • 

Now we are able to write out the electromagnetic field for the point-like toroidal 
configuration of the arbitrary order. Let 

lm = fm(t)curt<m+il(no 3(r)). 

We consider.even and odd m separately. 

Toroidal configurations of even order 

Let m be even ( m = 2k,k ~ 0 ). Then 

A- - ( )"+1 I n(:Ucl(- ) ~ - ( ),. i v<21c+ri(-- - ) 21c - -1 c2Tc+2r2 21< r X n ' D'1.lc - - c2Tc+3r2 21, r X n 

H2,. = (-1)" 1+3 [{r(m)FJ~"l - ,i!G~i"l]. 
c r r 

The distribution of the radial energy flux on the sphere of the radius r is given by 

C sin2 0 2h+l 2/c s, = 4-(E X H), = 4/c 5 2 D2,. G21c· 
'I!" 4r.c + r 

(5.3) 

(5.4) 

Here 0 is the angle between the symmetry axis n and a particular point on the ephere. 
The total energy flux through this sphere is 

2 / s. dn - 2 v2r.+1rak r r a - 3c4h+5 2/c V21c· 
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The int~raction of the even toroidal. source with the external EMF is given by 

U - _h, f dVA- 1:U.+1(-'3(-- -)) - (-1)"+1 hi. (-D(Z/c)) - ..,,1cur no r r, - 2/c+I n ..,,1 , 
C C 

where the external magnetic field is taken at the position of a point-like toroidal source. 

Toroidal configurations of odd order 

On the other hand, form odd ( m = 2k + 1, k ~ 0) 

- _ )" 1 [ 1 -:t--)F(~lci _IG{l/c)] 
A21,+1 - (-1 c2lc+3 ,-3 r,rn 21c+1 - n; 21c+1 ' 

~ - . 'k+l l [ l ::!f--)p(2k+l) _1 ,(2h+l)] 
~k+t - (-ll c2T.H r3r._rn, 2h+1 - n;:U2k+1 ' 

jJ _ (-l)"~D(2k+2)(-x ) ~- __ 2_a(2k+1) nPh+2) 
2k+t - c2k_Hr2 21c+1 .r n. ::> - Jc4k+7 2k+t 2k+1 · 

The distribution of the radial energy flux on the sphere of the radius r is given by 

C . ;,; D) sin
2 

0 2k+2a2J.+1 s, = -l.c, X y = 4/c 7 2 D"k+l "k+t· 41r 41rc + r • • 

The total energy flux through this sphere is 

r2 S dn = _ .. _ 2r.+2 2/c+ I / 
') 

' Jc4k+7 D21,+1 G'21c+1 • 

The interaction of the even toroidal source with the external EMF is given by 

U - _f2x+1 /dVA- l2J.+2(-rJ(-- -)) -(-l)1,+1h1c+1(-E-c21c+1J) - c ..,,1cur no r r, - c21,+z n • .,1 . 

(5.5) 

. Again, the external electric field is taken at the position of a point-like toroidal source. 

Short resume of this section 

We see that there are two branches of toroidal point-like currents generating essentially 
different electromagnetic fields. A.representative of the first branch is the usual magnetic 
dipole. The electromagnetic field of the k-th member of this family reduces to that of the 
circular current if the time dependences of these currents are properly adjusted 

tJz"l = (-1)"fo(t)/c2
", (k ~ 0). (5.6) 

We remember that the lower index of the f functions selects a particular member of the 
first branch, while the upper one means the time derivative. 
The representative of the second branch is the elementary TS. Again, the electromagnetic 
fields of this family are the same if the time dependences of currents a.re properly adjusted 

fiZ~1 = (-1)"!1(t)/c2
", (k ~ 0). (5.7) 
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From the equations defining the energy flux it follows that for high frequencies, the t~roidal 
emitters of the higher order are more effective ( as the time derivatives of higher orders 
contribute to the energy flux). They may be used in the same way as usual FM transmit­
ters. Namely, the EMF of high frequency carries the energy. It is modulated by the low 
frequency EMF carrying the information. The resulting signal is decoded in the receiver, 
its high-frequency is removed, while its low-frequency part comes to our ears. 
From the classical electrodynamics it is known [32, 34] that there are two types of radia­
tion. For the multipole radiation of magnetic type rE = 0, rD f 0, while for the radiation 
of electric type should be rH = 0, rE t o. It follows from (5.4) that ;:tz,. = 0, rH21c t 0. 
Thus, radiation fields of the time-dependent currents flowing in a circular turn and in 
toroidal emitters of the even order are of magnetic type. It follows from (5.5) that 
rD21, = 0, rE21c -f:. 0. Correspondingly, radiation fields of the time-dependent currents 
flowing in a toroidal coil and in toroidal emitters of the odd order are of electric type. 

6 The Lorentz and Feld-Tai lemmas 

6.1 Standard derivation of the Lorentz lemma 

We write out Maxwell's equations for two current sources / 1 and ]2 : 

1 . 
curlE1 = --Di, 

C 

1 . 
curlE,z = --D2, 

C 

Prom this one easily obtains 

D l;,1 4ir.,. 
curl 1 = -.e1 + -11, 

C C 

D l ;1 4ir..,. 
curl 2 = -.e7 + -12-

c C 

div(E1 x D2) = fl2curlE1 - E1cv.rlEz = -~D2R1 - ~E1ff2 -
4

irJ2E1, 
C C C 

div(Ei X D1) = D2curlE1 - E1curlE2 = -~D1R2 - ~E2ff1 -
4
cirJ1Ez. 

