


1 Introduction

Toroidal solenoids (TS) play an important role in physics and technology. As the simplest
3-dimensional topologically nontrivial objects, they have been used for the experimental
verification of the Aharonov-Bohm effect [1]. The corresponding calculations have been
performed in [2). They possess a number of nonirivial characteristics such as toroidal
([3,4]) and hidden” ([5]) moments. Exact vector potentials (VP) of finite static TS were
evaluated by Luboshitz and Smorodinsky ([6]), in a non-standart gauge, and in {7], in
a Coulomb gauge. Similarly to the static magnetic toroidal solenoids outside which the
electromagnetic field (EMF) strengths disappear, but magnetic VP differs from zero, there
are electric TS outside which EMF strengths are zero, but nontrivial eleciric VP differs
from zero ([8,9]). Further, there exists the toroidal Aharonov-Casher effect which describes
quantum (not classical) scattering of toroidal dipoles by the electric charge ([10]). Turning
to TS with time-dependent currents, one should mention two Page papers ([11]). Yet, his
EMF strengths were presented in the integral form, unsuitable for practical applications.
EMF of TS for a number of time dependences have been studied in [12]. Unfortunately,
the most interesting case of periodical current was considered for a very special case of
infinitely small TS. The multipole expansion of EMF for TS with periodical current has
been given in ([13, 14]). However, that presentation was too schematic, without practical
applications. The EMF of infinitely small TS with periodical current has earlier been ob-
tained by Nevessky ([15]). His results were generalized to arbitrary time dependences in
{16]. In the same reference, aa well as in [9], the nontrivial charge-current toroidal config-
urations were found outside which nontrivial time-dependent electromagnetic potentials
were different from zero despite the vanishing of EMF strengths. This makes possible the
performance of experiments investigating the time-dependent Aharonov-Bohm effect. Al
these studies are summarized in [17].

The reciprocity theorem has a long history in physics. It originates from the third
Newtonian law stating equality of action and reaction. Later, Rayleigh, in the 1-st volume
of his encyclopedic treatise ” Theory of Sound” ([18]) proved certain relations between
the forces acting between two physical systems and the displacements induced by them.
Since there is no time retardation in the Newtonian mechanics, this statement looks
almost trivial. Further, Rayleigh applied reciprocity theorem to optics {[19]). We quote
him: ?Suppose that in any direction (i) and at any distance r from a small surface (S)
reflecting in any manner there be situated a radiant point (A) of given intensity, and
consider the intensity of reflected vibrations at any point B situated in direction ¢ and at
distance r’ from S. The theorem is to the effect that the intensity is the same as it would
be at A if the radiant point were transferred to B”. He gave no proof of this statement
referring to the analogy with mechanical systems treated in the » Theory of Sound” and to
the optical Lambert law. Helmholtz [20] and Lorentz [21] formulated the electric part of
reciprocity theorem in its modern form. This theorem has numerous applications in the
electric circuits theory [22], optics [23,24], electron diffraction [25] and in the radiophysics
science (see, e.g.[26, 27]). The magnetic part of the reciprocity theorem was obtained by
Feld (28] and Tai [29] in the same 1992 year. It was redenived by Monzon [30] in 1996 who,
without knowing the above papers, pointed out numerous applications of this theorem .
Other applications of the Feld-Tai lemma were given by Lakhtakia in his lucid book [31].

The aim of this consideration is to use EMFs of simplest sources for the studying the
reciprocity-like theorems. The plan of our exposition is as follows. In section 2, we present
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the formalisin of elementary vector potentials (EVP). Althoug!l thfey are exposed in many
text-books and treatises (see, e.g.,(32-34]), the lack of co-o.rc.lmatlon bet\‘wee’n them is E;o
large that we prefer to give self-consistent one-page exporntlol.l. In sec.tlon- 3, vy; ap:)hy
EVP to the pure current time-dependent sources of EMF. Special attention is pai 1‘1[::; the
current loop and TS as well as to their interaction with external EMF. meous ting
cases of TS with periodical current are investigated. The EMF of .the tm'l&deper;v(}ent
electric dipole and its interaction with external EM?‘ are studle(? in section ‘; ;)}:e
complicated point-like EMF sources are treated in section 5. In‘ sec-tlon 6,'by applying the
Lorentz and Feld-Tai lemmas to the charge-current sources S?lfdled in previous sections, we
find that these lemmas are fulfilled under more general conditions than it was known up to
now. This obliges us to consider the derivation of the Lorentz and Feld—?‘m lfemm:.s more
carefully. This is done in section 7 where it is shown t'hat the rec:p‘romt.y,-hke 1 em;ms
are satisfied in the same cases when the equality of actl?n and reactfon is fglﬁﬂfzd. ew
reciprocity-like theorems are obtained in the same sect'lon, .yet: thefr phyjszcal mesaging
remains unclear to us. Short resume of the results obtained is given in section 8.

2 Elementary vector potentials

Consider charge p(F,t) and current 7(7,t) densities confined to the finile volume V. Let
their time dependence be periodical:

‘p = po exp(iwt), 7 = Jo exp(iwt). (2.1)

When presenting p and 7 in such a complex form, one should keep in m.ind tl}oe: static
limit of the treated problem. For example, if one operates with pure curren: densities and
wants to have in a static limit the time-independent current, then one puts

7 =Joexplint), p=0

and, after all calculations, takes the real parts of EMF strengths (see e.ection 3, .where
the ,EMF of a current loop and TS are considered). On the other hand, if one desires to
obtain in a static limit the time-indepedent charge distribution, then one puts

. . T
7 = wioexplivt), p=tpo exp(iwt), po = divo

and. after all calculations, takes the imaginary paris of EMF strengths (see section 4,
]

where the EMF of oscillating electric dipole is treated .
The electromagnetic potentials outside the space region V, to which the charge-current

densities are confined, are given by

- 4mik -
8(F, t) = —amik 3 Bi(kr)Yim(8, )aim, AR ) =7 3 A, Paim(7),  (2:2)

where hy(kr) = RO (kr) = ji(kr) — iru(kr) is the spherical Hankel function of the second
kind, j; and n; are the spherical Bessel and Neumann functions (j; = J,+1/g\/7r/2z, u=
Nigyanf7/22); Yim(, $) are the usual spherical harmonics; A (7, F) are the elementary

Buperssivipl wLlatVy
B aNtpNEE peoagasasid |
i BUBSINMCTEHA

i et

e —




vector poteutials (EVP). Values r = E, L and M correspond to the electric, longitudinal

and magnetic EVP, resp. Their manifest form is given by

1
kI +1)

T l)h,(r- x V)i (2.3)

H not indicated, the arguments of the spherical Bessel functions (ji, ;) will be kr, and
cos § will be the argument of the adjoint Legendre polynomials (P™). In what follows,
we closely follow Rose treatise [32] with the exception that instead of his non-standard
radial functions, the usual spherical Bessel functions are used. EVP satisfy the following
equations: '

curlﬁlm(M) = ik:‘fzm(E) curl/i';m(E) = —ik/i'z,,,,(M).
It is useful to write out the spherical components of EVP in a manifest form

1 ([ + l)hl—] - Ih{...l -—d—-Y

\/1(1 +1 2A+1 g™
m (l+ l)hl-l — UL{.H

sin 0\/1(1 + 1 2A+1

- zm - lh[ B},lm. by,

A (M)]g = hYin, [AP(M))y = - —, [A"(M)],=0. (24

(A" (M)] YN S imy [AT(M)]y Wae [AT(M)] (2:4)

The multipole coefficients (or formfactors) a;m(7) entering into (2.2) are defined as

Am(L) = %ehl},lm, A (E) =~ curl(Fx V) Yim,

1

/i.xm(M) = -

(AP (B)ls =

(AP (E)ls =

o 1
Yin, [AM(E)] = I+ 1-PuYim,

sy 1 e gr T 1 e .
Gim = /lelmpdv» aim(L) = —E/JI},Imdu}JdV = E/Jl},lmp = iCqim,

/ curl(F x V)jYe7dV =

1
L T
k . - 1 . . .
= -I—([:_—l-)-/ityz:n(rf)dv + m/[(“‘ Vji = krjun]YipdV,

(M) = =t WY (Feurl)dV = ——mt WY div(F x 7)dV. :
ain (M) m/]l im(Feurt3) Vm/ﬂ mdio(Fx V. (25)

To escape ambiguities, under ¢ we mean —div]. The EMF strengths are given by

7 = 2 S i (B (M) = i (M) (E)),
E= _i”c_"i z[ﬁ,,_,‘(b)a,m(E) + A (M )am (M)]. (2.6)

For the axial-symmetrical charge-current distributions, only m = 0 components sur-
vive
im = Omo{ly alm(E) = lsmoal(E)a alm(M) = moal(bl))
(+ Doy = lha
QG+ Dl + 1)an]i2

[AE)s = [A(E)s =

AN, = BE), = LU Dy,
(ALYl = RO = i 51 P (27)

3 Pure current densities
When only current densities are present (p = 0), then qim =0, Ain(L) =0, and

(3.1)

k
m(E) = —=——= [ 3lYin(F)dV,
cn(E) z(z+1)/ :
while ain(M) has the same form (2.5). Taking into account that
iz) ~ @)@+ D, mz) ~ =2 - DY) for =0,

one gets in the static limit (k — 0)
ki1

1 .
»a;m(E) - mm/rl}/‘m(r;)dv, .

