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nnexaHo8 E.6., Cy3bKO A.A., 3axapbe8 6.H. E4 · 12913 
Ho8~e aHanHTH4eCKHe peweHH~ a R-MaTPH4HoR 
TeOpHH pacce~HH~ 

CpeAH T04HO pewaeM~X 3aAa4 KBaHT080R MeXaHHKH WHpOKO 
H3BeCTH~ cny4aH A8H~eHH~ 4aCTH~~ 8 KynOH08CKOM, OC~Hnn~­

TOpHOM, np~MoyronbHOM H HecKOnbKHX APYrHx noTeH~Hanax. 
Knacc aHanHTH4eCKHX peweHHR ypa8HeHH~ WpeAHHrepa cy~eCT8eH­
HO pacwHp~eTc~ c noMO~b~ 6aprMaHOBCKHX noTeH~Hano8. B AaHHO~ 
pa6oTe C04eTaHHe ~opManH3Ma R-MaTpH4HOR TeopHH c Tex­
HHKOR 6aprMaH08CKHX noTeH~Han08 AOnOnH~eT MHO~eCTBO T04HO 
pewaeM~X KBaHT08~X MOAeneR An~ np~MoR H o6paTHOR 3aAa4 
pacce~HH~, OT8e4a~~HX ~enoMy ceMeRcTBY noTeH~Hanoa KoHe4Horo 
paAHyca AeRcTBH~. 

nony4eHH~e pe3ynbTaT~ MOryT 6~Tb HCnOnb30BaH~ 
TaK~e An~ npH6nH~eHHOro 80CCTaH08neHH~ B3aHMOAeRCT8HR 
no AaHH~M pacce~HH~. 

Pa6oya 8~nonHeHa 8 na6opaTOPHH TeopeTH4eCKOR 
~H3HKH OH~H . 

npenpHHT 0!5'b8liHH8HHOrO HHCTHTYT8 Hll8PHblX KCCnel!OB8HHA, .Qy6H8 1979 

Plekhanov E.B., Suzko A.A., Zakhariev B.N. 

New Analytical Solutions in R-Matrix 
Scattering Theory 

E4 · 12913 

The combination of R-matrix formalism with the 
technique of Bargmann potentials gives the class of exactly 
solvable quantum models for direct and inverse scat­

tering problems with finite range interaction. 

The investigation has been performed at the 
Laboratory of Theoretical Physics, JINR. 
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INTRODUCTION 

The well-known analytical solutions of Schrodinger equa­
tion (i.e., solutions of the direct problem) have been 
found by choosing the most simple forms of potentials V 
( V = const; r; r2; r-1 ; r -2, etc.). If the scattering data 
S correspond exactly to the given potential, then the con­

nection S ~v is simultaneously a solution both for the 
direct (V ~S) and the inverse (S~ V) scattering problems. It 
is natural therefore that the class of above-mentioned po­
tentials can be enlarged provided the simplest forms of S 
are chosen, for which exact solutions of the inverse scat­
tering problem equation 

K(x. y) + Q(x, y) + (K(x, z)Q(z, y)dz = 0 (1) 

are known. The integration limits in (1) depend on specific 
conditions of the formulation of the inverse problem; the 
kernel Q is determined by S, and the function K, a solution 
of (1), defines the potential V and the corresponding wave 

function t/J ( $ corresponds to V =0): 
d2 

V(x) =- 2---2K(x, x) ; (2) 
dx 

0 0 

'P(x) = 'P + JK(x, y)'P(y) dy. (3) 

For degenerated kernels 
N 

Q(x, y) = I ¢ (x) . f (Y) t 4) 
n n n · 

eq. (1) reduces to a system of algebraic .equations*, whose 

* The dependence on y -variable can be removed from the 
integral in (1) and instead of the integral equation (1) for 
K we get linear algebraic equations for functions F(xF n 
= JK (X, z) ¢ n ( z)dz. 
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solution gives a simple expression for the potential 

d2 
V(x) =- 2---2 ln DetM(x). 

dx 

where M is a matrix of coefficients of this system. 
The kernels Q of the form (4) are obtained if, for 

example, the scattering S -function has a form of the 
of two polynomials in k 11 ' 31 · 

N k+ian 

S(k) = ~ k +i-$n 
k- if3 n 

k- ian 

(5) 

ratio 

(6) 

The corresponding potentials are called the Bargmann poten­
tials. 

