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AByXHYKNOKHHbIE MEpeaaUm B PEaKUMAX C TAMEMbIMI
MOHaMK

BoluncnanTcA ceuenun ABY XHYKNOHHEIX peakyuit nepegau
MEXAY TAKENsMA noHamk B pamkax DWBA. Beuay BaxHocTu adbdex~
TOB OTRAAYM AnRA paHHWX peakuni, pacueTs NPOBOAMNMCE B pamMKax
merona EFR (exact-finite— range). YuuTe@anack TonbKo opHO-
BRPEMEHHAR Nepegava AByX HYKAOHOB. fAByxHyKNOHHbE $OPMOAKTOPE)
nepefay BUYACNANMCL MO MEeTOLY PAa3AOKEHMA NO BasuCHLM by HK-
unaM lirypma-Tuyesunna. PacueTw MPOBOAMNMCE AAA DeaKuyui
4803(180’ 160) 50 (g , 420&(160, 180) 4[{33, 4803{160, 140) 507y,
YcTaHoBneHo, YTo ceuesue PEaKuMn yBenu4YABaEeTCA B ABa-TPpM
basza c ysennuenneMm uvcna BaamcHbix dyHKUMI, UCNONb3YeMbiX
ANA pacuyeTa ABYXHYKNOHHbIX GopMpaKTopoB. Yeenuuenue Bazuca
CooTBeTCTByeT Donee TOUHOMY yueTy BAMAHMA Henpeps BHOro
CNEeKTpa NpM BHUYACNEHMW ABYXHYKNOHHEX GOPMBAKTOPOB.

PaboTa ewnonHeHa B NaBopaTopun TeopeTUueckol DUIU KU
OHAN,

CooSwenne OBbeNMHEHHOrO MHACTHTYTA RAEPHBIX HCCAeAoBauEi. HNy6ea 1979

Ershov S.N. et al. ' E4 - 12893
Two-Particle Transfer in Heavy lon Reactions

Calculations of simultaneous two-particle transfer
cross sections are performed with different overlap factors,
using DWBA with the recoil included exactly. The interac-
tion between the particles, taken into account in the
overlap functions, lead to enhancements of the cross
sections by factors of 2 to 3, when the overlaps are calcu-
lated in a basis with a large number of functions, corres~
ponding to shell model continuum components.

The investigation has been performed at the
Laboratory of Theoretical Physics, JINR.
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1. INTRODUCTION

Heavy-ion induced two-particle transfer cross sections
have been investigated, experimentally as well as theore-
tically, by a number of authors 12/, The aim of such stu-
dies has often been the investigation of pair correlations
in the wave functions of the nuclei, which take part in
the transfer reaction.

These correlations are in general of a collective na-
ture, and the cross sections are thus supposed to yield
valuable information about the static or vibrating pair
field of the nuclei in question’3ﬂ However, although a num—
ber of wvaluable results, concerning the relative cross
gsections of transfer to different states of the final nuclei
has been obtained, the absclute cross sections were in most
cases underestimated by factors of 10 to 1000 from the
theoretical values.

These deviations are seen not only in the nuclei of
large collective pair correlations, but in nearly all two-
particle transfers.

For one-particle transfer, the determination of spectro-
scopic factors by means of DWBA calculations is supported
in an essential way by the successfull applications of DWBA
in the cases of transfer to closed shell nuclei where the
spectroscopic factor is close to unity.

In a similar way, it seems, that before any final con-
clusions concerning nuclei with strong collective pairing
correlations can be drawn, one should be able to get agree-
ment between theory and experiment in the simple cases, where
two nucleons are transferred to a closed shell nucleus.

In heavy ion transfer reactions, this means that either
projectiles or target nucleus must be of the closed shell
type, and the other nucleus must have two particles cutside
a closed shell.

In systems of the latter type, non-collective pair cor-
relations are important, and it has been shown, that they

K]



influence the radial shape of the overlap functions in
a way, such as to lead to,large enhancements in the trans-
fer cross sections ‘1.

These enhancements are nevertheless not by themselves
large enough to remove the above-mentioned discrepancies.
Only when the previocusly neglected two-step transfer. pro-
cesses are introduced alongside with the simultaneous trans-
fer /2:4/ one now seems to be able to obtain agreement bet-
ween theory and experiment. However, detailed investiga-
tions of these problems are necessary, before the use of two
particle transfer in nuclear structure research can be
brought on a solid basis.

We shall in this article concentrate on the first prob-
lem, the two particle overlap functions, and consequently,
we shall consider one step transfer as the mechanism. Since
recoil seems important in these processes, we shall take
it into account exactly.

