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1. INTRODUCTION 

At present the description of three-nucleon systems 
within the Faddeev equations is not a complicated task, 
except for the problem of continuous spectrum with realis
tic NN -interaction. At the same time, the solution of the 
four-body integral Faddeev-Yakubovsky equations / 1/ even 
with the simplest potentials encounters great difficulties, 
and there are only a few relevant papers. The binding ener
gies of the ground and first excited state of 4He for the 
separable Yamaguchi NN -potential were found from the Fad
deev-Yakubovsky equations by the Bateman method~/ and by 
the Gilbert-Schmi~t method~/ . The latter was also applied 
for the description of discrete 4He states for the case 
of the Malfliet- Tjon potential~/. The nuclear vertex 
constants (coupling constants) ~/ for the vertices 
a ... 3H( 3He) + p(n) and a -+ d + d were calculated in paper A> / 

by solving the Faddeev-Yakubovsky equations for the Yama
guchi potential. 

As for the continuous spectrum of the four-nucleon sys
tem, papern l appears to be the only paper in which the 
Faddeev-Yakubovsky equations (for the Malfliet - Tjon po
tential) are used below the d + d threshold. Besides, 
n3He- and n 3H -scattering lengths were calculated by 
solving the Faddeev-Yakubovsky equations for the Yamaguchi 
potential in paper ~/. 

A direct solution of these equations above the d + d 
threshold is a very complicated problem which has not been 
solved yet. On the other hand, the four-nucleon system may 
provide more complete information about NN -interaction 
and about the efficiency of different theoretical approaches 
as compared to the three-nucleon system. The attempts were 
made to describe approximately the scattering and reactions 
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in the four-nucleon system within the framework of the 
K-matrix formalism 19·12/ . In particular, in paper / 11/ the 
free terms of tne Faddeev-Yakubovsky equations calculated 
for the Yamaguchi potential were used as the K-matrix 
elements for different binary processes in the four-nucleon 
system. 

In this paper we have used the multichannel K-matrix 
formalism to study the two-particle processes in the four
nucleon system, K-matrix elements being approximated by 
the amplitudes of the Feynman diagrams corresponding to 
the one- and two-nucleon exchange mechanisms. To calculate 
these amplitudes we have used the wave functions of nuclei 
3H (or 3He ) obtained earlier / 13,14/ by solving the Fadde
ev equations for three different NN-potentials. The cal
culat~d differential cross sections are in satisfactory 
agreement with the experimental data. We have also analyzed 
the dependence of the results on the form of NN-potential 
and the role of channel coupling and the singlet NN-pair 
exchange mechanism. We have not used any free parameters 
in our calculations. 

2. K-MATRIX FORMALISM 

In this paper we use the same normalization of matrix 
elements of K-, S. and T -matrices as in the papers /11. 15(I:n 
what follows we take into account only the two-particle 
channels in the four-nucleon system. We use the central 
potentials and do not take into account the Coulomb inte
raction and other effects violating the isotopic invariance. 
We consider only the s -states of nuclei 2H , 3H , and 3 He. 
In such an approach the conserved quantities are the chan
nel spin S , the total isospin of the four-nucleon system 
T , and the channel orbital momentum f • The Heitler equa
tions connecting the partial matrix elements of the T-ma-

trix (T ~Jf ) and K-matrix (K~:f ) for the transition i-+ k 
have the form 

STf STf . n STf STf 
T ik (Ek)~Kik (Ek)-lj!-1Pi Kii (Ei )T ik (Ek)' (1) 

where pi= 1-'j p / 2rr, 1-' i and Pj are the reduced mass and 
relative momentum in the channel j , E i=p}/21-'j• n is a num
ber of opened channels. 