V. V .Malyarov and his collaborators141 have applied this 
formalism to the case when S has the form (6) but with 
a variable .\=f+lh, where e is the orbital momentum. 

Up to now, however, this technique was not used in the 
R-matrix scattering theory. Equations of the inverse prob­

lem were written in this case in 15/*. 

In this paper analytical solutions for the direct and 
inverse problem in the case of finite-range interaction 
V (r?: a)= 0 (when the R -matrix formalism is valid) are de­
rived. 

THE EXACT SOLUTIONS IN R-MATRIX SCATTERING THEORY 

The energy dependence of R-matrix 
2 

R(E)= ~ - Y.x, (7) 
.\ ~-E 

is determined by an infinite number of constants: E.x,- po­
sitions of resonances, and their reduced widths,y~. In 
terms of these parameters the kernel of the integral equa­
tion (1) is written in the form/51: 

00 ~0 0 0 0 0 

Q(r,r')= ~ y~¢(EA,r)¢(E.\,r')-~y;¢(E.\,r)¢(E.\,r'), (8) 
0 

where ¢ are known solutions of the Schrodinger equation 

*In paper ~/devoted to the inverse problem, the discrete 
parametrization of scattering data by means of the R-matrix 
theory is also used, but the usual integral Gelfand-Levitan­
Marchenko equation is considered. 
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0 0 0 

(¢(a)=O; ¢'(a)= 1) with the reference potentials V (which 
is usyaltY taken to be zero), to which R-matrix parame­
ters E.x,•Y.\ correspond. 

It is obvious from (8) that if only the finite number 
of parameters E.\, Y-.x, , is different from corresponding va­
lues for potential tl, the kernel Q becomes degenerate ("se­
parable")*. 

The most simple form of Q is obtained when only for 
a s~ngle value .\ = .\ 1 , Y.x, *r.\ , ( oyf = yA -}\ and all the 
E _ E ) · 1 1 1 1 1 .x,- .\ . 

2 0 0 0 0 

Q(r,r')= oy.\l(E.\
1

, r)¢(E.\
1

, r '). (9) 

Substituting (9) into (1), multiplying both sides of 
the equation by cP( EA

1
, r ') and integrating it over r ', we get 

an algebraic equation for the function 

F.x, (r)= r¢<~.\ ,r")K(r,r")dr". 
1 r 1 

The solution of this equation together with (1) gives: 
0 0 0 0 

oyf ¢(E.\ ,r)¢(E.x, ,r') 
K (r' r ') = - 1 1 1 

a o o 
1 +o~2 f ¢ 2 (E.x, , r ")dr" 

1r' 1 

(10) 

With this function K we obtain the potential and wave func­
tion¢: 

o 4oyf ¢<E.\ ,r)¢'<~.r) 2(oy.x,2)2 ¢ 4(E .\ ,r) 
V(r)=V(r)+ 1 1 1 + 1 1 (11) 

aoo aoo ' 
1 + o-,f f ¢ 2(E.x, ,r')dr' (1 + oyf J ¢ 2(E.\ ,r ') dr ') 2 

1 r 1 1r 1 

2 
o o ao o 0 

8rA ¢(E.x,,r) J¢(E.\ ,ri¢(E,r')dr' 
o 1 1 r 1 

¢(E,r)=¢(E,r)- -----------
a o o 

1 +oy,2 f ¢ (E.\ ,r 'ldr" 
"1 r 1 

(12) 

0 
The J.ntegrals in (11), (12) for simple V (particularly 
for V=P) can be calculated exactly. 

*The separable kernels give local potentials but not 
separable ones. 
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It is noteworthy that the simplest case (9)-(12) in the 
R -matrix theory corresponds to S -function of the type 
(6) with the infinite number of factors. 

In the gener%1 ~ase, when several parameters EA,yA are 
different from EA,yA there remains only a finite n~er 
of terms in (8) after cancellation of those with EA=EA • 

0 

yA =yA, and for V we get expression (5) with matrix M 
which is calculated within the R-matrix scattering theory. 

MULTICHANNEL EQUATION 

Bargmann potentials in the case of several coupled chan­
nels were obtained by Coxn l . Here it will be done in the 
R-matrix approach. The relevant derivations will be car­
ried out by following the same scheme as in the single­
channel examples above. 