2. THE TWO-PARTICLE OVERLAP FUNCTION

Since the formalism of calculating two-particle over-
laps has been given several times, see, e.qg., ref. /, we
shall here not derive the relevant equations, but just give
the final results.

Let us consider the special case of a two particle trans-
fer to a closed shell nucleus. The core excitations can be
neglected, and the overlap function satisfies the egquation

4y 3
(—f—mmﬁ Bg) ¥ VT + V() +y Vyp(Fy=Tp ) = B)® = 0. 2.1

We shall here consider only the case that the closed shell
nucleus is so heavy (mass= A.M, where M is the nucleon
mass) that the single particle kinetic energy can be written
as in (2.1) with HN=M7$t1 and T, , I', being the distances
between the center of mass A and the two extra nucleons.
In the general case, where A is not a closed shell
nucleus, the two-particle overlaps will satisfy a set of
coupled equations, where, however the coupling terms are
in many cases smaller than the terms already present in
(2.1) and always of finite range. Therefore, some main fea-
tures ¢f the solution of (2.1) will be found in the general
case, too, particularly as concerns the asymptotic beha-
viour of the solutions. This, in a more exact way shows
the necessity of finding precise scolutions of the problem
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of a closed shell plus two nucleons, before more complicated
problems can be attacked.

The main difficulty of solving equation (2.1) consists
in the fact, that the core-particle Hamiltonian has both
a continuous spectrum and a discrete one, and that when V12
is taken into account, the overlap function ® will contain
components from state of both the discrete and the conti-
nuous spectrum. The neglect of the continuum admixtures
being ever so justified in many appreciations of the shell
model, is disastrous in transfer calculations. This is
clear from the fact that the amplitudes of these reactions
get their main contributions from the regions of space,
where the bound state components are falling off exponen-
tially.

pifferent ways of including the continuum components
in the solution of (2.1) have been suggested /5/. However,
only the two methods mentioned below have proven themselves
efficient in including such components where both particles
are in the continuum, and in two particle transfer where
such components play an essential role.

One’ method, introduced by Ibarra, Vallieres and Feng ¢/
consists of expanding in terms of harmonic oscillator
eigenfunctions.

The main disadvantage of this method is that each of
these functions fallsg off very fast, as EXP(—Cr%),where ry
is the core-particle distance, and in general a very large
number of components is needed in order to rxeproduce the
correct behaviour of ® for large rI;-values. '

' The othér method, suggested by Bang and Gareev 7/ con-
sists in expanding ® in a set of products of Sturmian
wave functions, i.e., in the antisymmetrized, angular-mo-—
mentum coupled products of solutions of

2
(-—étln—lA+aivs(r)-Es)¢i=o, | (2.2)

where Eg is a prescribed energy, whereas the eigenvalue A;
corresponds to different well depths.

This basis, which, like the one above, contains only
a discrete set of functions, has the advantage, that the
value of E; can be chosen so, that all components approxi-
mate the correct asymptotic shape. This will in general
lead to a particularly fast convergence of this type of
expansions, as was shown in”8/.

So we write

® =3 ®mo wn(r'l)"&m(rz)' ' . o :(2'3)
| 5



When we insert (2.3) in (2.1), multiply from the left
with %B*(pP¥¥15) and integrate over Ty and fp we get,
using (2.2) and the weight-orthogonality of the Sturm-
Liouville functions, the matrix equation /1/

e, (Eg,+Egs, ~ E)<kl mn> +

+y<mn|V |kl > + 2.4

+()\1—1)<ff|n>23k +(,\2—1)<k1m>183n } =0,

4]
where we have used V = Ve .

The lack of a Moshinsky-type transform for the Sturmian
functions is not a serious drawback, since many interactions
directly have simple expressions in terms of Iy and fr,.

The asymptotic form of @, i.e., the form when fflf.ffgh
or (1| is large, was investigated in”’%’/. In general, it is
determined by the binding energies, i.e., by the binding
of one particle, and of the two interacting particles to
the core. In order to get realistic overlap functions, it
is therefore necessary to adjust the interactions in (2.1)
in such a way that these binding energies are identical
to the exact ones. With identical particles, this means,
that V must be chosen so as to reproduce the one-particle
energy, whereas the interaction between the particles is
adjusted to get the correct two-particle binding energy.

In practice, this is in both methods done by the choice of
the coupling constant, y in (2.1).

