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INTRODUCTION 

At present there exists a great deal of experimental 
data on elastic scattering and charge-exchange of rr± mesons 
on nuclei 3He and 3H / la,b/ . Theoretical treatment of these 
processes is rather important because the systems rr 3He and 
rr 3H, after rrd, are the only systems for which exact dynami­
cal equations may be formulated within the potential theo­
ry 121 and the properties of these systems may be analysed 
within a consistent theory. We think that one should find 
solutions as exact as possible for the 4-particle equations 
since only then one can discuss the role of the meson deg­
rees of freedom and the contribution of inelastic processes 
in a model-independent way. The significance of such proces­
ses is clear even from the data on the level shift and width 
in rr- 3 He - mesoatom (in contrast to the case of rr-d in 
rr- 3He ~E-r). 

Unfortunately, until now the exact 4-body equations have 
not been applied to the systems rr 3 N • Among at temps of 
"a nonoptical analysis"* of these systems one should men­
tion those based on the Glauber approximation 141 and fixed­
scatterer approximation / 51 . 

As is known, the Glauber approximation, at least for 
three particles, can be derived from the exact 3-body equa­
tions. It is to be expected that for four particles the same 
is valid, therefore solutions obtained in ref. 14~n the basis 
of the Glauber model can be treated as an approximation to 
the exact equations. 

The scattering within the fixed-scatterer model can also 
be considered as an approximation to the exact solution. 
However, in our opinion, the model developed in paper 151 

cannot be treated as an approximation to the exact equati­
ons. The point is that these equations can be rewritten in 
a form in which the kernel and inhomogeneous term are defi­
ned by a two-body operator obeying the corresponding Li~p­
mann-Schwinger equation. The two-body operator used in 51 

does not satisfy this requirement, therefore it is not clear 
in what sense the equations to be solved approximate the 
exact equations. And what is more, the nucleon recoil is 
taken into account by a procedure which in no way follows 
from the initial 4-body equations. 

*A detailed description of these processes in the frame­
work of the optical model with a first-order potential can 
be found in papers / 3/ • 
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In what follows we shall apply approximate 4-body equa­
tions of ref. l 6 l to the rr± 3 He interaction in the energy 
region 68 MeV~ E" ::;;: 208 HeV. These equations differ from 
the most popular description within the optical model with 
the first-order optical potential in two aspects: 1) The 
equations are derived without the impulse approximation; 
2) The rescattering of pions on nucleons is taken into ac­
count in all orders. 

In § 1 we derive the basic equations, in § 2 results of 
numerical calculations are presented and in § 3 the obtain­
ed results are discussed and compared with experimental 
data. 

1. The mainpoint of the approximation used is as follows. 
Let the total HamiltonianH .of a system rr3N be of the form 

H=ho+V"e +He /1/ 

with He , the Hamiltonian of a 3N subsystem. 
The equation for the four-particle transition operator may 
be rewritten as: 

T = T 0 + T 0 
[ G 0 (E ) - G e (E) J. /2/ 

where operator T0 obeys the equation 

T 0
"' V - V G0(E)T 0

• rre "e 

used: 

In eqs. /2/ and /3/ 
-1 

G0 (E) =(h 0-E) , 
3 

/3/ 

the following notations are 
-1 

Ge(E)=(He -E) , 

Vrre = 1: 1VrrN1 is the sum of two-body rrN potentials; ho is 
the kinetic energy of relative motion of a pion and a nucle­
us. All the quantities are in the c.m.s. of four bodies. 

The approximation to be made changes the nucleus Hamil­
tonian He by the first-rank operator, i.e., 

- <1> I I H "' H = t X
0 

> < X
0 

• e e 0 /4/ 

where t 0 and I Xo > are the eigenvalue and eigenfunction of 
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the exact Hamiltonian He • The approximation /4/ allows us 
to integrate the many-dimensional equation /2/ over nuclear 
variables and to obtain the one-dimensional integral equati­
on for the rr 3He elastic scattering amplitude 

<k j Tj k'>= <kj T 0 j k' > + f dq < kj T 0 j q>[G
0
(q,E) -0

0 
(q,E-£

0 
)]x 

X< qj T I k' > ' 
/5/ 

where <kjTjk' > = < kxo jTjk'xo> is the amplitude of elastic 
scattering of the pion on the nucleus 3 He(3 H). 

Equation /3/ in the momentum representation will be sol­
ved for a given value of the total isospin of the 4-particle 
system. We have 

-> TT -> -> TT 3 
<kll !V z I k'll' >=< k.f Zj ~ v 

rre ll 1=1 rrNi 
j,f llT_T z 

... 
k' > z 

= ~ [c.T
1 

v rrN (k,k') +ci'(v"N (k,k')+3v rrN (k,k'))] x 
1 8 1 8 3 P 

i(k-k' )Z->j {) , 

x e !l{t • 

h /:TTz . h . . . f . f 3H w ere ., 1.s t e sp1.n-1.sosp1.n unct1.on o " e p. 