Subtracting these equations from ea.ch other, one gets 

lo.fl 

ii D - fl i fl fl. D fl. i ii :.. ii ;I 4ir ..,. - .. ii 
div(.c,ix 2-E2x 1)=-( 1 2- 2 1)--(.e1E2-c,z.c,i)+-(J1E2-J1Dz). (6.2) 

C C C 

When the time dependence of field strengths is given by expliwtl, i.e., 

E1=exp(iwt)~, E'.J=exp(iwt)~, D1=exp(iwt)m, D.=exp(iwt)I1~, (6.3) 

then 
E1f2 = Ezfi, 

. . 
D1I1.i = 11.i/1 (6.4) 

and 
div(Ei x fl2 - ~ X Di)= 

4
1r <Ji Ei - )1 Ez). 

C 
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Integrate this relation over the sphere of the radius Ilo and apply the Gauss theorem 

2 / - - - - 47T / .., - .., -~ (E1 x H2 - E2 x Hi),df1. =--; (J1E2 - J1E2)dV. (6.5) 

For /lo ➔ oo, the LHS of this equation disappears and one gets the famous Lorentz lemma 

f12 = f21, 

~ f!, ~ -
where we put Gri = J JiLzdV, f21 = J J2E,dV. 

6.2 The Feld-Tai lemma 

The Feld-Tai lemma states that 
'H12 = 1l21, 

where 1l12 = J JJ/2dV, 1l21 = J hH,dV. 

(6.6) 

(6.7) 

It is proved along_the same lines as the Lorentz lemma. From fti.l) one easily obtains 

div(Hi X H2) = ~( H2E, -H, ff.i.)+ Jdlr )1 H2, div(E1 x.E2) = ~(E1il2-Eifl1), (6.8) 
C C 

Subtracting these equations from each other, one gets 

.- - - 1 · · 1.:..:...,.., 
div(E1 X E2 - Hi X H2) = -(EiH2 - E2Hi)- -(H2Ei - H1E2) - 11H2 + J2H1. (6.9) 

C C 

If the time dependences of E and j/ are exp(iwt), then the first two terms in the RHS of 
(6.9) cancel each other. Integrating the remaining ones over the whole volume, one gets 

r2 f dn(Ei X E2 - Hi X H2)r = f dV(-]iH2 + J2Hi)- (6.10) 

Since E = j/ x n, n = r/r on the sphere of infinite radius, the LHS of (6.10) disappears 
and one obtains the Feld-Tai lemma (6.7). 

6.3 Lorentz and Feld-Tai lemmas for real time-dependences 

The crucial point in obtaining (6.6) and (6.7) is Eq.(6.3). However, the real current 
densities should be real. The possibility of operating with complex quantities like 

exp(iwt)J, exp(iwt)E, exp(iwt)H 

is valid as far as we deal with the quantities linear in field strengths. For example, if the 
actual dependence of the current density is cos wt, then we may solve Maxwell equations 
with exp( iwt )J, exp( iwt )E and exp( iwt) j/ and at the end take· the real parts of these 
quantities. However, one should be very careful dealing with qua.dra.tic combinations like 
(6.2} and (6.9). To avoid mistakes, one should first take real parts of EMF strengths and 
substitute them into. qua.dra.tic combinations of field strengths. Consider two equalities 
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l 

(6.4) obtained under assumption (6.3). Equations (3.9),(3.23) and (4.4) show that actual 
field strengths contain both cos wt and sin wt 

E1 = coswtef. + sin wtE:, Ei, = cos wt~+ sin wtE;, 

111 = coswtH; + sinwtD:, H2 = coswtH~ + sinwtll;. 

Substituting (6.11) into (6.4), we find that the latter are satisfied if 

E-c ;,;, _ ;,;, i!,c H~cjJ• _ j/•j/c 
11!,2-l!,1£12, .I 2- I 2 

(6.11) 

(6.12) 

It is not evident that these equations are fulfilled for the real time dependences coswt 
and sin wt. We show below (section 6.5) that they are not satisfied.for the simplest EMF 
sources. 

6.4 The Lorentz and Feld-Tai lemmas for elementary electro­
magnetic sources 

We apply now the Lorentz and Feld-Tai lemmas to the simplest electromagnetic sources. 

6.4.1 Interacting electric dipole and current loop 

Equations (3.16) and (3.17) define the current density and EMF strengths of the current 
loop, resp. Correspondingly, Eqs. (4.1) and (4.2) define the same quantities for the 
electric dipole. Combining them, we evaluate the integrals entering into the Lorentz and 
Feld-Tai lemmas: 

eu =hf curl(nL83(r - rL))EddV = -~!LnL f 83 (r" - rL)iJddV = 

= -•R1 
2 h(t)(RLJ(nd x nL)i.Jd, edL = c3 ~J id(t)(.fltL(nL x nd)iJL, 

~ il ~L 

1lu = - -"Rt fL(t)[(nJnL)Gd - R; (ndRdL)(nLRdi)Fd], 
~~ dL dL 

Kl~= - -"R
1 

id(t)[(ndnL)GL - R; (nd.RvtL)(ndl..n)-FLJ• (6.13) 
<.:- dL . _ dL _ -

Here RLd = :... RdL = rj, - r.,. We see that 

eu= edL and 1lu = 'HdL ·. (6.14} 

ll h = id-
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6.4.2 Interacting electric dipole and toroidal solenoid 

Combining Eqs. (3.46),(3.47) defining current density and EMF strengths of TS and Eqs. 
(4.1), (4.2) defining the same quantities for the electric dipole, we evaluate the integrals 
entering into the Lorentz and Feld-Tai lemmas: 

. 1 .. 
eTd = h(t) J curt<2l(rtT53(r- rT)EddV = - c2h(t)Ed(RTD) = 

= 4 R
1 

[(nTna)Gd - R! (naRTd)(rtTilTd)Fd], 
C dT dT 

· l · l - - . edT = la(t) 4 D _ [(nTna)GT - R~ (naRTaHnTRTa)FT], 
C "'dT dT 

1l 1 f . - n·· ( - ) I it - - ) (3) Td = - 2 T(nT d HTD = - 4172 JT1t,Td(nd X nT Dd , 
C C '"Td 

1 . - (2) 
1ldT = 4U2 !aRaT(na X nT)DT . (6.15) 

C ""I'd 

The dots above the field strengths mean time derivatives. Again, we see that these 
integrals coincide when h = Jd. 