) E
aim(M) = 71(7:—1—;(37;_—1')7

The integrals entering into these equations are usually called eleciric and magnetic mo-
ments, resp. On the other hand, the toroidal moment corresponding to the current density
7 was defined in [4] as

vl I+1[7Fe \/—__l____—l VA 74V, 3.3
T'Im = -—m / r [Vl,—l,m + I+ ll ¥ 3/2 I,l+l,m]-7 + ( )

where }7,", . are the so-called vector spherical harmonics (see, e.g., [32] for their definition).
In view of the identities

" l 1 . P
/ f"+’[7:.:-1.m + \/,—_}j—lmﬂumliw =

20+ 1 1 = i+2ye 7 —
=y IF x V)Y JdV =
= ] (z+1)(2z+3)/°“f(”‘ IrYimg

=07 1)(121 ey 2"[* 1[(z +3) / Py dividV + 2(20 + 3) / AYR AV (34)

/ P, div(F x T)dV. (3.2)




- established m[l4], one gets for thé":prlire ‘current densities

Tim = L(1+ ]),/2” - /r}',m(r;)dv (3.5)

Therefore, a toroidal moment Tj,,,, in the absence of charge density (¢ = 0), up to a factor
independent of geometric parameters of current distribution, coincides with the electric
moment (2.5) of this distribution..

3.1 Electromagnetic field of a current loop

Let the current loop lie in the z = 0 plane with its symmetry axis along the z axis. Then,
its current density is given by

7 = lofigd(p — d)8(z). \ (3.6)
Since 77 = 0, only the magnetic form factors differ from zero

7r(2l+ 1)

al*(M) = Jﬁqaz(M), a(M) = ilyd[—————= 0+

]l/2 1(kd) Py (0). )
Here P(z) is the adjoint Legendre function. Since P!{0) = 0 for [ even, only odd
multipole coefficients contribute to EMF of the current loop (P}, (0) = (=1)"*!(2n +
1)!1/2™n!). Therefore, for the current loop

k?
d= 4mk? 4

ZA;(E')a;(M), E=-

ZAI(M)ax(M) (3.8)

From the facts that: (i) 7E = 0 and (i) PA/(E) = (=1)"*' A4(E) it follows {32] that the
radiation field of the current loop is of the magnetic type (P is the parity operator).
When the time dependence of p and 7 is cos wt, the nonvanishing EMF strengths are given
by

2 lodk? 2041 . . N pl - ¢

Z ,:L;dd 0+ 1)(coswt], + sinwtny ) P 51(kd) P (0),

2 lodk?
P ,_zm:u l(l +1)

x{coswt[(l + Ny — Ing] — sinwt[(! + )11 — {712]}

2rlokd Y- (204 1)(ru coswt — ji sinwt) Piji(kd) P (0). (3.9)
€T l=odd

Ey=—

Hy = Pl i(kd) P (0)x

H =

Consider particular cases.
1. In the static case (k — 0), one gets

dikd) ~ (kd)' /(20 + D, rulkr) ~ ~(20 = )/ (kr)'*,

21r10d 1 d‘ 1 27r10d d‘
XAl RO, Ho=-=—3=3SRP(0).  (3.10)

cr?

E¢=0, Hg:

‘The term [ = 1 of this sum

Hy = mhod? sinf, H,=

cr3

27(10&2

crd

cosd,

corresponds to the field of magnetic dipole of the power m = nlod?/c oriented along the
z axis.

2. When the radius d of the loop is so small that kd << 1, only the { = 1 term contributes
to (3.9). Then, EMF strengths are equal to

2 1 2rnlod?k cosf | . 1
Ey = mhodk sin #{cos 1 — —sind)), H, = ﬂ—z—(i.s—(smd)+ —cos ),
cr o kr
Iod?k?sin §
Hy=— nly i sin [« _kz )cosd-—-sm'»b)] (3.11)
Here 1 = kr — wt. These expressions are valid at arbltrary distances from the current

loop.
3. For large distances (kr >> 1) spherical Bessel functions can be changed by their
asymptotic_values

: 1 1+ 1 [+1
Jilkr) = E_—cos(kr -3 m), mnlkr) = Fsm(kr -3 7).
Then,
#lydk cos 1,’1 in+3 .
E¢ =—Hy= — 2( (—-:_—mjpllu+l]2n+l(kd)1)2]n+l(0)’
27r10d n
H =~ sin i Z("l) (4'7- + 3)P2n+1.}2n+1(kd)P2n+l (0) (3'12)

The energy flux through the sphere of the radius r is

¢ _2 2 4n+3 . 1 2
S=r [ dE,Ho = ~(Iokdeos ) T sl (b Pl (O

. The energy lost for the period

_1 __n+3 . )1 2
S = ;(lokd)’Z CER 1)[J2"+1(kd)P2n+l(O)] .

These expressions are valid for arbitrary kd.

3.1.1 Interaction of current loop with external eclectromagnetic field

The interaction of current (3.6) with the external EMF is given by

U= J/j’bfi'mdv. (3.13)
c

Since divf[, = 0, the current density can be represented as

Jo = curlMy, My = 1.7.9(d— 0)§(2). (3.14)




Substituting this into (3.13) and integrating by parts, one gets
. 1 .
U=-2 [ Bilaav.
c
For the distances large compared with the loop radius d

U= _;l'ﬁez:t/ ﬁLdV = —IIHez:h '
c

where

-~ 1 _l " - _Imrdl_
p—;/MdV—Z/rXJdV— P

coincides with the usual magnetic moment. These equations illustrate Ampere’s hypoth-
esis according to which the current loop is equivalent to the magnetic moment normal to
it. When the radius d of the loop tends to zero,

My - Ird*7s(7), Jp=curiMy, 8 (F) = 5(0)d(z)/2mp. (3.15)

Let now the dependence of this current flowing in the loop be fi(£), i.e.,

Ji = fu(t)curlis®(7) (3.16)
(the factor 7, d7 is absorbed into f.(t)). Then, the EMF potentials and field strengths _
are given by '
AL ——DL(T X n[,) EL = —-——D[,(r b4 n[,) HL = %[(r:;[')FFL - ﬁLG[,], (3.]7)

where we put

DL=D(fL)=‘f:l+§fL1 FL=F(fL)=ﬁ+§r-ch+%_£:_f[”

" . 2
GL=G(ft) = fi+ ffn + :—sz. (3.18)

The arguments of f, functions entering into Uy, F;, and Gy, are t, = t — r/c; dots above

the f, D, F, and G| functions mean time derivatives. When f; does not depend on
{ime, one obtains the field of elementary magnetic dipole

i, = [ F(':‘" - iz
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of the power p = f,fc. Obviously, Eqs.(3.15)-(3.18) generalize (3.11) to arbitrary time-
dependences and orientations.

3.2 Electromagnetic field of the toroidal solenoid

Consider the poloidal current flowing on the torus surface (Fig.1 )

gcn S(R-R)
A + Reosy’

The coordinates R, and & are related to the Cartesian ones as follows:

%= fig = fl, cos ¢ — 1, 6in Y. (3.19)

¢ =(d+ Rcosp)cosp, y=(d+ Rcosyy)sing, z= Rsiny. (3.20)

The condition R = R defines the surface of a particular torus (Fig.2). For R fixed and ¥, ¢
va.rymg, the points z, y, z given by (3.20) fill the surface of torus (0 — d)? + 2 = R®. The
choice 7o in the form (3.19) is convenient, because in the static case a magnetic field H
equals g/p inside the torus and vanishes outside it. In this case, g may also be expressed
through either the magnetic flux ® penetrating the torus or the total mumber N of tums
in toroidal winding and the current / in a particular turn;

] _2NI
I @Y= - <
Let the current in TS winding periodically changes with time: 7 = 7o exp(iwt). Since

FX = %J(ﬁ-—l{)m, and 7 = -"Cd:;”"” d"iRR w’::b

one has
div(Fx 7)Y =0, am(M)=0, an(E)#O0.
Therefore,
A=~k A(E)(E), A= -“"’“ S A(M)a(E), E= -4—"@-2,4,(1;)(1,(1?)
(3.21)

(A is the vector-potential). From the facts that: (i) 7 = 0 and (i) PA(M) =
(—=1)'Ai(M), it follows [32,34] that the radiation field of TS is of electric type.
The electric form factor a;( E) for the radiating TS is equal to

2[+1

1
a(E) = ggcdRk m )

L= / ji(ky) Pi(=) sin iy, (3.22)

where y = [d* + R? +2dRcos ]/ and = = Rsin/y. It eaay to check that q;( E) = 0 for
{ evenb Let the current time dependence be coswt. Then, EMF is given by the real parts
of /T, A

Ap = ngk 9dRE” o~ T3 I)I'Pl {{{ + 1)g11 = U] sinwt — [({ + Dny—y — Ingga] cos wt},

ngk

A, === (2 + )], A(jisinwt — ny cos wt),




3
Hy= g_d_gik_ E;{Ii:)h}?‘ {n; coswt — i sin wt),
de . ; : .
Ep=-T20 3 0T l)IlP: {{( + 1)jir = Lt} coswt +[(I + Dy ~ Iy ] sin wit},
E, = —ngk E(?l + 1)1 Pi(31 coswt + nysin wit). {3.23) -

Consider particular cases.