Still, with the Sturmian method, E; and V, must be chosen,
In principle, any E <0 can be used, but the fastness of
the convergence is strongly dependent on this choice. It
was shown in‘8/, that in the region T 'y which is the
most important for simultaneous transfer,

o+t
® - exp(-x—n)
ne, 2 ve (2.5)
F.q
2m

for a class of overlap functions, which include those con-
sidered in this paper.
This corresponds to the choice
E
E, =~— {2.6)
S 2
a choice, which also is useful in the sense, that only
one sort of Sturmian functions appear, and that antisymmet-
ric ®s are easy to construct. .



For calculational reascns, it is most convenient to
choose the V_, of equation (2.2} identical to the V of
equation (2,1). It should be noted, that in that case, the
‘convergence of the Sturmian expansion is not so fast in re-
gions where [ry|>>|r,] or |l‘2[>>|11|/8'9/.

This may play some role for sequential transfer, but
in the one step process, treated here, it seems to be of
minox importance, as is also seen from the fast convergence
of the cross sections with enlargement of the basis, shown
below.

The Pauli principle is in these calculations taken into
account in an approximation which is consistent with the
assumption of an inert closed shell core. The occupied eigen-
states of the core are calculated, and the Hamiltonian of
{(2.1) is diagonalized in the space, orthogonal to these
states. This was done by adding a term g 2 lug><ugl, 8-

to the Hamiltonian, where hJ > are the forbldden core
states 7/ With the oscillator expansion /®/, the forbidden
states were approximated by oscillator states with the
same guantum numbers.

With the form factors calculated in the way just indi-~
cated, the cross sections were calculated in the distorted
wave Born approximation, using the form factors

(r ,r))h

= *
f=fdri®y (. r2)§V(r1)+V(r2)E¢inmal N 2.7

In this expression, V may be chosen as the interaction
between the particles and any of the two cores (post-prior
symmetry).

In this connection, the following should be noted. In
many calculations, the basis functions (2.2) are used in
the calculation of the form factor (2.7) ("well depth pro-
cedure") with given expansion coefficients, often found by
some method, different from equation (2.4). One may, e.g.,
use coefficients calculated in the ordinary shell model,
multiplied with such Sturmian components which have the same
quantum numbers (i.e., limiting the components to such g.n.
which correépond to bound states of V). Such methods may
be thought of as good or bad approximations to the real
Sturmian calculation of eguation {2.4).

It would, however, be vary dangerous to interpret them
as if A,V was the core interaction of a particle with guan-

7



tum numbers n; , £; , j; and then use A;V with such com-
ponents in (2.7) {and thus in the transfer matrix elements)
instead of V. For some small components one may easily have
A;j 2 &, and if these components play a role in the transfer,
they get large, spurious enhancements. A similar effect,
but may be even more dangerous, will be seen in the sequen-
- tial transfer amplitude.

This warning seems appropriate, since DWBA codes often
have overlap factor calculations built into them, and at
least one such code in common use 19/ combines the overlap
and transfer calculations in the above-mentioned erroneous
way.

3. CROSS SECTIONS

The overlap factors for a number of nuclei were calcu-
lated, using the equations (2.4}.

The single particle potentials used in these calculations
have the form

VO = VoM + Vg . (), (3.1)
where
_ _ 173 -1
Vc(r)..VC (1+exp(r rOA )/ &) +Vcou1 m, (3.2)

h 21 d 173 -1
VS.O.(r)=VS.0. (mﬂc ) TT'[1+EXP(I_IOA )/al . (3.3)

The parameters of these potentials and particularly the
well depths were, as mentioned above, chosen so as to yield
the correct binding energies of the corresponding odd sys-
tems. These parameters are given in table 1.

The two particle interaction was chosen as

e Ht '

Vlz(l’) =y(a + balaz) _;_l__"' . (3.4)
The parameters 4,, band u were chosen in accordance
with earlier published work ‘1/, y was determined by fitting
the experimental two-particle binding energy by the above
mentioned procedure. Here g = Q.71 fm™!, a= 0.25,b = 0,75

for 80,2 = 1.0, b=0 for the other nuclei.