... 1 ... 1 ... 
z 1-2 r12 + 3 r 3 

... 1 ... 1 ... 
z 2 = - - r 12 + - r 3 

2 3 

... 2 ... 
Z3=- ar3 

/6/ 

r12'r3 are the Jacobi variables in the 3 nucleon system 

T 1 T+..!... 1 1 1 
C1=3[1+2(-1) 2 I_L .1...1] 

~ T 2 

T+.!._ 1 
T - L[ 1-2(-1) 2 1..1... 

c3 - 3 2 
1 1 ll 
T ..l 

2 
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v
77

N , v 77
N are the s-wave 77 N potentials in the states with 

s1 s3 

isospin t N=
2
.!._ and t N=.!, resp., v 

77
N is the p-wave 77N 77 77 2 p 

potential in the state with t 77N=~ and J77N x-¥z. Since the 
77N phases P31 and P13 are small in the considered energy 
region, we take into account only the interaction in the 
resonant P33 state. The parameters of potentials v

81 
and 

v 8 3 were defined from fitting the corresponding phases and 
scattering lengths. The parameters of the potential vp were 
found from fitting the total cross section of 77N scattering 
in the region O:;;E 77 ..S::250 MeV. 

Thus, this description of 77N interaction disregards, in 
fact, the nucleon spin; 77N potentials were taken in the 
separable form 

_. ..... A ..... .... 
v ( k ,k,) = ___Q_2 - h ( k) h (k ') 
a 4 a a 77 I177N 

h (k) = g (k) , a = 1 , 2 
a a /7/ 

= y a g (k) § a = 3 , 
3 I k I 

where index a= 1,2, 3 labels potentials v 81 , v 
8 3 

. v P 

With potential /7/ eq. /3/ is solvable explicitly and the 
silution is 

<kIT o ( ~2 • r~) I k' > 
3 3 __ 1 __ ~ ~ 

477 211 3 i ,jx1 a ,{3=1 
77 He 

.......... .....~ ..... 
ikzi a-+ -1-+-+ a{3-ikzj{3-+ 

e lh (k)[X (r 12 ,r 3)]ij e h (k'), 

where matrix X has the structure 

A 1117N A-1 p 
X=- A +<;; 

11773He 

[ 
A af3 a 1 T 2 T 3 T 
A] .. =A 8{38.1 ,A =c1A ,A= c

3
A , A =c3A. 

IJ a I S 1 s 3 p 

/8/ 

Matrix ~ -is given in Appedix A. So if we restrict oursel­
ves to the inhomogeneous term T 0 , for the amplitude of 
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elastic scattering of the pion on 3 He we obtain: 

2 -+ -+ 2 -+ -+) 
f(k,k ' ):-477 11773Hef dr12dr3'1'3He(r12'r3 x 

X< k I T 0 ( ; • ; ) I k-+, > . 
12 3 

/9/ 

2. We used two sets of elementaryrrN potentials I and 
II with the different form factors in the p-wave potential 

1 Sa . 
ga (k) = 2 k ~ + {3 2 ~ ' 

aa+ a 
a= 1,2 

k k 3 
g (k) = + s3 ---- [I] 

3 (a 2 + k 2) 2 ( {3 2 + k2 ) 2 
3 3 

k - k 2 
= --- +S -=--- [II]. 

(ii2+k2)2 3 (f32+k2)2 
3 3 

If in eqs. /3/, /5/ and the equation for the two-body 
77N t-matrix (in p-state) the free Green function is taken 
in the relativistic form with respect to pion and nucleon 
momenta, then the arising integrals in the case of paramet­
rization /1/ diverge and a cutoff is necessary. We used 
the nonrelativistic form of the nucleon kinetic energy, in 
this case the integrals converge though slowly and we re­
tain the cutoff. The parameters used are listed in the 
Table. 

Table 

Parameters of 77N potentials 

a(fm) {3 (fm) s A 

S31 3.382 I. 107 -0.02733 71.3585 (fm - 3 ) 

su 3.188 0.823 0.05015 -6. 137 (fm - 3 ) 

p33(1) I. 497 2.467 I. 3803 -1 .38'3 (fm -1 ) 

p33 (II) I. 623 4.467 12.407 -2.149 (fm - 1 ) 

-
Kmax is the cutoff momentum. 