1. In the static limit (k — 0) one gets

2 gude"H A+1
""’(2z+1)!zc” “‘(E)"’4(21+1)n wz(z+1)""
2
dRV1 Rsiny .
T = bmoTh, ﬂ=2g(l_+\/l-50[' Cl=/y‘Pa( m¢)sm¢,d¢, - (3.24)
J ,

where Ti,, is the same as in (3.5). This integral can be taken in a closed form. We give
its value only for [ = 1
‘ rgd R*k3c
C,=nR, E) = ——uer,
1=m a(E) a/6n
EMF strengths of TS decrease like k*

gdRK? 1
By ngkJEl(l+l) G B ~ tzlemp,l,

B~ yde

LtEC,P, m (3.25)
On the other hand, the vector potentxa.l of TS does not vanish in the étatic limit

_9dRe G i 1, gdR

e arad Py g v 2 ‘+ZC'P’ 326)

The linear time dependence in £ (for wt << 1) arises when one differentiates the cos wt
term in A, and then let w go to zero. For the infinitely thin TS (R << d}, C; is reduced
to
n 2(2n + 1)1
CZn-H = WR(IZ ( l) ——( 2"71') .
2. Infinitely small toroidal solenoid (kd << 1).
Obviously, only the [ =1 term contributes to sums in (3.23)
kR rgd R2k%c E rgd R2k?

1,
11_.._3__, ai(E) = i ,:Tcosﬂ[costl»—;smyb],

2 dR*ES ., . 1
Ey= E%I:—ksmﬁ[smgb(l o .,)+ costﬁ] Hy = LE] ™ sin f[sin ¢ + P 1.

(3.27)
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For estimations, let the major radius d of TS be 10cm. We rewrite the condition kd << 1

in the wavelength language
2rd 60

— 0
=

A ‘A‘
This means that Eqs, (3.27) will work for A > 5

3. Infinitely thin toroidal solenoid (R << d).
Taking into account that

Pons1{z) = —Pi1(0)z for z 50,

one gets

R Pid . .
Lingy = "?[P’lln+l(0)D'ln+h D2n+l = /J2n+1(ky) sin’ hdip,
0

1 n+3
ni1(F) = —=gcR%*ky| ——————o P! _ .
agn+1{E) 4ch k" T T D2n 1 Py 1(0) Dy (3.28)

For R << d (but for arbitirary kd and kR) Dy,41 can be taken in a closed form (see
Appendix):

. 1 . .
Dyyr = W{Jo(kR)Jan(kd) - EJz(kR)Lhws(kd) + J2n—l(kd)]}- (3-29)
I, in addition, kR << 1, then

Dynyr = sznﬂ(kd)

S PO o S
azm+1{E) = 4gr_‘R k TP P 110)j2n 41 (kd). (3.30)

On the other hand, if kR >>> 1, then

and

Doy = Z%‘/ = conlkR = D02+ Diamsalkd) + nian (k)] (3.31)

For kd >>> 1, Eqs. (3.27) are not applicable. For example, for d = 10cm and ) = 1em,
kd = 60. The possible cutcome is to take the minor radius of T'S as small as possible.
Equations (3.23) with a;(F) given by (3.28) and (3.29) are valid for arbitrary frequencies
if R £ 2cm (for d = 10cm). 'The advantage of electric formfactors (3.28) and (3.29) is
that they do not involve integration that is very cumbersome for high frequencies.

To estimate the number of a/( E') contributing to sums in (3.23), we need the asymptotic
behavior of J,(z) for « fixed and v >> 1. It is given by (see {35], Chapter 8)

J(z) ~ (3.32)

=)
AV 2y -2_1.7 )
For z = kd the same as above (kd =~ 60), J.(kd} = 10~ for v = 100, that corresponds
to n 2 50. It follows from (3.32) that the number of terms contributing to (3.23) with
ai(F) given by (3.28) and (3.29) should be slightly greater than 0.7kd.
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4. Large distances {(kr >> 1).

Then,
Eo=Hy= -9”’5‘2 sin ¢ 2(-1)"514"1)%—11—)1““&‘““
E = ggﬁk cos ) Y (4n + 3)(~1)"fans1 Ponsr. (3.33)
The energy flux through the sphere of the radius r is

gd Rk? sin tl))zz an+3 2
2 2n+ 1)(2n+1) 0

c
S, = 4—"r’[dQEoH¢ = o

Correspondingly, the energy lost for the period is

c, gdRk? , in+ 3 2
S == .
2( 9 ) Z 2(71 + 1)(2n + l) 2n4l

3.2.1 Interaction of toroidal solenoid with external electromagnetic field

The interaction of TS with external EMF is given by

v=-1 / T AV (3.34)
[+

Since divjp = 0, the polodal current (3.19) flowing on the torus surface can be represented
in-the form ([9])

Jr=curlM, divM =0, M= r‘i¢4i:;(-)(R - Jlo—d@F+ ), divM =0. (3.35)

That is, the magnetization M has only the azimuthal component and differs from zero
only inside the torus (middle part of Fig. 3). Since divM .= 0, the magnetization M, in
itz turn, can be -written as

M = curlT, divT #0, (3.36)
where ’ »
i =9 _ — d+ VR -z
T=Al, T=30d-VE-2-ho——m—t

+8(d+ V= F - p)0lp~d+ V- Al STV~ "fz,f’z]. (3.37)

Thus, T differs‘from zero in two space regions (see the lower part of Fig.3):
a) Inside the torus hole'defined as 0.< p < d = v .R? — z3,.where T does not depend on p

ge, d+vVR*— 22 , i

Ty =—In —pm====. 3.38
Ar  d—- H? - 22 { , )

b) Inside the torus iteelf (d— VA3 — 22 € p < d+ vV R3 — 23) where
. , —

=9 dtVE -2 (3.39)

4r p
12

In other space regions, 7" = . Therelore,
7r = curleurlT, divT #0. 7(3.40)

Substitnting {3.40) into {3.34), one gets

U=—zla-[ﬁdV

(dot above E means time derivative). For the distarices large compared with TS’ large
radius -

15 S
U= —;—E[Tdv (341)

Despite the fact that T is rather complicated, the volume integral looks very simple

2
[Tav =7, 1rcg4dR : “(3.42)

Physically, Eqs. (3.35), (3.36) and (3.40) mean that the poloidal current ; given by
Eq.(3.35) is equivalent (i.e., produces the same magnetic field) to the toroidal tube with
the magnetization M defined by (3.36) and to the toroidization T given by (3.37). This:
is ustrated’'in Fig. 3. Obviously, these equations generalize: Ampere's - hypothesis. &
Now let the minor radius R of a torus tend to zero (this correspends to an infinitely thin
torus).” Then, the second term in.(3.37) drops out, while the first one reduces to.

T - %G(d-— VWRE— 2. . .(3.43)

For infinitesimal R |
R —z2 EwRZJ(;).
Therefore, in this limit,
g2
j=curleurlT, T= ﬁ,%—g—&(:)@(d - p). _ o (3.44)

1e., the'vect;)r T is confined to the equatorial plane of a torus and is perpendicular to it.
Let now d — 0 (in addition to R —+ 0). Then,

1 d
~0(d~ —5
78d—r) 5 (o)
and the current of an elementary ( i.e., infinitely small) TS is
7= curlcurllT, T = —i—wcng’Js (PR, v {3.45)

Let now the dependence of the current flowing in the toroidal solenoid be fr(t), ie.,

Jr = fr(t)eurliipd®(7). (3.46)

13




(the factor Lrcgdy R? is included into frit)). Then, EMF potentials and field strengths
are given by

- 1 . 1. .. 1 ., . 1 _ . :
AT = Zs-;[—nTGT + ;;F(T‘n'r)FT], = c_"r[MGT - r—zr'_(TnT)FT],

1 .
ﬁT = E(r X nT)DT, (3‘47)

where Dr = D(fr), Fr = F(fr), Gr = G(fr). When fr is independent of ¢, ouly the
vector potential survives

-

1 - 3 ..
AT = —Z;;fr[nr - ;;F'(rn'p)].

Clearly, Eqs. (3.47) generalize (3.27) for arbitrary time dependences and orientations.

4 Electromagnetic field of electric dipole
Consider two point charges at the points *ay7i. Its charge density is given by
pa = e[63(F — agfl) — 8 (F + asfl)].

For an infinitely small dipole, this takes the form

po = —2ea(AVNE(F), Vi= ‘b%

Now let the charge density depend on time
= fB)(FAV)E ()
(factor —2ea is included in f(t)). The corresponding current density is given by
ja = —f ()i (7). (4.1
‘The following EMF strengths correspond to these densities:
= —-—(r x A)Ds, Ei= c—:;[ﬁGd ~ SRR (4.2)
Now let the time dependence of charge density be cos wt:
py = —2eagcos wt(RV)E(F), Ji4= —2easwsin wtits®(F). (4.3)
For the unit vector 11 along the z axis, one gets

2eazk? 2eadk 1 sin 1,/)]

sin 6(cos p — E‘:—“—f), E4g = ————sin f[cos (1 — kir 2) kr

Hy = -

E = cos f(sin 1 + —cos Y}, Y=kr—uwt (4.4)

deaqk
r2
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[n the static limit {4# — 0}-one gets the field of electric dipole

4eay
—cosfl, Hyy —0.