The two-particle overlaps were used tc calculate two-
particle transfer cross sections for the processes




16 48 16 14 . 50

8ca 20, °0) *ca, **ca(*®0, o) “caamnd *oa’0, o)
(ground states in all cases).
The optical potentials used in the DWBA calculations
were of the usual type

I—TR(A¥3+ A;B) -1
o+ -
aR (3.5}
- rI_(Alfs +-A12/3)
4

Voptical = V()(1 + exp[

d -
+ W——(1+exp] pt.

dr

The parameters of these potentials were chosen so as
to reproduce the corresponding elastic cross sections in
entrance and exit channels 711,12/, These parameters are given
in table 2,

Table 1

Parameters for single-particle potentials

Yo Vs.o. Ty & fc
(MeV) (MeV) (fm) (fm) (£m)
15y - 55.76 5.0 1.24 0.75 1.24
0 - 53.41 5.87 1.24 0.65
#10a - 54.63 6.0l 1.24 0.65
¥Ca - 48.26 8.2 1.24 0.65
98 - 65.05 5.5 1.20 0.65 1.20,
Tab;e 2

Reactions analyzed and corresponding optical parameters used

Epay Vy g ap, W ay
(MeV) {MeV) (fm) (fm) (MeV) (fm)  (fm) Ref.

~

4204160, 180) 49Ca 56 35.9 1.35 0.432 1015 1.272 0.286 11
1 (0.960)
805180, 160y 50Ca S50 97.0 1.210 0.497  59.7 1.140 0.442 12

48cy160,140) 50Ti 56 33.9 1.344 (o.gég 110.2  1.274 0.280 11
0.850) _

When there is double entry, those in parenthesis are used
for exit channel.
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Fig. 1. The cross sec—
tion of 4203.(160,180) 4a
calculated with diffe-
rent numbers of Stur-
mian components in the
form factor basis:

S - small, I - inter-
mediate, L - large ba~
sis (cfr. Table 3)

L= 2.

‘g:i

-
98 ¢ pbvan)
!
10’__
0L
10°L
T oail . . X . .
v v 30 w0y S50
'10 Cm_

{Fig. 2. The cross sec-
tion of *%a(1%0, 180)40c,;
the full curve corres-
'‘'ponds to L = 4, the
dashed one to L =2

(cfr. text). Basis L,



The angular cross sections, obtained in these calcula-
tions are shown in figs. 1-7.

The dependence of the cross sections on the number of
components in the basis is shown in figs. 1,4 and &, the
meaning of which is further elucidated in table 3.

In the simultaneous transfer, it is practical to trans-
form the two particle overlaps ®(ry,r,) to functions of
the relative coordinate ry-rfy and of the centre of mass of
the two particles, relative to the core. In the latter co-
ordinate, only comparatively small values of the angular
momentum will contribute appreciably to the cross sections,
as shown in figs. 2 and 5, where curves for different values
for L are given, where L is the maximal value of the sum
of orbital angular momenta (1)} in the initial and final
channels.

It is seen, that the change of the cross section obtained
by enlarging L further than L =2 is small further than
L =4  negligible.

Figure 3 illustrates a point mentioned in section 2.
when the correct V in the transfer matrix element is re-
placed by AiV, some components get large, spurious, en-—

Table 3

Enhancement of cross sections due to extension of basis

B .
Cross Sections {MeV} Dimension Peak"('u,b/sr) Ephancement
50 3 - 3 (S} 100. 1
48. 18 . 16 .. 50
CaC’0. 0) " Ca 23 -20 (1) 165. 1.65
30 -28 (L} 181. 1.81
56 13-4 (8) 2.22 1.
a2, 16, 18 .. 40
a
Ca(™0, 0y 0 18 -22 (I) .55 2.95
30 -28 (L) 7.26 3.27
56 4 -4 (S) L3151
16 1 50, 23 -22 (I) .510 1.62
8e,%0, Moy *'m
28 =28 (L) .556 1.7

The first number in column ''dimension" gives the dimension
of the projectile overlap, while the second is for the
overlap of the heavy nucleus.
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10?

Fig. 3. The cross sec— F o ds

tign of *2Ca(‘0180)40Ca. [\ g wunsr!
The full curve is cal~ E
culated with the cor- !
rect potential in the '.I
transfer potential, ,
the dashed with the 10
well depth potential.

b

- . “%af®0,%01“%Ca Ogg,
E\of, S6MeV

- 10

10°

103
'g:—l}lblsr}

-

20! 30. . “0. !“ﬂl e‘o.
o Bcm,

A “Cal®0%0)%Ca 0y, 0°
\ Elub" S0OMeV

102

10!

Fig. 4. The cross sec-
tion of:“Ca(lSO,lg’O) 0¢a.
The meaning of the
curves as in fig. 1.

10°  20°  30°  40°  50° 60
12 - ecm



ng4ﬂhé“' S Fig. 5. The cross section of
[ : 48Ca(180, 160) 50Ca.  The mean-
48(q (0050 1 ¥ca 03s. ing of the curves as in fig.2.