It is convenient to treat the multichannel problems as 
a matrix generalization of single-channel ones. The system 
of the Schrodinger equations is then written in the form 
(h = 1, m = liz): 

-.,b "(K, r) + V(r).,b(K ,r) = K2.,b(K, r), (13) 

~ ~2 ~ 

where ¢, V ,K =E are n x n -matrices (it is assumed that 
n is the number of channels), Kij = ki 8ij ; k; = k~ + ~2i; 
~ i 2 0 is the threshold energy o~f an i -th channel, and n 
columns of the solution matrix ¢ correspond to n linearly 
independent

0
boundary conditions (which we choose so that 

the matrix ¢. corresponding to V(x) = O, be diagonal). The 
inverse-p~oblem ~quations will ~e the same as (1), with n x n 
matrices K and Q. The kernel Q in the multichannel R­
matrix theory has the form: 

~ ~ ~ 

...... 0 " ,.. T 0 0 0 0 0 TO 0 

Q(r, r ')= I <I>(EA, r) f'A f' A <I>(E A' r ')- I <I> (E A , r )f' A f' A <I>(E A , r '), (14) 
A A 

where f is a column-vector of1Partial reduced widths ampli­
tudes y aA in channels a ; and f', the corresponding row ( T 
means the matrix transposition). 

Supposing that only a finite n~er~of reson~nce para-
,.. ,.. 0 0 0 

meters EA, f'A are different from EA, f'A (for V=O) so that 
only N terms remain in (14), Q r.an be written in the 
form n l 
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~ ~ T ~ ~ 

Q (r, r ') = & (r) A & (r '), (15) 

where & is an Nn x n -matrix (a column with N matrices n x n ) 
6 6 0 0 ~ 

with elements expressed by <I> (EA,r), <I>(E~. r); A is an Nn x Nn 
- matrix with elements A p = Bpp'ap and ap is an n x n-matrix 
with elements determined by amplitudes of partial reduced 

. 0 
w~dths yaA , yaA . 

Substituting (15) into (1), multiplying the resulting 
equation from the right by G; (E, r '), and integrating over r' 
(from r up to "a" ) we get the algebraic equation for n x Nn-

A a A A T 
matrix F(r) = (K(r ,r " ) & (r ")dr " : 

A AT ~ a ~ ~ A ~a~ AT 
F (r) + & (r) A ( & (r ') & 'I(r ') dr '+ F (r) A ( & (r ') & (r ')dr '= 0 , (16) 

which immediately gives F (r). Substituting F into (1) and 
taking into account eq. (15) we determine K*: 

~ T A 1 ~ 

K(r, r ') =-& (r)A ~ & (r '), 
1+AI 

~ a ~ ~T 

where I = ( & (r ') & (r ') dr '. (1 7) 

The potential matrix V is obtained by differentiating 
K (r, r ') ~ usil}_g the r~le ~of~ differentiation for the inverse 
matrix M- 1: (M- 1 )' =M- 1M'M- 1 . 

*In order to derive. eq. (17) the following permutation 
rule is used: 

_1 __ I =I--1-
(1 + AI) T l+AI 

(18) 

This can be easily verified: A =All - 1 ; I- 1 (Al)T =I-1I TAT= A, 
where we take into account that matrices I and A are symmet­
ric. So (1+AI)r 1 =I- 1(1+AI) Tand multiplying ·the last equatio~ 
from the right and from the left by I we get: I(1 +AI)=(l+AI) I. 
Multiplying finally this equation from the right by (1 +AI)- 1 

and from the left by 1<1 + AI)T 1-1 we see that the above-men­
tioned permutation rule is correct. 
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APPROXIMATE SOLUTION OF INVERSE PROBLEM 

It is convenient to use R-matrix Bargmann potentials 
for the approximate reconstruction of finite-range poten­
tials(V(r~a)=O),or if V has a known behaviour at r?: a. It is 
more easy to find real parameters EA,yA,corresponding to 
a given sea ttering function S(E), than the complex constants 
an , f3n in ( 6) 181 • The values E A are calculated as zeros 
of the denominator in the R -matrix, expressed in terms 
of S(E) 151 : 

I( a)- S(E) · O(a) 
R(E) = ----------------------------------, 

I '(a)- S(E)O '(a)- B/a I (a)+ B/a S(E)O(a) 
(19) 

where I(a) , O(a) are the incom:j..ng and outgoing waves at point 
r=a (if ~(r~a)=O,then I(a)=e-Jka, O(a)=eika ). And YX are 
determined according to (7), (19): 

y ~ =lim I R(e)(E- EA )I, 
E->EA 

using the Lapital rule for calculating the limit of JL type. 
0 
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