6.4.3 Interacting current loop and toroidal solenoid 

Finally, using Eqs.(3.16), (3,17) and (3.46),(3.47) we get for the integrals entering into 
the Lorentz and Feld-Tai lemmas 

eLT = IL I curl(nL53(r- rr,))Er(r-f:i,)dV = -~hiiL I 53(r- rL)llT(r-f:i,)dV = 

= - c5 ~h !LRLT(iiT X iiL)D¥l, 

eTL = h(t) I curt<2>(nT53(r- f:i,))EL(r- rL)dV = 

= -h(t) ~ rrTiL(RTL) = - s !2 h(t)D~l RTL(ifr x nT ), 
C C "'l'L 

1lr,T = h I curl(nv53(r - rL))HT(r- f:i,)dV = ~f,nLET(RLT) = 

1 .. l .t .t .. 
= _i;R /r,[(rtLrtT)GT - R2 (nLftLT)(iiTftLT)FT], 

~- LT dT 

1ln = h I curt<2l(iiTo3(r-ri-))HLdV = -h ;iiT I 53(r-ri-)jjL(RL)dV = 

= - f~ iiTH(il,TL) = /:_ [(iir.iiT )GL - R! (iir,Rr.T )(iiTRLT )f'r,]. 
C C 'VI'L dT 

(6.16) 

We see that these integrals coincide when fr= fr.. 
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6.5 Conditions for the validity of the Lorentz 
and Feld-Tai lemmas 

We analyze the conditions (6.4) and (6.12) using the interacting current loop and toroidal 
solenoid as an example. As we have seen, the equalities 

eLT = eTL and 1lr,T = 1lTL 

are satisfied h = fr,. However, it is easy to check that the conditions (6.4) and (6.12) 
under which the Lorentz and Feld-Tai lemmas were obtained are not satisfied for arbitrary 
h = h More accurately, Eqs. ( 6.4) and ( 6: 12) are valid if the time dependences h and h 
are of the following specific form; h ~ exp(iwt), h ~ exp(iwt). But how to reconcile 
the violation of(6.4) and (6. 12) with the fulfillment of (6.6) and (6.7) proved in a previous 
srdion? The answrr is that although Eqs.(6.4) are not satisfied, the space integrals from 
them do. This. in turn, means that the Lorentz and Feld-Tai lemmas have a greater 
range of applicability than it was suggested up to now. The same conclusions are valid 
for the interaction of electric dipole with the current loop and with the toroidal solenoid. 
The fact that the Lorentz lemma (6.6) may be fulfilled due to the equalities of the space 
integrals from (6.4), not to (6.4) itself, was earlier admitted by Ginzburg ([361). , 

7 Alternative proof of the Lorentz 
and Feld-Tai lemmas 

7 .1 Digression on the energy exchange 

At first we consider a simpler case corresponding to the energy exchange between two 
sources of electromagnetic energy. The energy transmitted from one charge-current source 
P2(r,t),12(r,t) to the other source P1(r,t),11(r,t) is given by 

W12(t) = f [p1(r1, t)~2(r1, t)- ~11(r1, t)A2(r1, t)]dVi, (7.1) 

where ~ 2(ri, t) and A2(ri, t) are the scalar and electric potentials induced by the charge­
current density (p2,12) at the position of the charge-current density (p1 ,11 ). They are 
given by 

~ 2(r1, t) = /-
1
-p-;i(r2 , r)S(r - t + R12/c)dVidr, 

R12 

A2(f''i, t) = ! f-R1 
12(r2, r)S(r - t + R12/c)dVidr. 

C 12 
(7.2) 

Here R12 = jr1 - r:il is the distance between the particular point of sources 1 and 2. 
Substituting this into (7.1), one gets 

W12(t) = /[p1 (fi, t)p2(r:i, r) - ~j1(r1, t)J2(r:i, r)]-R
1 

o( T - t + R12/c)dVidVidr. (7.3) 
C 12 
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In the same way, 

W21(t) = /(p2(r2, t)p1(r1, r) - ~J1(r'1, r)J2(r2, t)]-R
1 

<l(r - t + R12/c)dVirlV2dr. (7.4) 
r. 12 

We see, that in general W1 1(t) i- Wdt). 
separated 

Let now time dependences in p and j be 

P1(r1,ti) = P1(ti)p1(ri), 

J1(r1,t1) = J1(t1)J1(ri), 

Then, 

p2(ri, t2) = P2(t2)p2(ri), 

I2Vi, t2) = J2(t2)12(ri). (7.5) 

W12(t) = /(p1 (t)P1 (ri)p2(r2)P2(r)- ~J1 (t)J1 (r1)J2(f'.i)j2( r)]-R
1 

J( r-t+ R,if c)dVidVidr, 
C 12 

(7.6) 

W21(t) = / P2(t)p2(r:i)p1(r1)P1(r)- : 2j2(t)J2(r:i)J1(ri)j,(r)] i
12 

S(r-t+R12/c)d\'1dVidr. 

