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The neutron strength functions are important characteris-
tics of the neutron resonances. As a rule, they are calcu-
lated in the framework of the optical model ‘!, which fails
to describe the strength functions at minima. In recent
years microscopic models have received the application for
the neutron strength function calculations, for instance
for the calculations within the shell model approach to
nuclear reactions /%!

During the last years many investigations have been per-
formed within the quasiparticle-phonon nuclear model /3/
to study the fragmentation of a few quasiparticle components
of the wave functions at low, intermediate and high excita-
tion energies /4-6/ The neutron strength functions are well
described in the odd deformed ‘4’ and spherical/B/nuclei.
The spin dependence of the neutron strength functions in
doubly even spherical nuclei has been investigated in ref/74

The aim of the present paper is to calculate the s—- and
p —wave neutron strength functions for a larger number of
odd spherical nuclei than in ref.’% .The modification of
our paper is the inclusion of the isovector part of the
long-range effective forces into the Hamiltonian, which are
very important for the description of the giant resonances
and the strength distribution of electromagnetic transi-
tions /897,

The model Hamiltonian includes the average field as the
Saxon-Woods potential, the pairing interaction and facto-
rized multipole and spin-multipole forces. The multipole
and spin-multipole forces generate the phonon states with
the relevant values of spins and parity. The majority of
Hamiltonian parameters are fixed from the experimental data
taken from refs. 89 In our model’3/ the quasiparticle-
phonon interaction, causing the fragmentation of one-quasi-
particle components, which gives the values of the strength
functions, is determined by the parameters of the average
field and strength constants of the aforesaid interactions.
So, we have no free parameters in our calculation in odd
nuclei.

The wave functions of the states of odd-N spherical
nuclei have the following form:
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Here¢fKG+) is the guasiparticle (phonon) creation operator
and WO is the ground state of the doubly even nucleus. The

energies 7, of the states ¥, (JM) are defined from the



secular equation
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féj is the reduced single-particle matrix element of the
multipole (or spin-multipole) operator and va are the
combinations of the Bogolubov transformation coefficients u
and v. The detailed description of all the quantities is
given in refs.’28/. oOne can prove the following relation
for the coefficients C?
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in the case when the neutron with orbital momentum f is ab-
sorbed by the target-nucleus with spin I; (I; =6 in our
case), the ! -wave neutron strength function is determined
by the formula
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where g{(J) =___E£j}_____ is the statistical weight, and S%
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is the value of the f-strength function with a given value
of spin J. Within the quasiparticle-phonon model S? is

expressed through the coefficient 0/ CY and is
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where AE is the energy averaging interval and I'°® is
the reduced single-particle width. To evaluate the'%educed
single-particle widths for the Saxon-Woods potential, we
use the semiempirical formula from ref. "
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where k is the neutron wave number, R is the nuclear radius
and d is the diffuseness parameter of the Saxon-Woods poten-

tial. For the nuclei under consideration ['® _50/Al/3 keV.
5.p.
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To simplify the calculati%ﬁs it is very convenient to in-

./ .
troduce the quantity [CB], averaged with the Lorentz weight
function
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By inserting relation (3) into (7) and changing the sum to
the integral over the complex plane, one can obtain the ex-
plicit form of the function 8,(y) (see refe; 785 1. when

Table 1

s —-wave neutron strength functions

5, x 10t
Nucleus Bn' NeV Ref.
Experiment Celculation

B e 6,25 3 1,8¢1,0 2,3
5Tpe 7,65 14 2,6+0,86 3,0
591 8,999 13 3,1:0,8 3,2
61y4 - 7,82 13 2,440,6 2,4
63y 6,84 13 2,910,7 2,5
"5ge 6,5 13 1,3:0,8 3,0
3zr 6,76 13 1,6x0,6 2,0
Mo 6,82 13 0,7+0,26 0,83
10 5,93 13 0,740,2 0,95
Mg, 6,94 13 0,2640,05 0,19
195, 6,48 13 0,440,15 0,15
s 6,18 13 0,08+0,06 0,11
12380 5,95 15 0,4%0,25 0,15
1250e 6,48 15 0,710,2 0,2
12704 6,35 15 0,3110,1 0,12




calculating the strength function S%, one should change
g(C 5)2 > fagdnS; (. We have performed our calculations
with A= 0.5 MeV. The variation of A from 0.3 to 1.0 MeV
changes our results slightly. Our calculations and those of

ref./iz/show, that the influence of the isovector compo-

nents on the strength functions is not so important. The .

introduction of the isovector components results in changing 'J
Sg -values by 20-30%. Our results for the s— and p-wave I

neutron strength functions and experimental data’!3-17/ are ! )

given in tables 1 and gj respectively. It is seen from
tables 1,2 that the calculations describe rather well the
experimental data and represent correctly the behaviour

of Sg as a function of A, For nuclei with A .60, 120 the
maximum of S0 and the minimum of 5, are described simul-
taneously.

Table 2

p-wave strength functions

Nucleus B, MeV Ref. s, x 104
Experiment Calculation
Ser 6,25 13 0,04240,024 0,08
57pe 7,65 14 0,440,2 0,07
591 8,999 13 0,04:0,03 0,08
631 6,84 16  0,028+0,013 0,03
Mgy 6,94 15 1,35 0,9
1215, 6,18 13 1,140,4 0,7
125¢, 6,58 15 2,0 1,6
1270 6,35 15 1,64 1,4
1398 4,72 17 0,9 1,0 ')1
143y 6,13 17 1,040,4 1,0 4
14534 5,76 17 0,920,4 1.3 4

So, within the guasiparticle-phonon nuclear model one
can describe satisfactorily the experimental data for the
neutron strength functions in even-even '8/ and odd spheri-
cal nuclei, using the same Hamiltonian parameters.

The authors are grateful to Prof. V.G.Soloviev for useful
discussions.
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