The differential cross section of the reaction Ak+ X k-+ 
-+ Ak +Xk for unpolarized particles is 
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-~~~~-- = ~i:_~~--- ~~- ___ _}_______ ~ f2St-1)(T A;. rAj T Xj r Xi \ Tr ) x 
dO 4 77 2 Pi (2JAi+1X2Jxi+l)STT 

x (TA· TA· Tx . Tx .I T'r)(TA T A Tx Tx \Tr)(T AT A Tx Tx \T'r) X 
1 1 1 I k k k k k k k k (2) 

ST ST' ]* 
x Tik(Ek,Zik)[Tik (Ek,Zik)' 

ST 00 STf 
Tik (Ek. zik) ~f !'o(2f + l)T ik (Ek )Pf (Z ik ), 

where P (Z)are the Legendre polynomials, Zik~cos8ik ,8ik is 
the scattering angle in the CM -system, Ja, Ta and ra are 
the spin, isospin and isospin projection of a nucleus a 

and r~rAi+rxi ~rAk+rxk· Note, that the K-matrix is symme-

tric KSTf ~ K STf . 
IJ Jl 

Equation (1) is a system of linear algebraic equations. 

Omitting the indices 
down their solutions 

S,T and f for simplicity, we write 
at n ~ 1 and n ~ 2. 

T 
11 

= K 
11 

I ( 1 + ip 1 K 11 ), 
(n = 1), 

T 11= [(1 + ip2 K22)K11-ip2 K;2]/D, 

T22= [( 1 +ip1K11 )K22-ip1K:2]/D, 

(3) 

(4) 

T12= K12 / D, D=(1+ip1K11)(1+ip2K22)+p1p2K;2' (n=2). 

3. THE CHOICE OF K-MATRIX ELEMENTS 

In the four-nucleon system there are two-particle chan
nels: N + T (channel 1) and d + d (channel 2), where N=n,p 
and T= 3II , 3He . We proceed from the assumption / 14/ that the 
main contribution to the K-matrix elements which are consi
dered as analytic functions of Zik is given by the nearest 
to the physical region singularities of these functions 
corresponding to the simplest Feynman diagrams. As is shown 
in /15/ the position of the nearest singularities in Z ik 
and their power (i.e., residues at poles or discontinuities 

on cuts) forK- and T-matrices coincide. 
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In accordance with the aforesaid we choose as K-matrix 
elements K111N+T-+N+T I and K 121N+T .... d+d l the ampli
tudes of diagrams of Figs. 1 and 2, respectively, which co 

• I 

i 

Fig.1 Fig. 2 

correspond to the two- and one-nucleon transfer. As in pa
per 1111 we put K 22= O; this is somewhat justified by the ab
sence of Born terms for the process d + d .... d + d in the 
Faddeev-Yakubovsky equations. 

Let us consider the amplitudes of diagrams in Figs. 1 
and 2 in more detail. We proceed with the diagram of the 
two-nucleon exchange (Fig. 1). We shall consider a transfer 
of the correlated (interacting) nucleon pair. In this case 
the diagram of Fig. 1 can be written as Fig. 3 where f23is 

Fig. 3 

the scattering amplitude of nucleons 2 and 3, R l = R\12)+ R \13): 
= R1- R~23>is the vertex function for the decay (123) .... 1 + 2 + 3 
with the subtracted terms which correspond to the Faddeev 
component ending with the interaction of nucleons 2 and 3, 
and analogously R~=R':f4>+R':4:bR2 -R':f3> is the "truncated" 
vertex of synthesis 2 + 3+ 4 ->(234) which contains no terms 
begining with the interaction of 2 vii th 3. 

Note, that in the case of diagrams of Figs. 1 and 3, it 
does not matter whether they are the four-dimensional non
relativistic diagrams or three-dimensional "Schrodinger" 
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diagrams, si~qe the analytic properties oh
6
jhe vertex 

functions R <t;~ and f ij are such (see ) that the four-
dimensional form is reduced to the three-dimensional one by 
integrating over the energies of virtual particles. This 
integration is performed by calculating the residue at pole 
corresponding to one of the virtual lines 2 or 3*. In the 
three-dimensional representation the vertex functions R(ij) 
are proportional to the corresponding Faddeev components 
~ij of the three-particle wave functions. Including the 
scattering amplitude f23 in Fig. 3 and virtual lines 2 
and 3 entering into it from left (right) in the left (right) 
vertex and using the Faddeev equations, we obtain the dia
gram in Fig. 1. The left (right) vertex of this diagram 
corresponds to the quantity R< 231'R(23)}, where_as the right 
(left) vertex corresponds to R<f44"i~34)(R~124-R~1S>).Finally the 
amplitude of the diagram in Fig. 1 can be written as 