(7.7) 
It follows from this that W12 = W21 if the time dependences of sources 1 and 2 coincide, 
i.e., when 

P1(t) = P2(t), }1(t) = jz(t), (7.8) 

that is the action and reaction coincide if the time-dependences of sources 1 and 2 are 
synchronized. · 
The violation of action and reaction due to the retarded nature of electromagnetic inter­
action was first recognized by H.A. Lorentz in 1895 (37]. As far as we know, the beat 
exposition of these questions has been given in Cullwick's book (38J where the explicit 
violation of action and reaction equality was demonstrated the interacting for the inter­
action of a charge with TS. In a modern physical literature the violation of this equality 
is considered as almost obvious. We quote, e.g., French (39J: "The equality of action and 
reaction has almost no place in relativistic mechanics. It must be essentially a statement 
about the forces acting on two bodies, as a result of their mutual interaction at a. given 
instant. And, because of the relativity of simultaneity, this phrase has no meaning." 

The violation of action and reaction equality for the interaction between the moving 
current loop and charge and between two moving charges has been noted by 0. Jefimenko 
[40] and P. Cornille [41J, resp. However, this violation is not restricted only to the re­
tardation effects. Even for the interacting static metallic currents there are known two 
interaction laws: Ampere law which agrees with Newton's third law (equality of action 
and reaction forces) and Lorentz law which violates it (see. e.g., [42, 431). However, if the 
a.hove currents a.re closed, the difference between-these forces disappears: both of them 
satisfy Newton's third law [44]. Some experiments (45] seem to support only the Ampere 
law of force, while others (46J give the same result for both laws. These questions need 
the further consideration. 
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7 .2 Concrete examples: the energy exchange between elemen­
tary toroidal sources 

Let us have two toroidal sources TS1 and TS,. of an arbitrary order. The interaction 
energy is 

e = £12 +£21, 

where £12 and £21 are the parts of £ localized at the positions of TS1 and TS2, More 
accurately, £12 is the energy induced by the source 2 at the position of source 1. And, 
similarly, for £21, They are given by: 

£12 = -i / dVJ1(r-r1)A2(r-r:i)dV 

and 

f21 = -~ / dVJ2(r- r,,)A1(r- r1)dV, 

resp. 

7.2.1 The interaction of even toroidal sources 

Let J1 and J2 be both of even order 

)l = /i(t)curl2"+l[n183(r- r1)], )2 = fz(t)curl21'+l[n283(r- r:i)]. 

Then, 

(-J)lt+l 
f12 = c2'i+i /1(t)n1 • DJ2

1t\R12), 
(-1)12+1 

& - -"-==---f: ( ) - jJ(2la) ;; 21 - c2'
2
+l 2 t fl.z • 1 ( "i-11), 

(7.9) 

(7.10) 

(7.11) 

where i1J211>(R.12) is the 2!1 time-derivative of the magnetic field produced by TS2 at the 
position of TS1 and m212>(~1) is the 2!,, time-derivative of the magnetic field produced 
by TS1 at the position of TSz. Substituting them from (5.4), one geta 

( 1)1t+ta+1 l " _ f - [-(- .t )(- il )F.<21i+21,> _ (- - ),..,(21,+212)] 
'-12 - 1 -~11+:u2+4R R2 n11t12 112 12 2 n1n:i "'2 , 

C- 12 12 

(-l)lt+l2+1 1 
E21 = fz c21

1
+21aHR ( n2 (n1R12)(n2R12)FFu

1
+

212
> - (rr1rr2)ac211

+
212 >1 

12 n.12 1 • 
(7.12) 

We see that £12 = £21 for arbitrary Ji = fz. Let / 1 and /z do not depend en time. Then, 
£12 and £21 differ from zero only for l1 = h = 0: 

£12 = £21 = - ; 1
R1: [a R

1
2 (n1.R12)(n,,.R12) -(n1n2}l, 

C 12 12 

that coincides with an interaction of two magnetic dipoles, 
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7.2.2 The interaction of odd toroidal sources 

Let )1 ·and )2 both be of odd order. 
:{_'-'.-:'::;·--

71 = h1t+1(t)curl211 +
2
[ii1J 3(r- ri)J,· J2 = i21,+1(t)curl21'+2[ii2J 3(r-r;)J. 

Then, 

.- (-l)li+l/ ( )- ~(211+1)(- ) 
<-12 = c21i+l 1 t n1 • 1!,2 R12 , 

( l)h+l 
£ = - f (t)ii . i£(21,+l)(R- ) 21 c2l:i + 1 2 . 2 1 21 , (7.13) 

where Et' +l) { R12) is the 2l1 + 1 time-derivative of the electric field induced by TS2 at 
the position of TS1 and E~212 +1l{.R2i) is the 2[2 + 1 time-derivative of the electric field 
induced by TS1 at the position of TS2. Substituting them from (5.5), we get 

( -J)li+C. 1 
£ - f ----:'-~--[-(- R, )(- ,R )F.(211+21:,+2) _ (- - )G(2l1+21,+2)] 12 - 1 .2l,+2l.+6R R2 n1 12 n2 12 2 n1n2 2 , 

t; 12 12 .. 

( J)lt+I:, 1 
f. - f - [ (- R )(- R- )F(2l1 +21:,+2) (- - )G(211 +212+2)] 21 - 2 211 +2l.+sR -R2 n1 12 n2 12 1 - n1n2 1 . 

C 12 12 
(7.14) 

Again, we see that f12 = C21 for arbitrary / 1 = /z. Let / 1 and /z do not depend on time. 
Then, £12 = £21 = 0. This means that static toroidal sources of an odd order (and, in 
particular, usual static toroidal solenoids) do not interact. 
It follows from (7.12) and (7.14) that tofClidal sources of the same order do not interact 
when the following two conditions are fulfilled simultaneously: 
i) The symmetry axes of toroidal sources are mutually orthogonal ; ii) The symmetry axes 
of toroidal sources are perpendicular to the vector .R12 going from TS1 to, TS2 . 