. 2a4e .
Ey — —a:—-sm 8, E4—
T
For the oscillating electric dipole with a finite a4, oriented along the z axis

pe = texp(iwt)pdo, pdo = 5(r — ag)[6(8) — &(r - 6)],

’smé’

Ja=ja Ja=—wexp(ivt)p, Jao = O(ay —r)[8(¢) — 6(r —6)]  (4.5)

s 2nr? mH
If we desire to obtain, in the static limit, the static electric density pgo, we should take,at
the end of all calculations, the imaginary parts of the EM F strengths (since pg in (4.5)
contains the imaginary unit factor ). It turns out that a]*(M) =0, i.e., only the electric
formfactors with { odd contribute to the EMF strengths ‘ :

a"(E) = bmomi(E), a(E) = —2ec‘/l(l+1 Filkaq), (4.6)

kag

Fi(kay) = f Ji(z)zdr + kay

0

(I + V)ji—a(kag) = Ljis1(kaq)
2[+1 ’

For kagy — 0 this reduces to
I+

(20 + 1)"
Takmg the imaginary parts of the EMF strengths (3.18) with a;(F) given by (4.6), one

F— (kag)'.

. obtains

Hy=-2ek*Y" lflli 1)(c08wt]l + sinwtry ) P! Fi(kayd),

1 ) . .
Es = ~2ek? z m{coswt[(l + Dy = Irug] — sinwt[(E 4+ 1521 = {141} P Bl kag),

E = —gﬁ S (21 + 1)(coswin; — sin wtjg)P;F[(kad) (4.7)

We evaluate the square bracket entering into the definition of toroidal moment (see the
last line in (3.4)) for the electric dipole charge-current density given by (4.5):

2ewl(l + l)a,+'2
(+2) ¢

(1+3) f P2V dinTydV + 2(20 + 3) f P2 (FT)dV = 6o (4.8)

(factor exp(iwt) is omitted).
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4.1 Interaction of electric dipole with external EMF

Substituting the charge-current of densities of the elementary electric dipole
pa= fE)AVYE (F—7),  Ju=—f()RE(F— L)

into the expression for interaction energy
1+ -
U = [udf)®eael?) = Tt At PV,

one gets |
U = = falt)(AV)Bexrl0) + - falt)iAesel(7). (4.9)

Let the external EMF be the field of TS with a constant current in its winding. Then,
outside the TS, &opy =0, Fop =0, Ha=0, A, # 0 and

U= -é FiO)A Aenel 7). (4.10)

1t is surprising enough that the interaction energy differs from zero in the space region
where E‘m = Hut = 0. Despite the fact that EMF strengths vanish outside the static
TS, the VP A cannot be eliminated by a gauge transformation everywhere in this region.
This is due to the fact that [ Ad5 along any closed path passing through the TS hole,

is equal to the magnetic flux inside TS. However, the space region where A differs from
zero, depends on the gauge choice (see, e.g., [17]). On the other hand, the interaction
energy (4.10) should not depend on the gauge choice. The origin of this inconsistency is
unclear for us.

5 More complicated elementary toroidal sources

In this section we give without derivation EMFs of more complicated toroidal souces
obtained earlier in [16]. They are needed for the evaluation of integrals entering in the
Lorentz and Feld-Tai theorems. Unfortunately, their omission makes the text to be un-
readable. Consider the hierarchy of TS each turn of which is again TS. The simplest

of them is the usual TS obtained by the replacement of a single turn, representing the’

current loop, by the infinitely thin TS. We denote this TS by T'S) ( the initial current
loop will be denoted by T'S; }. The next-in-complexity case is obtained when each turn of
TS, is replaced by an infinitely thin toroidal solenoid ts; with the time-dependent current
in iis winding. Thus obtained current configuration denoted by T'S; is shown in Fig. 4.
We see on it the poloidal current 7 flowing on the surface of a particular torus ts;. Only
one particular turn with the current 7 and only the central line of ts; are shown {for the
torus (o — d)? + 2% = R, the central line is defined as p = d, z = 0). The arising time-
dependent magnetization ( due to the current § flowing in ts,) coincides with the central
line of ts; and lies on the surface of T'Sy, in its meridional plane. Since there are many
turas in TS|, (each of them is the same as ts,), the superposition of their magnetizations
gives the overall magnetization M, filling the surface of T'S; (see Fig. 1 or upper part
of Fig.3, where 7 now means #7). This distribution of magnetization is equivalent to the
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closed chain of toroidal moments T aligned along the central line of T'S; (see the middle
part of Fig.3, where M now means T'). The closed chain of toroidal moments leads to the
appearance of higher order toroidal moment shown in Fig.4 by the vertical arrow. When
the dimensions of just obtained configuration T'S; tend to zero, we get (see [10,16]):

72 = LOeurl (A (7)),  curl® = eurl - curl - curl. (5.1)

The corresponding VP and field strengths are given by

A= —-Dm(r X n), = —%5 D (Fxn), Hy= ﬁ;—::Géz) ﬂrn)F(z).
o (5.2)
Here subscripts at D, F and G functions mean ihat they depend on the f function with
this index, while the superscript means the time derivative of the order equal to this
superscript. For example,

() —
Dm dt"' D(fm)

By comparing Eqs.(5.1),(5.2) with (3.16),(3.17) we conclude that for the current conﬁgu-
rations T'S; and T'S; the electromagnetic fields coincide everywhere except {or the origin if
the following relation between time-dependent intensities is fulfilled: f = fo/<®. This
means, in particular, that the EMF of the static magnetic dipole (fo = const) coincides
with that of the current configuration T'S; if the current in it quadratically varies with
time ( f; = — fyc?t?/2). 1t follows from this that the maguetic field of the usual magnetic
dipole can be compensated everywhere (except for the origin) by the time-dependent

current flowing in T'S;.
Now we are able to write out the electromagnetic field for the point-like torcidal

configuration of the arbitrary order. Let
T = frn(t)eurl™HD(7(F). (5.3)

We consider even and odd m separately.

Toroidal configurations of even order

Let m be even ( m=2k,k20 ). Then

A = (1) e DEP(Fx n), En =(- -y ,ak+3 e DI (Fx n)

ok +2p2

o = (-1 s A — =G, (5.4)
The distribution of the radial energy flux on the sphere of the radlus ris ngen by

sm 9 Zk
S,-=-4—7—r(EX H)"—4—Uc+3_5 +1G

Here 6 is the angle between the symmetry axis 7 and a particular point on thet’spherye.
The total energy flux through this sphere is

r2/SrdQ = D2k+l
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The mtemchon of the even toroldal, source with the extemal EMF is given by

v=-1z / 4V Armgeur P (RS(F = 7)) = (= 1) L2 @73

c2k+1
where the external magnetic field is taken at the position of a point-like toroidal source.

Toroidal configurations of odd order

On the other hand, for m odd (m =2k + 1,k > 0)

k) (2k}
42h+1 =(- 1) 2,,4,3[ ﬂ’n)Fz\:ﬂ - fi- G;IH{!])

! . 2lae
B = (= 1)+ 2k+4[_ﬂrn) F( I:+1) (::—xl)]
: k 2k+2) [ = o 2k+1 ‘lAk 2
Fppr = (=D zm o DEM(Fxn) S= e GE,‘H ) DGR, (5.5)

The distribﬁtion of the radial energy flux on the sphere of the radius r is given by

c. sin’ ¢ 2h-+2 72k +1
S, = E[E;Xﬁ), = gk PaiiGuir

The total energy flux through this sphere is

2 . 2k +2 vk 41
r / 5,dQ = —— DATIGUL!,

3¢ 4k+7
The interaction of the even toroidal source with the external EMF is given by

U= __-_-f”;“ / AV K arcur AR (7 = 7)) = (= 1)+ L2558 7 F@en)

oth+2
- Again, the external electric field is taken at the position of a point-like toroidal source.

Short resume of this section

We see that there are two branches of toroidal point-like currents generating essentially
different electromagnetic fields. A representative of the first branch is the usual magnetic
dipole. The electromagnetic field of the k-th member of this family reduces to that of the
circular current if the time dependences of these currents are properly adjusted

FER = (1) folt) />, (k> 0). (5.6)

" We remember that the lower index of the f functions selects a particular member of the
first branch, while the upper one means the time derivative.

The representative of the second branch is the elementary TS. Again, the electromagnetic
fields of this family are the same if the time dependences of currents are properly adjusted

= ()R, (k> 0). (5.7)
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From the equations defining the energy flux it follows that for high frequencies, the toroidal
emitters of the higher order are more effective { as the time derivatives of higher orders
contribute to the energy flux). They may be used in the same way as usual FM transmit-
ters. Namely, the EMF of high frequency carries the energy. It is modulated by the low
frequency EMF carrying the information. The resulting signal is decoded in the receiver,
its high-frequency is removed, while its low-frequency part comes to our ears.

From the classical electrodynamics it is known [32, 34] that there are two types of radia-
tion. For the multipole radiation of magnetic type FE=0,7H # 0, while for the radiation
of electric type should be 7H = 0, 7E # 0. 1t follows from (5.4) that FEy = 0, 7Hy #0.
Thus, radiation fields of the time-dependent currents flowing in a circular turn and in
toroidal emitters of the even order are of magnetic type. It follows from (5.5) that
FHu = O,Fﬁgk # 0. Correspondingly, radiation fields of the time-dependent currents
flowing in a toroidal coil and in toroidal emitters of the odd order are of electric type.