6 23 .... .... 
M 1 = ----)3 .f ~ ( q 23 ' Q 1 23 ) [l T 

(2rr ' 

.... 2 .... 2 
q 23 Q 1.23 

+ ------ + --------- ) X 

mN 4/ 3mN (5) 

24 .... .... 34 .... .... .... 
X[~ (q24' Q3,24 ) + ~ (q34 'Q2,34 ))dq23 • 

ij ........ 
Here ~ (q,Q) ar_e the Faddeev components of the wave func-
tions of the th~ee-particle bound states, q1.=-}Ck 1-kj), 

.... 1 .... .... .... .... J 
Q1 .k =--[2k.-(k.+kk)]are the Jacobi momenta, k 1. is the mo-

.J 3 I J 

mentum of nucleon i , l T > 0 is the binding energy of 3H 
(or 3He), and mN is the nucleon mass, factor 6 il?. due to 
the identity of nucleons. The wave function ~ =.~ ~ IJ is 

-6 .... ;t 2 .... ,}J 
normalized by the condition (2rr) Jl~(q,lol)l dq dQ = 1. 

In Eq. (5) the spin and isospin variables are not 
written explicitly. Introducing the spin <x> and isospin (~) 
wave functions, one can write ~lj in the usual form 

ij , & # , ~,, 
~ = v ij X ij "' ij - uij X ij "' ij ' (6) 

where the functions of momentum variables v1j and u1j corres
pond to the triplet and singlet spin states of a pair of 

*Note·; that for arbitrary diagrams in the four-nucleon 
system such a simple connection between three- and four
dimensional formalism does not hold. 
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nucleons i and j (we take into account the even states 
of a nucleon pair only) • 

Taking the amplitude (5) as the matrix element K11 for 
the process N+T-+N+T, we finally have 

KSTf =_!_ t KST,(Z)P (Z)dZ, 
11 2 _ 1 11 e 

KST (Z)=M = 12 I. W(llzlhY2Y2;jS)W('hY2Y2Y2; t'I)R (j)(Z), 11 
l {jt)=(01),(10) 

where 

(7) 

(1) 1 ... ... ... ... ... ... ... ... ... 
R = 2(2~)-3 Jdq23 v(~3,Q1.~L(q23'Q1,23)[v(q31'Q2,31 )+ 3 u(q31 ,Q2,31 )], 

(8) 

R {O) = -2(-~)3- fdq23 u (q23 ,Q 1,23)L(q 23 ,Q1,23)[u(q31 'Q2,31 )+3v(q31' Q 2,31 )], 

L(q, Q) = £T 

... 2 "Q2 
q 

+ ---- + -------- ' 
mN (4/ 3) WN 

_,-+ -+ -., 
Z = pp ' / pp ', and p and p are the momenta of incident and 
scattered nucleons in the c.m.s. system. The terms with j=l 
and j =0 in (7) correspond to the transfer of a nucleon pair 
in the triplet and singlet spin states. 

Expressions (7) and (8) correspond to the transfer of 
the correlated nucleon pair and comprise, in particular, 
the deuteron transfer. Various mechanisms of the transfer 
of a noncorrelated pair, which do not enter into the K-ma
trix, are partially taken into account in T-matrix due to 
the channel coupling expressed by equations (1) and (4). 