In particular, this is valid for two interacting current loops or toroidal solenoids. 

7.2.3 The interaction of even and odd toroidal sources 

Let one of the currents be of the even order and the other of the odd one: 
J1 = /1(t)curl21t+1[ii1J3(r-ri)], h = /z(t)curl21•+2[ii2J3(r-ri)]. Then, 

< -1 )" +I . n (21 > -
£12 = . c21t+l /1(t)ii1 · 2 

1 
(R12 ), 

(-1)12+
1 

( )- ~(21:,+1)(- ) 
C21 =. 21,+z h t n2 • 1!,1 · R21 . 

C 
(7.15) 

We observe a curious fact: TS1 interacts with time derivatives of the magnetic field 
induc~d by TS2 while TS2 interacts with time derivatives of the electric field induced by 
TS1 (under the words 'interacts with time derivative' we mean that the time derivative 
of the corresponding order enters into the interaction energy). Substitution of E1 from 
(5A) and i/2 from (5.5) gives 

(:--1 )Ii +I:, +l 1 - . ;; (211 +212+2) 
f12 = ft 21 +2I +5 -;:;:;--n1(1t12 X n2)D2 , 

-·. C 1 2 .Rfa 

(-1)li+'2+I l - ;; (211+2/:,+2) 
f21 = /z 21 +2I +s R2 n2(1t21 x nr)D1 . 

C 1 l 12 
(7.16) 

Again, we observe that £12 = e21 for arbitrary / 1 = /z. 
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From this one can see at .once the violation of action and reaction equality. Take, for 
example the la.st equation. Let / 1 and / 2 depend and do not depend on time, resp. Then, 
£12 = 0 and C21 i: 0. This means that TS1 acts on TS2 while TS2 does not act on TS1• 

It follows from (7.16) that toroidal source of even order does not interact with that of odd 
order if one of the following two conditions is fulfilled: 
i) When the symmetry axes of TS1 and TS2 are parallel ; ii) When at lea.st one of two 
symmetry axes ITS, or TS2 ) is parallel to the vector R, 2 going from TS1 to TS2, 
In particular. this is valid for the interaction of a current loop with a toroidal solenoid. 

7.2.4 Numerical estimations 

To see explicitly at what level the equality of action and reaction is violated, consider an 
interacting current loop and TS with a constant current in its winding. Since, there is no 
EMF outside such TS it does not act on a current loop. On the other hand, the action of 
current loop on a TS is ~iven by I 7.161 where one should put l, = l1 = 0. Then. 

ELT = 0, En= -h ,.;s~L Rn(iiL x iiT)D~
2

)_ 

Let h periodically changes with on time. Then, 

h = irhai cos wt, 

t, = t- RTL 
~' 

DL = -irhJiw(sinwt, - _kl coswt,), 
·r 

D(2J - - 2D k - ~ 
L - w L, - .: ' 

". irhdiR- (- _ (:l) 'l. 1 
'-TL= -h c5Jl:i,L TL nL X nT)DL w· (smc..•t, - kr coswt,). 

Now we choose [T. It is equal to ircqd,,.R2/4, where q = 2N Ir/c, N is a number of coils 
in TS winding, IT ia_a current in a particular coil. However, instead of TS winding, it is 
convenient to use the ferromagnetic ring magnetized in the azimuthal direction (see the 
middle part of Fig. 3). These two objects are completely equivalent as to their interaction 
with external EMF. The magnetic field inside TS is given by H,, = g / p, where p is the 
cylindrical radius. If the major radius d"' of TS is much lar~er than its minor radius R. 
we may put H, =HT= g/dT, !I= dTHT. Finally, for En, we get 

• Tr
2 hHic!i,4R

2 il . - - )D(2) 3( . J f,TL = - . ,,22 ,rL( nL X nT z:, w sm wt, - -:- cos wt.). 
1,;""' ivrL · kr 

Its maximal absolute value is 

ifTLI = 71'
2 hHTJi,4R2w3 /c5 RTL, 

This expression should be multiplied by the number NL of the turns in a circular loop. The 
typical value of magnetic field inside the ferromagnetic sample is about 1000 gauss. Let 
N r., = 1000, Ir., = 1 ampere , the dimensions of a current loop and TS are of the order 
of few centimeters and the distance between sources about 10 cm. In order the motion of 
TS can be observed, the frequency should be of the order few herb.a (otherwise, positive 
and negative values of ETL compensate each other for the finite observation time). For 
these parameters, £TL';._, 10--32 ergs and the corresponding force FTL ~ fTL/ RTL~ 10-33 

dynes. Such a small force could be hardly observed experimentally for the realistic cosine 
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or sine current dependences. Under the influence of a force from a current loop, TS 
begins to· move. The EMF strengths are non-zero outside TS, when it moves unifonnly 
in medium ((47,48]), or when it is accelerated (both in medium and vacuum (13]). The 
moving TS will act on a current loop which, in its turn, begins to move. But these, next 
order effects, are beyond the present consideration. 