6 The Lorentz and Feld-Tai lemmas

6.1 Standard deriv:;ltion of the Lorentz lemma

We write out Maxwell’s equations for two current sources 7, and 75

1: 1: 4r
curlElz —-Hl, C‘U.T‘lﬁl Z—E‘[-*-—::]l,
[ [of

1: 4 R
curl By = —Zﬂg, curlf, = —Eo + l;g. (6.1)

From this one easily obtains

div(El X 2) = EgCurlEl - EICUTIEQ = —%Hg]?l - %Elbg - 4—7'.-7'21‘71,

diU(Eg X Hl) = Hicurl B, = BicurlE, = "%H]]‘?g - -::EEE - HLE;
Subtracting these equations from each other, one ge:s
div(Byx Ba=Byx ) = 2 s - Bl - 2B B~ BB)+ LGB -7 ). (62)
When thé time depepdence of field strengths is given by expliwt), i.e., |
By = exp(iwt) B2, B, = exp(iwt)ES, H, = exp(iwt)H?, H, = exp(iwt)f3, (6.3)

then

D1E2 EQE“ H] fig = I?gl?l (64)

and

div(By x By - B x H) = 51(1’15‘ - 1E).
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Integrate this refation over the sphere of the radius H; and apply the Gauss theorem
: = o 3 -~ 4 -+ 5 * =
Rf,[(l;l x B, - B x Hﬁ,dQ:-—;[(JlE;—JlEg)dV. (6.5)

For Ry = oo, the LHS of this equation disappears and one gets the famous Lorentz lemma
& =&n, (6.6)

where we put £ = [ 1 E2dV, &y = [ LEdV.

8.2 The Feld-Tai lemma

The Feld-Tai lemma states that
Hiz = Ha, (6.7)

where 1“12 = fflﬁde, ’Hgl = fj’zﬁldv

It is proved along the same lines as the Lorentz lemma. From (6.1) one easily obtains
div(H; x Hy)) = %(ﬁggl_ﬁlﬁ‘l)+;l Hy—7Hy,  div(Eyx By = %(Elﬁz—gzﬁl)- (6.8)
Subtracting these equations from each other, one gets
div(By x By~ x o) = S(Bifly = Byfh) ~ S(LE, - BB) = i+ . (6.9)

If the time dependences of E and H are exp(iwt), then the first two terms in the RHS of
(6.9) cancel each other. Integrating the remaining ones over the whole volume, one gets

T‘Z[dQ(E-I‘l X Ez— Hl X ﬁg)r = /dV(-;1ﬁ2+;2H1). (610)

Since £ = H x/, # =7/r on the sphere of infinite radius, the LHS of (6.10) disappears
and one obtains the Feld-Tai lemma (6.7).

6.3 Lorentz and Feld-Tai lemmas for real time-dependences

The crucial point-in obtaining (6.6) ‘and (6.7) is- Eq.(6.3). However,.the real current
densities should be real.. The possibility of operating with complex quantities like

exp(iwt)7, exp(iwt)E, exp(iwt)H
is valid as far as we deal with the quantities linear in field strengths. For example, if the
actual dependence of the current density is coswt, then we may solve Maxwell equations
with exp(twt)7, exp(iwt) E and exp(iwt)H and at the end take-the real parts of these
quantities. However, one should be very careful dealing with quadratic combinations like
(6.2) and (6.9). To avoid mistakes, one should first take real parts of EMF strengths and
substitute theminto quadratic combinations of field strengths. Consider two equalities
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{6.4) obtained under assumption (6.3). Equations (3.9),(3.23) and (4.4) show that actual
field strengths contain both coswt and sin wt

E\ = coswtES +sinwtEl, E; = coswtES +sin wtE, =

i, = coswtH; +sinwtH;, H; = coswtH + sinwtHy. (6.11)
Substituting (6.11) into (6.4), we find that the latter are satisfied if
E:By = EiE;, H:H;=HiH; (6.12)

It is not evident that these equations are fulfilled for the real time dependences coswt
and sin wt. We show below (section 6.5) that they are not satisfied.for the simplest EMF
sources. ,

8.4 The Lorentz and Feld-Tai lemmas for elementary electro-
~ magnetic sources

We apply now the Lorentz and Feld-Tai lemmas to the simplest electromagnetic'sources. _

6.4.1 Interacting electric dipole and current loop

Equations (3.16) and (3.17) define the current density and EMF strengths of the current’
loop, .resp. Correspondingly, Eqs. (4.1) and (4.2) define the same quantities for the
electric dipole. Combining them, we evaluate the integrals entering into the Lorentz and
Feld-Tai lemmas: ' :

£ra=fi j curl(fiL 8 (7 — Fu)) BadV = -% fufiL j (7 = o) HadV =

= o I‘ZZLfL(t)(ﬁLd(adx A)Dy, Eu= Cs‘;{h (R x A D,

1 o 1 oa o a
. Hpa= ‘aRdeL(t)[(ﬁdnL)Gd_E(ﬂdﬁdL)(nLﬁdﬂ)Fd‘]:
S T 1 Loy o '
: Hup = —c—aﬁzfg(t)[(ndﬁf.)ﬁz.—‘E(ndﬁftf.)(nLRdL)FL](_ - (6.33)
Here ]-i’;,d =1;R’4L~= L —ﬁ We see that
(eae)

Era=Eir and Hpg= 'H,;[; ‘ :

].ff[,‘:_ﬁ
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6.4.2 Interacting electric dipole and toroidal solenoid

Combining Eqs. (3.46),(3.47) defining current density and EMF strengihs of TS and Eqs.
(4.1), (4.2) defining the same quantities for the electric dipole, we evaluate the integrals
entering into the Lorentz and Feld-Tai lemmas;

Era = [r(t) /.L‘url(ﬂ(ﬁrés(f"— FT)EddV = —cl?fT(t)éd(ﬁTD) =

= c‘R ——[(firfs)Gy - ——-(ndnm)(nrﬁm)ﬂ]

Ear = fu(t) R

m(g

]
Hra= ——fT("Tﬁd(RTD) Ty 7 frBrd7ia x 7ip) DY,
Har = —— faRar(7ia x 7ir) DY, (6.15)

RT

The dots above the ﬁeld strengths mean time derivatives. Again, we see that these
integrals coincide when fr= fd

6.4.3 Interacting current loop and toroidal solenoid

Finally, using Eqs.(3.16), (3,17) and (3.46),(3.47) we get for the integrals entering into
the Loreniz and Feld-Tai lemmas

o (Sin S WD (= s\ Jir 1., ” ;
€ir =i / curl{fips® (7~ 7)) Er(F — fr)dV = —Zfifir / 87—~ F)lp(F— Fr)dV =

C5R2 fLRLT(ﬂT X nL)D
Ers = f2(l) [ curl@ (5 8(7 — 7)) By (F~ F)dV =
= —fT(t)—an‘L(R'n) L e fr(t) D R (T, % fir),

7'lL’I‘ = fL / curl(ﬁLJS(F— FL))HT(F_ FT)dV = 'c'flﬁLE-‘T(R'LT‘) ="

=3 R fel(fLn)Gr ~ E’;(nLRLT)(nTRLT)FT]:

Hry = fr / curl® (78 (7 — fp)) A dV = - fTir'iT / (7 = ) AL (Ro)dv =

- 3B N 1 5 Lz
= L5 (i) = [(Fee)Ge = g (o Rur) e ) il (6.16)
T

fr
SRy,
We see that these integrals coincide when fr = fi.
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6.5 Conditions for the validity of the Lorentz
and Feld-Tai lemmas

We analyze the conditions (6.4) and (6.12) using the interacting current loop and toroidal
solenoid as an example. As we have seen, the equalities

Eer=&rp and Hip = Hro

are satisfied fr = f;. However, it is easy to check that the conditions {6.4) and (6.12)
under which the Lorentz and Feld-Tai lemmas were obtained are not satisfied for arbitrary
fr = fs4. More accurately, Eqs.(6.4) and (6.12) are valid if the time dependences fr and fi,
are of the following specific form: fr ~ exp(iwt), fp ~ exp(iwt). But how to reconcile
the violation of (6.4) and (6.12) with the fulfillment of (6.6) and (6.7) proved in a previous
section? The answer is that although Eqs.(6.4) are not satisfied, the space integrals from
them do. This, in turn, means that the Lorentz and Feld-Tai lemmas have a greater
range of applicability than it was suggested up to now. The same conclusions are valid
for the interaction of electric dipole with the current loop and with the-toroidal solenoid.

The fact that the Lorentz lemma (6.6) may be fulfilled due to the equalities of the space
integrals from (6.4), not to (6.4) itself, was earlier admitted by Ginzburg ([36]).