By taking into account the identity of deuterons the 
amplitude of the diagram in Fig. 2, which is used as the 
K-matrix element K 12 • can be written in the form 

STf 1 1 ST 
K 12 =-

2
- { K12 (Z)Pe(Z)dZ, 

-1 
- - -

ST 2v'3 mN WTdN (Q)wd(q) WTdN(Q)w d (q) 
K (Z)=- ------- W(Y21 Y2 1; 18)1----------------+(-1) ------------------1, 

12 pp# ~-Z t;;+Z 
(9) 
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where p(l)') is the relative momentum in the initial (fi
nal) state, w TdN is the vertex function for the decay 
T ... d + N 161 , wd is the vertex function for the process 

d ... p+n, Q2=-}p2+p'2_ -tpp'Z , q2=p2+J4p'2 -pp'Z, Q2, 

and q 2 differ from Q2 and q 2 by the substitution Z -+-Z, 
£ d > 0 is the deuteron binding energy, Z = P p' I P P ', and C:: 

is the position of the pole singularity for the diagram 
in f!g_, __ ~ 

c;: = _!_ ~ + _!_ L + ~~~~·r_-=_~-~ 
3 p 4 p PP, • 

(10) 

The vertex functions wTdN 
formulae 

and w d are defined by the 

'I Q2 d... 1 ... 3 ... ... Q 
W (Q)=-(..R.. ---- + £ -£ ) { --~{v(q,Q)+-V(\-q + -Qj, \q- -\)+ 

TdN 4 mN T d (211)3 2 2 4 2 
(11) ... ... 

3 q 3 ... ... Q 
+-U(\--+-Q\ jq---\))tj> (q), 

2 2 4 ' 2 d 

. q2 
w d < q) =-<-Ill- + ( d ) t~> d < q) · (12) 

where 4> d (q) is the deuteron wave function ( {\t/>d(q)\
2
dq/ (21T) 

3
=1). 

In our calculation we have used the matrix elements M1 
and the vertex functions w TdN and w d obtained earlier 
in paper/14/ by solving the Faddeev equations for three 
different local NN-potentials, the Malfliet-Tjon (MT), 
Darevich-Green (DG) and the modified Bressel-Kerman-Ruben 
(BKR) potentials. 

4. DISCUSSION OF THE RESULTS OBTAINED 
FOR THE SPECIFIC PROCESSES 

The differential cross sections for the elastic scatter
ing and reactions in the four-nucleon system have been 
calculated for several values of energy for MT, DG and BKR
potentials. The role of the channel coupling and of the 
singlet NN-pair exchange mechanism has been analyzed for 
different variants of calculation. Besides the calculations 
taking into account both the channels N+T and d+ d,the 
variant 1, to calculate the differential cross sections of 

9 



the elastic p 3He and p3H scattering and reaction (p, n) 
we have used the one-channel approximation, the variant 2. 
To evaluate the contribution o~ the singlet pair exchange 
mechanism within the above two variants, we have neglected 
the singlet state of the transferred nucleon pair in the 
K -matrix element for the process N+T -+N+T (variants 3 

and 4). In this case, in formula (7) instead of the sum in 
j=0,1 there is only one term with j = 1 corresponding to 
the NN-pair exchange in the triplet state. In all the 
calculations we have taken into account partial waves with 
e ~ s. 

3He(p,p) 3He,Tn this case the states with S = 0.1 and T=1 
are possible, the channel d+ d is absent and the variants 
1 and 3 coincide with the variants 2 and 4 (one-channel 
scattering), respectively. 

For this process we have calculated the differential 
cross sections with three NN-potentials at the lab. proton 
energies EP = 9. 75, 13.6, 16.23, 19.48, 30.6 and 49.5 MeV 
in the angular range 60-180 in the c.m.s. 

\"le have chosen this range since the K -matrix elements 
we have used for elastic scattering N + T -+ N + T are singu
lar in cose, when cose <-1 and cannot reproduce the ex
perimental cross sections in the forward hemisphere. We 
also have disregarded the Coulomb interaction which is es
sential at small angles. The scattering differential cross 
sections calculated in the K-matrix approach are plotted 
in Fig. 4 for the incident proton energy 9.75, 19.48, 
30.6 MeV for BKR, DG and MT potentials. As one can see from 
Fig. 4, the theoretical curves are in a qualitative agree
ment with experiment at angles · ec.M .> 120° . As in the case 
of the Yamaguchi potential, the best agreement with experi
ment is achieved at E = 30.6 MeV. At all energies theoreti
cal curves have a steeper rise for the backward angles and 
lay lower than experimental points at angles e ~150 °. 
The theoretical differential cross sections car~lated for 
different NN-potentials do not differ much from each other, 
this difference growing when the energy increases. 