7.3 Back to the Lorentz and Feld-Tai lemmas 

7.3.1 Lorentz lemma 

Proceeding in the same way as for interaction energies, we get for the integrals £12 and 
£21 entering into the formulation of the Lorentz lemma 

E12 = - I P1(ri, t)pz(rz, r)o(r - t + R12/c) l12 d\1id½dr+ 

+{J J1(r1,t)J2(ri, r)J(r-t + R12/c)-R
1 

dl/iciVidr, 
C ~ (7. I 7) 

E21 = - I pz(rz, t)p1(r1, r)cS(r - t + R1ifc) R~z dl/id½dr+ 

l /-, (- ).., _ · 1 +2 Jz r2, t )1 (r1, r)cS(r - t + R12/c)-R dl/id½dr, 
C ~ (7.18) 

where the dot above p means derivative w.r.t. t and the dot above the c5 function means 
derivative w.r.t. its argument. Again we see that, in general, E12(t) f E21(t). Let now 
the time dependences of p and J be separated in the same way as in (7.5). Then, 

E12 = - I P1(t)p1(r1)P2(ri)P2(r) ;
2 

cS(r - t+ R12/c)dVid½dr+ 

+{ I i1(t)J1(f'1)J2(r2)j2(r)-R
1 

J(r - t + R12/c)dViciVidr, 
C ~ 

E21 = - f P2(t)pz(r°z)P1(ri)P1(r)-R
1 

cS(r - t + R12/c)d\1id½dr+ 
12 

+ -~ jh(t)J2(rz)J1(r1)ii(r)]R
1 

J(r- t + R12/c)dl/id½dr, 
C ~ 

(7.19) 

(7.20) 

Similarly to the interaction energies, we see that E12(t) = E21 (t) for arbitrary time depen­
dences P1 and i1 coinciding with pz and i2, i.e., when the conditions (7.5) are fulfilled. 
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7.3.2 Feld-Tai lemma 

Direct evaluation of integrals entering into the Feld-Tai lemma gives 

1£12 = €;11c / jh(r1, t) 
8
8
. A21c dVj = €;;1c /i1,(ri, t)j21c(rz, r)

8
8 

_RI o(r - t + R12 )dVicl½dr, 
X~ Xlj ~ C 

,., f · (- >aA11c JTT J · (·- ) . (- .) a 1 '( R12)J" JT'd n-21 = €ijlc )2i rz, t -a avz = €,jlc )Zi r2, t )tic r,, T -a-RO T - t + - av1av2 r. 
X2j Xzj 12 C 

(7.21) 
Here €,jlc is the unit antisymmetrical tensor of.the third rank. When the time dependences 
in current densities a.re separated (J(r, t) = j(t)J(r)), these equations are reduced to 

1£12 = €,;1ci1(t) /i2(r)ji;(r1)i21c(rz) <> 
0 

-R
1 

o(r - t + R12/c)dl/idV2dr1 
ux1; 12 

1£21 = e,;1ciz(t) / i1(r)j2,(r2)fo,(r1)
0
° Rl o(r - t + R12/c)dVidV2dr. 
X2j 12 

(7.22) 

Obviously. 
1112 = 1l21 

when the arbitrary time dependences of sources 1 and 2 coincide (i1 (t) =J2(t)). 

7.3.3 The physical.meaning of the Lorentz and Feld-Tai lemma for the inter;. 
acting current sources 

We conclude: the Lorentz and Feld-Tai lemmas a.re fulfilled when .the following two con­
ditions a.re satisfied: 
i) Time dependences are separated from space variables in the charge-current densities, 
This means that the time dependence should be the..same for all space points of a. partic­
ular source. 
ii) The separated :time dependence is the same for aources 1 · and 2. · 

The physical meaning of the· Lorentz lemma is as follows; .The time- dependent mag­
netic flux penetrating a particular turn of winding, creates an.electric field directed along 
this turn. Being summed,. they give potential difference between ends of the winding if it. . 
is not closed and induce th~ current in the winding if it is closed. This voltage (or current) 
can be measured.· '.fo obtain voltage, we omit in E12 the time.dependent Cl.lrrentforce /1 
(not the current density J1). Thus obtained E12(t) gives time-dependent voltage:induced 
in the winding 1 by the time-dependent current flowing in the. windmg 2 .. Sunila..rly, if we 
omit in fz1 the time dependenf<iurrent force ]z, then tz1 (t)gives tiine-dep~ndent\,oltage 
induced.in the winding 2 by. the time-dependent current flowing inthe.wiiiding.:J. Thus· .. 
obtained £12 and £21 coincide if 11 = 12 • We observe.that. in .the first case 1 is aireceiver; 
and 2 is :a .transmitter .. .In the se~ond case, the situation is opposite. Thill means:thaf an 
induced voltage is.invariant under.the replacement of the detector ~d.transmitter. ~ · 
We:illustra.te:tliis using poin~like TS and currentloop,as.an:.example .. Turning to(3.16). 
and (3.46), we observe that fT and J L in En may be 1>resen~ed as 

· :1rN ITdTR2 
- -

h= 
2 

h, IL= 1rh<f;.!L 
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where IT and h are the current forces in TS and current loop, resp.; jT and ir, are their 
time dependences. Omitting the factor hiT, we get for the voltage induced in TS 

VTL= 1r2NdTR
2
4 n<3l(h!£). 

2c5Rh 

In the same way, omitting the factor hi£, we get for the voltage induced in a current 
loop 

V, = - 1r2NdTR24 D(3)(J f-) 
LT ? 5 Jl2 T T • 

-C "'TL 

We see that, indeed, Vn = VLT if ITiT = hi£, i.e., when the time-dependent currents 
flowing in a current loop and toroidal solenoid are the same. 
The physical meaning of the Feld-Tai lemma for interacting current sources is not dear 
to us. A time-dependent electric field penetrating a particular turn of winding, creates 
the magnetic field directed along this turn. If the free magnetic charges existed, then 
integrals entering into the Feld-Tai lemma ( after omitting the corresponding factors as in 
the Lorentz lemma) would gave the magnetic voltage between the ends of the winding 
(if it is not dosed). Their equality would gave the symmetry between the transmitter 
and receiver. Since the monopoles up to now were not found, this interpretation of the 
Feld-Tai lemma has no relation to reality. However, Lakhtakia (31] and Monzon (30], seem 
to have found numerous application of the Feld-Tai lemma. 