7 © Alternative proof of the Lorentz
and Feld-Tai lemmas

7.1 Digression on the energy exchange

At first we consider a simpler case corresponding 1o the energy exchange between two
sources of electromagnetic energy. The energy transmitted from one charge-current source
p2(7 t),]g(r t) to the other source p;(F, t), 11(F, t) is given by

V_Vﬁ(t) = /[pl(Flrt)¢2(Flyt) - %fx(ﬂ,t)ﬁz(ﬂ,t)]dvx, (1)

where (7}, t) and A.g(ﬁ,t) are the scalar and electric potentials induced by the charge- k
current density (p,, 72) at the position of the charge-current density (g1, 71). They are
given by

2 1 .
‘1’2(7'1, t)= /E;Pz(rz, r)6(r — t + Ry /c)dVadr,

AR, = / R 7 = t+ Raf )dVidr. (7.2)

Here Ry = |} — 74 is the distance between the particular point of sources 1 and 2.
Substituting this into (7.1), one gets

- - 1+ _ -, 1
Wu(t) = /[pl(rlv t)pg(f‘z, T)" Ez‘]l(rl.t)]z(rm T)]—E;ZJ(T — i+ Ru/c)dVIdngT. (73)
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[n the same way,

. ) | - - 1
Wa(t) = /[P2(’-'.2, t)o1(f1, )~ (_—2.71(;1, T)12(72, t)I—R;fY(T —t+ Rypfc)didVodr. (7.4)

We see, that in general Wy (t) # Wia(t). Let now time dependences in p and 7 be
separated
p1(Ft1) = pi{t1)pr(F1),  p2(7a, t2) = pa(ta)ea(72),

7L ) = 1A, 27 t) = 2(t2)72(R). (7.5)
Then, ’

" " T B NI S
Walt) = [[o1(t)oi(Fi)oa(F2)oa(r) — =71(6)11(F) 12 F2) j2 7Y =—8(r — t + Riz [fc)dVidVadr,
et Ria
(1.6)

Wai(t) = /P2(t p2(72)p1(F1) e (7) — —szt)Jz("z)Jl( 1).71(T)]"—5(T*t+Rlz/c)d‘/ldedT

(1.7)
It follows from this that W3 = W5, if the time dependences of sources 1 and 2 coincide,
i.e., when
pi(t) = pa(t),  Ji(t) = R(t), (7.8)
that is the action and reaction coincide if the time-dependences of sources 1 and 2 are
synchronized. ‘
The violation of action and reaction due to the retarded nature of eleciromagnetic inter-
action was first recognized by H.A. Lorentz in 1895 [37]. As far as we know, the best
exposition of these questions has been given in Cullwick’s book [38] where the explicit
violation of action and reaction equality was demonstrated the interacting for the inter-
action of a charge with TS. In a modern physical literature the violation of this equality
is considered as almost obvious. We quote, e.g., French [39]: ”The equality of action and
reaction has almost no place in relativistic mechanics. It must be essentially a statement
about the forces acting on two bodies, as a result of their mutual interaction at a given
instant. And, because of the relativity of simultaneity, this phrase has no meaning.”
The violation of action and reaction equality for the interaction between the moving
current loop and charge and between two moving charges has been noted by O. Jefimenko
[40] and P. Cornille [41], resp. However, this violation is not restricted only to the re-
tardation effects. Even for the interacting static metallic currents there are known two
interaction laws: Ampere law which agrees with Newton’s third: law (equality of action
and reaction forces)-and Lorentz law:which violates it (see. e.g., [42, 43]). However, if the
above currents are closed, the difference between-these forces disappears: both of them
satisfy Newton’s third law [44]. Some experiments [45] seem to support only the Ampere
law of force, while others [46] give the same result for both laws. These questions need
the further consideration.
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7.2 Concrete examples: the energy exchange between elemen-
tary toroidal sources

Let us have two toroidal sources T'S; and T'S; of an arbitrary order. The interaction

energy is
£=Ea+&y,

where £, and &;; are the parts of £ localized at the positions of 'S, and T'S,. More
accurately, £z is the energy induced by the source 2 at the position of source 1. And
similarly, for £;. They are given by:

£ =~ [V - A A7 - PV (19)

and

821 s /dV]g(r - TQ)AI(T et rl)dV (710)
resp.

7.2.1 The interaction of even toroidal sources

Let 71 and 7; be both of even order
51 = A)eurP @S F- ), = fa()eurlP* [, (F — 7))

Then,

—1)i+! N
812 = ‘( ll)+1 fl(t)ﬁx . H§2ll)(R12), 821 = (Cﬂ)'H f (t)ﬂ'l ﬁ( I)( Ql!) (711)
where H {3 ‘)(Ru) is the 2; time-derivative of the magnetic field produced by T'S; at the
position of T'S} and 1-1' (2 ’)(ﬁm ) is the 2[; time-derivative of the magpatic field preduced
by T'S; at the position of T'S;. Substituting thera from (5.4), one gets

( l)h+lz+l

=/ lm[ 7, ("1R'u}("inifu)Fzsml ) (@),

l)h+h+1
= h i

We see that &3 = £ for arbitrary f, = f3. Let f; and f; do not depend cn time. Then,
€12 and £z differ from zero only for [; = [; = O:

(B (A R FE™) — () GE2),  (1.2)

Ea=€y= —c'?Rf: [3 (ﬂlﬂu)(ﬂaﬁu) (nlnz)],

that coincides with an interaction of two magnetic dipoles,




7.2.2  The interaction of odd toroidal sources

Let _71 and 72 both be of odd order.

Jl = fﬂ1+1(t)cu7‘lﬂl+2[n (53(7‘ ”F )i J2 = f217+1(t)cur121’+2[77253(r"— T-"z)].
Then,

g —_ (—l)ll+lf (t)” . E(2h+l)(1'i & ( 1)‘2 E(le+1) 53
12 = gy St b 1), €n =g falt)i B (Ru), (713)

2‘; +1
where E‘(ﬂlﬂ) (Ru) is the 2/, + 1 time-derivative of the electric field induced by T'S; at

the position of T'S; and E‘(u’ﬂl(ﬁql ) is the 2l; + 1 time-derivative of the electric field
induced by T'S; at the position of T'S;. Substituting them from (5.5), we get

(—1)1”1’ 1 = (2h +203+2) 21 +203+2
=h Birte R, [ fz("lﬂu)(ﬁzﬁu)Fz R _ (Fafn) G
(z1)ih

V. o - v
n=/ TRy [Ei_("lRl?l("zﬁllex(%m’m — (i) GEA 3+ 3y, (7.14)

Again, we see that £,3 = £, for arbitrary f; = f,. Let f; and f; do not depend on time.
Then, £ = £ = 0. This means that static toroidal sources of an odd order {and, in
particular, usual static toroidal solenoids) do not interact,

- It follows from (7.12) and (7.14) that torcidal sources of the same order do not mteract
when the following two conditions are fulfilled simultaneously:

i) The symmetry axes of toroidal sources are mutually orthogonal ; ii) The symmetry axes
of toroidal sources are perpendicular to the vector Ru going from T'S; to, T'S; .

In particular, this is valid for two interacting current loops or toroidal solenoids.

7.2.3 The interaction of even and odd toroidal sources

Let one of the currents be of the even order and the other of the odd one:
51 = AE)eurlP M (F - M), T2 = fa(t)ourl®+2[7,8%(F — /)] Then,

flé—("iffl A B (o), sm-,‘ EO oy BP0 (Re). (1.15)

cdi+2

We observe a curious fact TS, interacts with time derivatives of the magnetic field
-induced by T'S, while T'S, interacts with time derivatives of the electric field induced by
TSy (under the words 'interacts with time derivative’ we mean that the time derivative -

of the corresponding order enters into the interaction energy). Substltutlon of E; from
(5:4) and i, from (5 5) gives °

( 1)11+Iz+1 1

A +2A
&= gl g (B xona) DE D,

( 1)11+lz+1 1

- = fngl ﬂq(ﬁzl X n )[)gml +2h+2). (7.16)

Agam, we observe that £,; = &, for arbitrary f; = f;.
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From this one can see at once the violation of action and reaction equality. Take, for
example the last equation. Let f; and f; depend and do not depend on time, resp. Then,
E12 = 0 and &; # 0. This means that T'S; acts on T'S; while T'S; does not act on TS).
It follows from (7.16) that toroidal source of even order does not interact with that of odd
order if one of the following two conditions is fulfilled:

i) When the symmetry axes of T'S; and T'S; are parallel i) When at least one of two
symmetry axes (T'S, or T'S;) is parallel to the vector R going from T'S, to T'S,.

[n particular. this is valid for the interaction of a current loop with a toroidal solenoid.

7.2.4 Numerical estimations

To see explicitly at what level the equality of action and reaction is violated, consider an
interacting current loop and TS with a constant current in its winding. Since, there is no
EMF outside such TS it does not act on a current loop. On the other hand, the action of
current loop on a TS is given by {7.16) where one should put [; = {, = 0. Then.

Eir =0, Erp=—fr—g—Rrulfiy x fir) DY

~fr =5 G Rzr
Let f; periodically changes with on time. Then,

A - . i 4
fo=nl,d} coswt, D= -l diw(sinwt, — Fcoswt,), D(L:) =—w?Dy, k= ﬁ‘,

_ RT[, ’ - W]Ld
t—t“T» &L = ch5RT

Now we choose fr. It is equal to mcqdr R*/4, where ¢ = 2NIr/c, N is a number of coils
in TS winding, /r ia_a current in a particular coil. However, instead of TS winding, it is
convenient to use the ferromagnetic ring magnetized in the azimuthal direction (see the
middle part of Fig. 3). These two objects are completely equivalent as to their interaction
with external EMF. The magnetic field inside TS is given by Hy = g/p, where p is the
cylindrical radius. If the major radius dr of T'S is much larger than its minor radius R.
we may put Hy = Hy = g/dr, ¢ = drHr. Finally, for €7, we get

1
RTL(nL X nT)D w(sin wt, — -k—cos wt, ).
r

m I  Hrdhds R ) . 1
Epr = —”—-[’-—,13[—‘-—?——1.2'7-[,(_77[, X r'iT)D(Lz)w’(sm wt, — ——cos wt, ).
G Ry ' KT

[ts maximal absolute value is
IE’I‘LI = 12 IL HTC{id%- szJ/csﬂTL.