Kmax 

15 fm-1 

20 fm - 1 
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The spatial part of the wave function contained only 
symmetric S - component and was chosen in the Irving 

We have calculated here the angular distributions 
the following processes 

rr + 3·He -. rr + 3He 

rr-
3 .He -. rr- 3He 

rr-
3 He -. rr0 3H . 

the 
form17/ 
for 

Equation /5/ was solved in the two different approximations: 

1) T, T 0 , 

2) T, T 0 + T 0 [G
0

(E)-G
0
(E- c 

0
)] T 0 • 

As is seen from Figs.l to 5, the theoretical elastics 
cross sections are in qualitative agreement with experimen­
tal curves to all the approximations and in both the fit­
ting variants I and II. The best agreement is observed at 
E 77 =132 MeV and E77 =145 HeV. All the theoretical curves 
posses a deep minimum about 90° which corresponds to the 
dominating P -wave contribution (in the system rr 3N). All 
the experimental cross sections also have min though rather 
less pronounced. This disagreement between theory and ex­
periment should, in our opinion, be related both to the 
neglect of spin terms in the elementary amplitude used in 
the calculation and "small" components of the 3He wave­
function ( S'- and D- states). 

From the results for differential cross section of elas­
tic scattering it is clear that the solutions to eq. /5/ 
obtained in different approximations are similar. So, for 
instance, the first iteration of eq. /5/ gives the cross 
section whose maximum difference from the cross section 
calculated in the zeroth approximation is ~30% at 
E 77 =145 MeV and e =140 °. At other energies and angles the 
difference is still smaller. Thus, the application of ap­
proximation /4/ to the system rr3N allows us to be restric­
ted only to the fixed-scatterer approximation (i.e., the 
inhomogeneous term in eq. /5/). 
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A rather larger difference, especially for backward 
scattering angles comes from the use of two different para­
metrizations (I and II) of the elementary rrN amplitude in 
state P 33 (see Figs. 2,3). 

We have also calculated the process of the charge-ex­
change rr-3 He~rr 0 3H at different energies. Results for the 
angular distribution at Err=132 MeV are given in Fig. 5 
and for the energy dependence of the cross section for 
8 =115° in Fig. 6. 

3. A quantitative disagreement of the angular distribu­
tions with experiment at certain energies should be attri­
buted to an inadequate description of the rrN scattering 
differential cross sections around 90° . It should be kept 
in mind also that the neglect of the rrN potential spin 
structure, as is done in this work, cannot apriori lead to 
the correct behaviour of rrN differential cross sections 
around 90 ° . 

The strong dependence of the obtained cross sections of 
elastic scattering on the form of parametrization of the 
elementary rrN interaction indicates the necessity of a 
more thorough study of rr - nuclear cross sections as func­
tions of the off-mass-shell beh3.viour of elementary rrN am­
plitudes. Note, that an analogous conclusion has been made 
for the large-angle scattering in calculations with the 
first-order optical potential 18 1 • 

The energy dependence of the charge-excharge cross sec­
tion at the fixed scattering angle ( 8=115 ° ) displays a 
more sharp decrease with increasing energy than that obser­
ved experimentally both in our calculation (Fig. 6) and 
calculations of other authors 14 1 • A possible reason for a 
more slow decrease may be the contribution from "nonpoten­
tial terms" generated by diagrams of the form 

It will be interesting to study the contribution of such 
diagrams to the rraHe elastic scattering, as well. 
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APPENDIX 
~ 

We bring here the formulae for the matrix ( (see the 

formula below /8/) 

( ~ ) af3 1 oo 2 ~ ~ 
"' ij "'"Jl d q dqga(q)gf3(q)j 0 (qlz 1 -zj l)x 

rraHe 

1 + 
q2 --

- t- yq2+JL2 -JL -E 

X 
/A.1/ 

2m~- '· 
lie ·, 

+ i _:g(E) q1(E) j o< q l(E))I zj - z~j I )ga( q lE )] 
Jlrr 3He 

g f3 [ q 1 (E) ] . 

where 

maHe[JL2+q~(E)]% 
2 --

m SJre + [JL + q~(E)]% 
r 

0 
(E) 

-:-r- 2 
q1(E)=I[vmt +2mH (JL+E+ fl . )-rna l 

lie e 2m He 

Jlffi3He 
Jla =--.:..;.;;.. 

rr He Jl + m 
a He 

3He 

2 % 
-JL l 

JL is the rr - meson lllilSS, rna is the mass of a He nucleus. 
He 

The integrals ( 1j for a ,{3~ 3 have been c~lculated neg-

lecting the terms proportional to Y , ( z. - z ... J ) whose 
2m-m 1 

contribution to the elastic scattering is expected to be 
~ la 2a 

small. ~he integrals "'ij and ( lj are proportional to 

Y lm ( z 1- z~ ) and they have been omitted for the same reason. 
~ la ~23 

So we put "' lj .. "' lj "' 0. 
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