7.3.4 Another viewpoint on the Lorentz and Feld-Tai lemmas 

In the Fourier representation (E(t) = J E(w)exp(iwt)dw, etc.) the curl parts of Maxwell 

equations look like 

r1 . - fl . r1 47r.,. 
curlr, = -ikH, curl = ikr, + -J, k = w/c. 

C 

Then, the Lorentz and Feld-Tai lemmas are satisfied trivially. For example, the proof of 
the Lorentz lemma without appeal to the Maxwell equations takes three lines 

f12 = / J1(r1)E12(fi)dVi = / J1(f"1)[-\7<f!12(r'i)- ikA12(r1)JdVi = 

= -iw I [p1 (f"1)'P12(f"1) + ~)I (f"1)A12(r1)]dVi = 

. /[p (-) (-) l .,.(_)..,(-)Jexp(-ikR12 ) V,d" • = -iw I r1 P2 r2 + ::iJI r1 J2 r2 R d I v2 = E:21• 
<.; 12 

Therefore, the Lorentz and Feld-Tai lemmas may be viewed as the integral relations 
between the Fourier transforms of the current densities and field strengths. This, in its 
tum, may be used to derive new identities. For example, multiplying Ct2 by exp(iwt) and 
integrating over w, one gets 

/ J1(f"1, w)Edr1, w) exp(iwt)dVjdw = 

30 

= ~ f J1(f"1, t')E1ir1, t") exp[iw(t - t' - t")]dVjdwdt'dt" = 
41r· 

= ~ f )I (f"i, t')E12(ri, t")S(t - t' - t")dVidt'dt" = ~ /I1 (f"1, t - t')E12(f"1, t')d'Vidt'. 
21r 21r 

(7.23) 

Performing the same operation with e21 and equalizing the result to (7.23), one arrives at 

f Ji {r1, t - t')E12I r1, t''idVidt' = f I2< r2, t - t')~1 ( r;, t')dV-.idt'. (7.24) 
. 

This equation was obtained bv Feld ( [49]). We make one step further, excludin~ electric 
strengths. Then, the LHS of (7.24) is reduced to 

1 i) f[p (- ') (- I R12) 1 .,. - ').,. ·- I R1J)] l I -;i---a I r1, t - t P2 ri, t - -.-. + :i-1dr1, t - t J2(r2, t - -~- -R dt dVid½. 
_7r t - ~ - 11 

Therefore, the following equation should be satisfied: 

f [p ( - ') (- 1 • R12, l -, (- . t')-, (- ,/ R12 )] 1 d , 'IT d'·' 
1 r1,t-t P•irz,t -71+;;z11 ri,t- J2r2,t --;;- R

12 
tav, v2= 

![p (
- ') ,- 1 R12) l.,. ,- ').,. (- , R12)] l d 'd'·'dl!' ( ) = 2.r2,t-t Pt ri,t -- +-:;J2.r2,t-t J1 r1,t -- -Rt v1 vz. 7.25 

t: c~ C 12 

Performing the same operation for the integrals entering into the Feld-Tai lemma, one 

gets 

f exp(iwt)i1 W1, w)ildr1, w)dwdVi = 211r I I1<ri, t - t
1
)Ddr1, t')dt' dVj = 

= --1-f-R
1 

curlj1(r1, t- t')j2(f"2, t' - R12/c)dVid½dt'. 
21rc 12 

Therefore, the following equalities should be fulfilled 

f J1W1, t - t')il12( ri, t')dt' dVi = / i2' r2, t - t')il21 (rz, t')dt' d½, 

f ;
12 

cur(f1(f"1, t - t')12(r"z, t' - R12/c)dVidV-_idt' = 

= I ;12 curlJ2(fi, t - t')11(r1, t' - R12/c)dVid½dt'. (7.26) 

It is important that Eqs.(7.24)-(7.26), contrary to the equations defining the Lorentz and 
Feld-Tai lemmas, are satisfied for any chare;e-current densities. No assumption on the 
separation of space and time dependences as well the equality of tin1e dependences for 

two interacting sources is needed. 
As the author is not the specialist in the applied aspects of reciprocity-like theorems, 
he cannot appreciate the meaning of the results obtained. On the other hand, there are 
outstanding experts in this field (A. Lakhtakia, J.C. R. Monzon and others). It would be 
nice to hear their opinion on the treated questions. 
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8 Discussion and Conclusion 

Now we analyze assumption on the separability time and spatial variables in charge­
current densities. Take at first the single circular current loop. Since there are no other 
turns, there is no resistive or ca.pa.city connections between them. Therefore, the current 
is the same a.long the whole wire (due to the continuity equation divJ = 0) and the time 
dependence is dearly separated from the space variables. On the other hand, consider the 
winding with many overlapping turns, e.g. the toroidal solenoid. If the turns are dose to 
each other, there is a finite capacitance between them. For high frequencies, the leakage 
currents appear between particular turns and the current will be changed a.long the wire. 
This does not have any relation to the violation of the continuity equation divJ = 0. It 
will be fulfilled due to the presence of other J components, having the direction different 
from that of wire. Since the current density changes a.long the wire, the time dependence 
is not separated now. This should lead to the violation of reciprocity theorem. We con­
clude: the violation of the reciprocity is possible for high frequencies and large number of 
overlapping coils. 

We briefly enumerate the main results obtained: 

I. We evaluated the electromagnetic field of the toroidal solenoid with a periodic 
current in its winding. Various particular cases a.re considered and conditions for their 
validity are given. 