This expression should be multiplied by the number Ny, of the turns in a circular loop. The
typical value of magnetic field inside the ferromagnetic sample is about 1000 gauss. Let
Ny, = 1000, I =1 ampere , the dimensions of a current loop and TS are of the order
of few centimeters and the distance between sources about 10 cm. In order the motion of
TS can be observed, the frequency should be of the order few hertzs (otherwise, positive
and negative values of £r; compensate each other for the finite observation time). For
these parameters, £, ~ 1032 ergs and the corresponding force Frp ~ &1/ Rpy ~ 107
dynes. Such a small force could be hardly observed experimentally for the realistic cosine
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or sine current dependences. Under the influence of a force from a current loop, TS
‘begms ‘to‘ move. The EMF strengths are non-zero outside TS, when it moves unifo;'m_ly
in qedlum ([47,48]), or when it is accelerated (both in medium and vacuum [13]). The
moving TS will act on a current loop which, in its turn, begins to move. But these' next
order effects, are beyond the present consideration. ,

7.3 Back to the Lorentz and Feld-Taj lemmas

7.3.1 Lorentz lemma

Proceedix.lg ip the seame way as for interaction energies, we get for the integrals £, and
£2; entering into the formulation of the Lorentz lemma

b= "/ﬁl(ﬁ» t)pa(f2, T)8(r — t + Ru/C)RLdV,dV;d-W
12
1 7 N7, R 1 -
t3 /‘“(rl’ £)72(72, 7)8(r — £ + Rlz/C)E;dVldedT. (1.17)
&1 =~ | 0o, 7 1
21 pa(72, t)pr (P, T)S(r — t + Rlz/C)E-dVldedT+
12

1 o m o
+c—2 /.72("2: tn(FLr)s(r ~t + Ru/c)ﬁl—dvldvzdr, (7.18)
12

whfare t‘.hc dot ab9ve p means derivative w.r.t. ¢ and the dot above the & function means
denv.a.tlve w.r.L. s argument. Again we see that, in general, Eia(t) # E31(¢): Let now
the time dependences of p and J be separated in the same way as in (7.5). Then,

(Vo (7o (o i '

Ei3 =~ /Pz(t)Px(rl)Pz(rz)Pz(T)—R“zJ(T —t+ Rifc)dVidVadr+
. 1
I 1.

+3 [HOREERN) 56+ Rafo)dVidVads, (7.19)

P PPN

21 = Pz(t)Pz(Y‘z)Pl(T'l)Pl(T)F;J(T ~t+ Ryzfc)dVidVydr+
1

1 C T T . 1.
+§/JZ(t)JQ(r2).71(7'l)Jl(T)]‘R‘;‘(;(T ~t+ Rizfc)dVidVydr, (7.20)

Similarly to thginttj,raction energies, we see that £13(t) = £5(t) for arbitrary time depen-
dences p, and j; coinciding with p; and Ja, 1.e:, when the conditions (7.5) are fulfilled.
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: 'induéed ‘voltage is.invariant under the replacement. of -the detector. and.transmitler. L
- We:illustrate: this:using point-like: TS and current-loop:as.an:example.. Turning $o.(3.16).
- and (3.46), we observe that fr.and fi in £7.-may be presented as’, TR U

7.3.2 Feld-Tai lemma

Direct evaluation of integrals entering into the Feld-Tai lemma gives

Y N R
Hia = en [ iulFi t)ﬁdvl = e [ 3u(Fis 5l Ve R =)W dVyr,
. A, FE . e a 1 R '
Ha = ein / 2l t) az;j dVh = eijn / 22, )ikl 7) 5o bt —cl—z)dVldngr.

: o (1.21)
Here €;jx is the unit antisymmetrical tensor of the third rank. When the time dependences
in current densities are separated (j(r,t) = 7(t)7(r)), these equations are reduced to

. v v oy 01 ) ‘
Hiz = eipii(t) [ 5ar)ini(Fu)jan(F2) gl = £+ Ruof )dVedVadr,
J : .

. VIR I | e
Hzl = fgjhjz(t) /]1(7‘)]2.‘("2)]1[.("1)-3—;2;'R—12'5(T.— t+ Rlzlc)d‘/ld‘,zdr. (722)

Obviously.
‘ Hiz =Hn

when the arbitrary time dependences of sources 1 and 2 coincide (1(t) = 5206)). ‘, {

7.3.3 The physical. meaning of the Lorentz and Feld-Tai lemma for thé'inteﬁ
acting current sources W ‘ o

We conclude: the Lorentz and Feld-Tai lemmas are fulfilled when the following two con-
ditions are satisfied: R :
i) Time dependences are separated from space variables in the charge-current densities.
This means that the time dependence should be the.same for all space points of a'partic-
ular source. / o
ii) The separated.time dependence is. the same for sources 1-and 2. . T

The physical meaning of the Lorentz lemma is as follows: The time- dependent mag-
netic flux penetrating a particular turn of winding, creates an electric field directed along
this turn. Being summed,.they give potential difference between ends of the winding if it -
is not closed and induce the current in the winding if it is closed. This voltage {or current)
can be measured.” To obtain voltage, we omit in £y, the time dependent current force I .
(not the current density 7;). Thus obtained £15(t) gives time-dependent voliage:induced
in the winding 1 by the time-dependent current flowing in the winding 2. Similarly, if we
omit in £ the time dependent current force I, then & (¢) gives time-dependent voltage
induced in the winding 2 by. the time-dependent current flowing in the winding 1. Thus".
obtained €5 and £a coincide if 1,-= I;.-We observe»thai{-_iﬁttbe first case 1 is ‘a'receiver .
and 2:s:a transmitter..In:the second case, the situation is o;ippsitg.,Thiai meansthat an’

L CaNIpdpRR 2
s 1—%‘—“—)‘?, Cfo=xlidifL
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where I and I, are the current forces in 'I:S and current loop, resp.; fT and f;, are their
time dependences. Omitting the factor I7 fr, we get for the voltage induced in TS

m?Ndy R*d2

—TET 2L pB)¢r, F
265R’2_[‘L D (ILfL)'

Vi = -

In the same way, omitting the factor I fL, we get for the voltage induced in a current
loop

T NdrR*d3
2c°R%,
We see that, indeed, Vpp = Vip if ITfT = ILfL, i.e., when the time-dependent currents

flowing in a current loop and toroidal solenoid are the same.

The physical meaning of the Feld-Tai lemma for interacting current sources is not clear
to us. A time-dependent electric field penetrating a particular turn of winding, creates
the magnetic field directed along this turn. If the free magnetic charges existed, then
integrals entering into the Feld-Tai lemma (after omitting the corresponding factors as in
the Lorentz lemma) would gave the magnetic voltage between the ends of the winding
(if it is not closed). Their equality would gave the symmetry between the transmitter
and receiver. Since the monopoles up to now were not found, this interpretation of the
Feld-Tai lemma has no relation to reality. However, Lakhtakia [31] and Monzon [30], seem
to have found numerous application of the Feld-Tai lemma.

Vir =~ D®(Ir fr).

7.3.4 Another viewpoint on the Lorentz and Feld-Tai lemmas
In the Fourier representation (E(t) = [ E(w)exp(iwt)dw, etc.) the curl parts of Maxwell
equations look like '

curl B = —ikH, curll =ikE + 4_7r;, k=wfe
c

Then, the Lorentz and Feld-Tai lemmas are satisfied trivially. For example, the proof of
the Lorentz lemma without appeal to the Maxwell equations takes three lines

£ = / KR En(F)dV: = / EN V(R — kA (F)dVi =

=—tw /[Pl("”l)‘i’n(ﬁ) + %5’1(;1)12:12(771)10[‘/1 =

= —iw /[PL(FX)Pz(Fz) + 55.71(7"'1)3’2(?2)]-———-———“‘)(—%312)

RXZ

Therefore, the Lorentz and Feld-Tai lemmas may be viewed as the integral relations
between the Fourier transforms of the current densities and field strengths. This, in its
turn, may be used to derive new identities. For example, multiplying £ by exp(iwt) and
integrating over w, one gets

dV;dVg = 82] .

/;I(Fla w)Ey5(71, w) exp(iwt)dVidw =

30

= L (7R Y BaalFo, ") expliwft — ¢/ — )] dVidwdt'dt” =

47

1 v, - i}
= 2——]—7r /;1(7'-'1) t’)Eu(f-‘.\, t")&(t — - tll)dvldt'dt'/ = _5; /]1(7'1, t— t')Eu(rl,t')dVldt'.

(7.23)
Performing the same operation with £, and equalizing the result to (7.23), one arrives at
/ Tt = ) Bt t)dVidt’ = / Ta(Fart = OV En (72, £)dVodt'. (7.24)

This equation was obtained by Feld {749]). We make one step further, excluding electric
strengths. Then, the LHS of (7.24} is reduced to
( Ry, 1- - + . Rl‘ 1 '
"ig{ /[PI (Fl,t - t’)pz(;},t, - ‘$) -+ :,‘2‘]1(7‘1, t— t’)_]z(f‘z, t' - —‘:—" ]R—“'dt,dvldV2
O c 2

Therefore, the following equation should be satisfied:

Rao., 1+, . v,e g Ruagl . .
/[Px(ﬁ,t— oa(Fo t' = =2y + AP 6 = V(P — — )]"—R dt'dVidV; =
C c* C 12
- R 1+, v,y RBaog U 0 n- .
= /[pz(f"g,t — ), = )+ Rt = R - It dVidva (7.25)

Performing the same operation for the integrals entering into the Feld-Tai lemma, one
gets

1 TP ..‘ _
[ expliwnin(Fi, @) Hralfi, widwdVs = 32 [ 3t = OV Hu(@, OddV =

= —-—L / —l—curlfl(r"'l, t— tl)fz(f"g, t, hand nglc)dvld"’zdt’.
2re Ru

Therefore, the following equalities should be fulfilled

/ TFL t = ) HalF, E)dtdV, = / Ta(Fayt — Y Hyy (7, 'V,
/ -RLcurm(_a, b= Via(Fant’ = Ruafe)dVadVadt =
12

= [ El-curlfg(r"'g, E— EVu(Ft = Rigfc)dVidVadt'. (7.26)
12

It is important that Eqs.(7.24)-(7.26), contrary to the equations defining the Lprentz and
Feld-Tai lemmas, are satisfied for any charge-current densities. No assumption on the
separation of space and time dependences as well the equality of time dependences for
two interacting sources is needed. .