Eiub'SOMeV

10° . . . \ \
10° 20° 30 L0 s0* 60*
Bcm.

0L

E ﬂ%1pmérl

“8Ca (60)4C 1%0Ti 0f .
Etgb =56MeV

100L!

Fig. 6. The cross section of
480a¢1%0, 1¢)%0Ti. The

meaning of the curves as
in fig. 1.

10—1_

102 . . . \ . A
10° 200 30° i0* 50* 1y
8cm. - 13




‘ Fig. 7. The cross section of
103 s

48Ca (180, 160) 50Ca, The full
5%0“’/5” curve is calculated with the two
particle interaction of the text,
) the dashed curve without spin~spin
; 48Co(0, %0 ) Fcq 0§s interaction in 180.
Eigh™ 50MeV '
102
k
101&
100 . . . .

0°  20°  30°  40°  S0°  60°
' Ocm.

hancement factors, and the cross section is enlarged by
a factor of two.

The dependence of the cross section on the residual in-
teraction is to a large extent a question of the asymptotic
form of the overlap function, and the details of the inter-
action are of smaller importance. This is illustrated by
the fact, that Feng et al.®/ in their most carefully cal-
culated case obtain a similar enhancement as ours, using
very difficult interactions. Nevertheless, this interaction

does play a role, and in fi%. 7 we see, that the neglect
of & spin—-spin term in the interaction leads to a cross
section, which is smaller than the previous one by 15%,

In the figures, as well as in table 3, the small basis
(8 containg Sturm-Liouville components with the same quan-—
tum numbers as the shell-model states, i.e., the non-occu-
pied bound states in the potential V- In a sense, this ba-
sis therefore represents & self-consistent use of the well
depth procedure, and actually, the results obtained with
this basis are not very different from what one gest from
the usual well depth procedure, with coefficients calcu-
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lated in the shell-model {(where the coupling constants are
generally also chosen so that the binding energies are

well approximated). This well depth procedure already re-
presents a large step in the direction of including conti-
nuurm components, in comparison with the simple shell model.
It is seen from the figures, that the main effect of in-
cluding further continuum components is an enhancement of
the absolute cross sections, which seems to reach a satura-
tion, when the basis, going through "1, is enlarged to
that, which is called L.

The meaning of the letters 5, 1 and L for each case
is given in table 3, where also the enhancement factors are
shown.

It is interesting to note, that the enhancement factors
of the processes 42Ca(160,130)4003 and 4803080.160)500a
differ by more than 100%. This contradicts the assumption
of Feng et al.”?/ that the emhancement factor connected
with the oxygen should be dominating all transfer reactions
of this type.

4. CONCLUSIONS

We have in this work considered different two-particle
transfer processes in the approximation of 1 order DWBA -
simultaneous transfer.

This approximation is in itself not precise enough to
permit a successful comparison with experimental data.

The large enhancements, found when the continuum con-
tributions to the coverlap functions are taken into account,
nevertheless surely have a physical significance, as can be
seen by comparison with the work of Feng et al. =4 These
authors include sequential transfer in the calculations,
but. treat the enhancement in the one~step form factor in
an approximate way. In a special case, though, their en-
hancement is nearly correct, and with that, together with
the sequential transfer, they obtain a complete agreement
with the experimental cross section.

This 100% agreement is to our mind not so significant,
since the result is sensitive to many details of the calcu-
lations which still have to be investigated. What is signi-
ficant is the fact, that the two effects, the overlap en-
hancement and the inclusion of sequential transfer, are of
comparable order of magnitude, and, taken together, lead
to cross sections of the right order of magnitude.

The neglect of the interaction-enhancement for the two-
step amplitude 2/ seems not fully justified. Together with
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the fact, that our enhancement factors are in some cases
larger than supposed by Feng et al., this may lead to theo-
retical cross sections, which are still larger than those
of ref. .

This could either give room for spectroscopical factors
<1, or be compensated by other corrections.

One particular correction, stressed by Pinkston con-
cerns the use of coordinates and masses in the form factor
calculations. With a finite core mass, A‘M, the three body
problem should be solved with Jacokian coordinates and cor-
responding reduced masses. Often, the overlap functions are
calculated for an infinite A (the m in eguation (2.1) will
then be the nucleon mass). In the present approach, however,

where m in equations (2.1) and (2.2) is M Aﬁl , the neg-
lected terms in the Hamiltonian are small. We shall in later
work return to the above-menticned questions.
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