2. We applied the reciprocity theorem ( Lorentz and Feld-Tai lemmas) to the elec­
tromagnetic fields of time dependent electric dipole, current loop, toroidal solenoid and 
higher order electromagnetic field sources. It is shown that the proportionality of time 
derivatives of EMF strengths to the EMF strengths themselves is not a. necessary condi­
tion for the fulfillment of the reciprocity theorem. 

3. The alternative proof of the reciprocity theorem is given. It is shown that the 
reciprocity theorem works for more genera.I time dependences than it was suggested up 
to now. The conditions for its validity a.re reduced to the two following ones: 
i) The time dependence should be separated from the spatial one in the charge-current 
densities of interacting sources; 
ii} The time dependences of these sources should be the same. 

These conditions a.re essentially the same as ones needed for the equality of action and 
reaction between two interacting electromagnetic sources. 
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Appendix 

We begin with the well-known relation 

cos vBJv(kJ cP + R2 - 2dRcos ,jJ = }: Jm(kR)Jm+v(kcl) cos m,/J, R < d, (A.1) 
-oo 

where tan0 = Rsin T/Jl(d- Rcos'lb). For R << d, the angle 0 may be put to zero. Then, 

lv(kJrF + R2 - 2dRcost/J:::::: E J,,.(kfl,)J,,.+v(kd)cosm,p, R << d. (A.2) 
-oo 

We cannot put R = 0 in the r.h.s. of this equation, since for high frequencies, kR may be 

large. Further , 

i2n+1(ky) = ~J'Jn+3/"J(ky) ::::I !lf/2n+3/"J{ky). 

Here we changed y by d outside the Bessel function. This is possible since R < < d. 

Therefore, 

00 

i2n+1(ky):::::: E(-1rJm(kR)J2n+1+m(kcl)cosmtj,, R<<d. (A.3) 

-oo 

and 

2,r J i2n+1(ky) sin2 t/,di/.i = 7r{ Jo(kR)hn+l (kcl) - ~J2(kR)[;"::n+3(kcl) + i2n-1(kcl)]}. (A.4) 

0 
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Fig.l: The poloidal current flowing on the torus surface. 
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Fig.3: The poloidal current J flowing on the torus surface is equivalent to the magne­
tization M confined to the interior of the torus and to the toroidization T directed along 

Fig.2: The coordinates R, ,f,, parametrizing the torus. I the torus axis. 
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M 

TS2 T 

Fig.4: Torodal source of the second order is obtained if, instead of ea.ch particular tum 
of a usual toroidal solenoid, a new infinitely thin toroidal solenoid ts is substituted with 
the current Jin its winding. It generates the magnetization M covering the surface of the 
original toroidal solenoid and directed along its meridians. The complete magnetization 
from all ts generates the closed tube of toroidal moments T filling the interior of the 
original toroidal solenoid and generating in its tum the second order toroidal moment 
shown by the vertical arrow. 
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Act,auac1,eB r.H. E4-2OOO-l 7O 
ITpocTeiiume HCToqmfKH SJieKTpOMamHTHOro IlOIDI KaK cpe.IJ;CTBO 
.IJ;ID1 npoBepKH TeopeM THna B3aHMHOCTH 

3JieKTpOMaIBHTHbie IlOIDI npocTeiiumx HCTOqHIIKOB (IleTIDI c TOKOM, SJieK­
TpIIqeCKHH .IJ;HilOJib, TOpOII.IJ;aJII,HI,IH COJieHOII.IJ; II T . .IJ;.) npHMeHeHbl .IJ;IDI aHaJIH3a 
JieMM nopeHTua II <l>eJib.IJ;a-Trui: (TeopeM THila B3aHMHOCTII), umpOKO IICilOJIL3ye­
MI,JX B SJieKTPO.D:IIHaMIIKe, OilTIIKe, pa.D:Hoct,II3IIKe, SJieKTpOHIIKe II T . .IJ;. I10Ka3aHO, 
qTO 3TH JieMMI,J HMeIOT 66JibmyIO o6JiaCTb npIIMeHHMOCTII, qeM 3TO npe.lJ;IlOJiara­
JIOCI, .IJ;O CIIX nop: OHII cnpaBe.IJ;JIHBbl npII Tex )Ke ycJIOBIDIX, npH KOTOpblX Bb1IlOJI­
m1eTCH paBeHCTBO SJieKTpOMamIITHOro .IJ;eHCTBIIH II npOTIIBO.IJ;eHCTBHH. 

Pa6orn BLmoJiueua B na6opaTOpIIH TeopeTIIqecKoii ct,IIJIIKII IIM. H.H.Eoro­
JII06oBa 0115111. 

npenpHIIT O(n,enm1e1111om HIICTHryra ll.!lepHblX HCCJlel!OBaJIHii. Lly611a, 2000 

Afanasiev G.N. 
Simplest Sources of Electromagnetic Fields as a Tool 
for Testing the Reciprocity-Like Theorems 

E4-2OOO-17O 

Electromagnetic fields of simplest time-dependent sources (current loop, elec­
tric dipole, toroidal solenoid, etc.) are applied to the analysis of the Lorentz 
and Feld-Tai lemmas (or reciprocity-like theorems) having numerous applications 
in electrodynamics, optics, radiophysics, electronics, etc. It is demonstrated that 
these lemmas are valid for more general time-dependences of the electromagnetic 
field sources than it was suggested up to now. It is shown also that the validity 
of reciprocity-like theorems is intimately related to the equality of electromagnetic 
act10n and reaction: both of them are fulfilled or violated under the same condi­
tions. 

The investigation has been performed at the Bogoliubov Laboratory of Theo­
retical Physics, JINR. 
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