As the author is not the specialist in the applied aspects of reciprocity-like theorems,
he cannot appreciate the meaning of the results obtained. On the other hand, there are
outstanding experts in this field (A.Lakhtakia, J.C.R. Monzon and others). It would be
nice to hear their opinion on the treated questions.
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8 Discussion and Conclusion

Now we analyze assumption on the separability time and spatial variables i charge-
current densities. Take at first the single circular current loop. Since there are no other
turns, there is no resistive or capacity connections between them. Therefore, the current
is the same along the whole wire (due to the continuity equation div] = 0) and the time
dependence is clearly separated from the space variables. On the other hand, consider the
winding with many overlapping turns, e.g. the toroidal solenoid. If the turns are close to
each other, there is a finite capacitance between them. For high frequencies, the leakage
currents appear between particular turns and the current will be changed along the wire.
This does not have any relation to the violation of the continuity equation divy = 0. It
will be fulfilled due to the presence of other j components, having the direction different
from that of wire. Since the current density changes along the wire, the time dependence
is not separated now. This should lead to the violation of reciprocity theorem. We con-
clude: the violation of the reciprocity is possible for high frequencies and large number of
overlapping coils.

We briefly enumerate the main results obtained:

1. We evaluated the electromagnetic field of the toroidal solenoid with a periodic
current in its winding. Various particular cases are considered and conditions for their
validity are given.

2. We applied the reciprocity theorem { Lorentz and Feld-Tai lemmas) to the elec-
tromagnetic fields of time dependent electric dipole, current loop, toroidal solenoid and
higher order electromagnetic field sources. It is shown that the proportionality of time
derivatives of EMF strengths to the EMF strengths themselves is not a necessary condi-
tion for the fulfillment of the reciprocity theorem.

3. The alternative proof of the reciprocity theorem is given. It is shown that the
reciprocity theorem works for more general time dependences than it was suggested up
to now. The conditions for its validity are reduced to the two following ones:

i) The time dependence should be separated from the spatial one in the charge-current
densities of interacting sources; -
it) The time dependences of these sources should be the same.

These conditions are essentially the same as ones needed for the equality of action and

reaction between two interacting electromagnetic sources.
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Appendix

We begin with the well-known relation

cos vBJ,{k\/d® + R? = 2dRcos ¢ = ;: Jo(kR)Imey(kdycosmy, R<d, (A1)

where tand = Rsin v/(d— Rcosw) For R << d, the angle 6 may be put to zero. Then,

J (k[ + R? — 2dRcosth = S‘ JolkR)Imsslkd)ycosmy, R<<d. (A.2)

We cannot put R = 0 in the rhs. of this equation, since for high frequencies, kR may be

large. Further,
J2u+|(ky) \ , J_,,,,,,;,,;(ky) okd J.m+3/.l(ky)

Here we changed y by d outside the Bessel function. This is possible since R << d.

Therefore,

Janti{ky) = i(—])’"Jm(kR)Jzn+l+m(kd)cosmtl’, R<<d (43)

and

7 Jansrlky) sin? Ydyp = "{JO(kR)jﬁu+l(kd) - %JZ(kR)Uznﬂ(kd) + Jan-1(kd)]}- (A4)
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Fig.1: The poleidal current flowing on the torus surface.

P

NG

Fig.2: The coordinates il, Y parametnzing the torus.
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Fig.3: The poloidal current 7 flowing on the torus surface is equivalent to the magne-
tization M confined to the interior of the torus and to the toroidization T directed along

the torus axis.
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TS, T

Fig.4: Torodal source of the second order is obtained if, instead of each particular turn
of a usual tt_)'r'oida.l solenoid, a new infinitely thin toroidal solenoid £s is substituted with
thfa current Jin its winding. It generates the magnetization M covering the surface of the
onginal toroidal solenoid and directed along its meridians. The complete magnetization
from all ts generates the closed tube of toroidal moments T filling the inte?'ior of the

original toroidal solenoid and generating in 1 i
, g in its turn the second
shown by the vertical arrow. oréer toroidal moment

36

References

[1] Peshkin M. and Tonomura A., 1989, The Aharonov-Bohm Effect (Berlin, Springer).

[2] Afanasiev G.N., 1988, J.Phys.A, 21, 2095; Afanasiev G.N., 1989, Phys. Lett. A, 142,
222; Afanasiev G.N. and Shilov V.M., 1993, J.Phys.A, 26, 743.

[3] Zeldovich Ya.B., 1957, JETP, 33. 1531.
[4] Dubovik V.M. and Tugushev V.V., 1990, Phys, Rep., 187, 145.
[5] Vaidman L., 1990, Amer. J. Phys., 58, 278.
[6] Luboshitz V.L. and Smorodinsky Ya.A, 1978, JETP, 75, 40.
[7] Afanasiev G.N., 1987, J. Comput. Phys., 69, 196 .
(8] Afanasiev G.N., 1993, J.Phys. A, 26, 731.
[9] Afanasiev G.N., Nelhiebel M. and Stepanovsky Yu.P., 1996, Physica Scripta, 54, 417.
{10] Afanasiev G.N., 1993, Physica Scripta, 48, 385.
[11] Page C.H., 1971, Amer.J.Phys., 39,1039; Amer.J.Phys., 39,1206.
{12] Afanasiev G.N., 1990, J.Phys. A, 23, 5755.
[13] Afanasiev G.N. and Dubovik V.M., 1992, J.Phys. A, 25, 4869.
[14] Afanasiev G.N., 1994, J.Phys. A, 27, 2143.
[15] Nevessky N.E., 1993, Electricity, No 12, 49 (In Russian).
[16] Afanasiev G.N. and Stepanovsky Yu. P., 1995, J.Phys. A, 28, 4565.

[17] Afanasiev G.N, 1999, Topological Effects in Quantum Mechanics (Dordrecht: Kluwer
Acad. Publ).

[18] Rayleigh J.W.S., 1945. Theory of Sound, vol. 1 {New York, Dover).
[19] Rayleigh J.W.S., 1900, Phil. Mag., 49, 324.

[20] Helmholtz H., 1886, Crelles J.. 100. 213.

[21] Lorentz H.A., 1895-1896, Amsterdammer Akademie der Wetenschappen, 176, No 4.
[22] Kami Y., 1992, IEICE Trans. Commun., E75-B, 115.

[23] Kim M.J., 1988 Applied Optics,27,2645.

[24] Bouche D. and Mittea R., 1993, Radio Science, 28, 527.

[25] Qin L.C. and Goodman P., 1989, Ultramicroscopy, 27,115.

37




[26] Alpert Ya.L., Ginzburg V.L., Feinberg E.L., 1953, Propagation of Radio Waves
{Moscow: GITTL), in Russian.

[27] Rumsey V.H., 1954, Phys. Rev., 94, 1483.
(28] Feld Ya.N., 1992, Sov.Phys. Doklady, 37, 235.
[29] Tai C.T., 1992, IEEE Trans. Antennas Propagation, 40, 675.

{30] Monzon J.C., 1996, [EEE Trans. Microwave Theory Tech., 44, 10.

{31] Lakhtakia A., 1994, Beltrami fields in chiral media (Singapore, World Scientific).
(32] Rose M.E., 1955, Multipole fields (New York, Wiley).

[33] Blatt J.M. and Weisskopf, 1952, Theoretical Nuclear Physics (New York: Wiley).
[34] Jackson J.D., 1975, Classical Electrodynamics (New York:” Wiley).

[35] Watson G.N., 1958, A treatise on the Theory of Bessel Functions {(Cambridge:
Cambr. Univ. Press).

[36] Ginzburg V.L., 1985, Izn. Vysch. Uchebn. Zaved., ser. Radiofizika, 28, 1211.

{37] Lorentz H.A., 1895, Versuch einer Theorie der electrischen und optischen Ersheinun-
gen in bewegter Korpern (Leiden: E.J.Bnill).

{38] Cullwick E.G.,1957, Electromagnetism and Relativity ( London: Longmans), Chapter
17.

(39] French A.P., 1968, Special Relativity (New York: W.W, Norton and Co),p.224.
[40] Jefimenko O.D., 1992, Amer. J. Phys., 61, 218.

[41] Cornille P., 1995, Can. J.Phys., 73, 619.

(42] Rambaut M., 1991, Phys.Lett. A, 154, 210.

[43] Comille P., 1989, J.Phys.A, 22, 4075.

(44] Ternan J.G.,1985, J.Appl.Phya.,57, 1743.

[45] Graneau P., Thompson D.S. and Morrill S.L., 1990, Phys. Lett.A, 145, 396.
[46] Peoglos V., 1988, J.Phys.D, 21, 1055.

[47] Ginzburg V.L. and Tsytovich V.N., 1985, Sov. Phys. JETP, 61, 48.

[48] Afanasiev G.N. and Stepanovsky Yu.P, 2000, Physica Scripta, 61, 704.

(49] Feld Ya.N., 1991, Doklady Akad. Nauk SSSR, 318, 325.

Received by Publishing Department

on July 24, 2000.

i