Figure 4 also shows the results of calculation in the 
T-matrix Born approximation for ("Born" curves)* the MT po
tential.At E =9.75 MeV the Born curve is rather higher than p . 

*In the Born approximation the amplitudes of diagrams, 
Figs. 1 and 2, are taken as T-matrix elements for corres
ponding processes. 
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the K. -matrix curve and experimental points. As was to be 
expected, the difference between the K-matrix and Born 
curve decreases when the energy increases. 

In this Figure the dashed curve represents the theoreti
cal cross sections calculated in the K-matrix approach 
neglecting the singlet pair ·exchange in the K-matrix ele
ment, K11 (variant 4). For all energies, the differential 
cross sections calculated without that exchange are lower 
than those with it throughout the whole angular range con
sidered. The neglect of the singlet pair exchange dimini
shes the calculated cross sections at Oc.M. = 180° by 
20-25% throughout the whole energy interval for all three 
NN -potentials. 

~(p,p) 3H. In this case S= 0,1 and T = 0,1 and both the 
channels, p + 3H and d + d are allowed. For the elastic 
scattering 3H + p -+3H +P the nucleon pair can be transfer
red only in the singlet state therefore the negleft of the 
singlet pair exchange in variant 3 results inK~~ =O,and 
the nonzero differential cross section in that case is 
completely due to the coupling to the d+ d channel. In 
Fig. 5 we have plotted the 3H (p, P) 3 H differential cross 
sections calculated i'n different variants at Ep=13.6 MeV(a) 
and Ep= 19.48 MeV (b) for three NN potentials. The theore
tical curves are in satisfactory agreement with experiment 
at e

0 
~120 ° , and even in good agreement at 19.48 MeV. 

Note t~at for the Y~~aguchi potential there was no quanti
tative agreement /11/, Curves I are the cross section in va-
riant 1, i.e., calculated with taking into account both 
the channels, for the potentials MT (solid curve), DG 
(dashed curve), and BKR (dashed-dotted line). It is seen 
that the curves for different potentials do not differ much 
from each other. Curves 2 are the cross sections calculated 
in the one-channel approximation (without the d+d channel), 
and curves 3 are calculated with the channel d + d and 
without the singlet pair exchange in the matrix element 
K 11(K~ie =0). Curves 3 are rather higher than curves 2 and 
more close to the exact calculations (curves 1). This means 
that the ~(p, P) ~ scattering in our model is mainly due 

· to the coupling to d + d channel and depends weakly on 
the magnitude of the K-matrix element for the elastic 
NT-channel. Therefore, the neglect of the d+d -channel 
decreases the differential cross section at 180° by a fac
tor of two as compared to the exact calculation, and the 
neglect of K11 results in the 20% - decrease of the cross 
section only. In order to understand the reason for such 
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a dependence, let us consider the formulae (4} which express 
the partial T-matrix elements in terms of K-metrix for 
two channels taken into consideration. In our case N+Tis 
channel 1 , and d + d is channel 2, K22= 0 and formulae ( 4) 
take the form 

Tll =(K11-ip2K~2)/D, T22=-ip1K:/D, T12=K12 / D, 

2 
D = 1+ip1Ktt+plp2 K12 

Hence 

(13) 

2 2 2 2 2 ReT 11 =K11 /j Dj, ImT11 =-[p 1K 11 +p2 K 12 (1+p1p2K12 )1/I DI, 

IDI2 =p2K2 +(l+p p K2 )2: 
1 11 1 2 12 

( 14) 
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From numerical calculations it follows that for f = 0 

JS1 I P2 Ki2 « 1. P1 P2 K i2» 1. (15) 

These conditions will be referred to as the strong coupling 
of channels (SCC) • If the conditions of sec are satisfied 
then the relation (14) gives ImT11"'-p1 1 and IReT 11/ImT11 1 == 
==ip 1KJ 1/ p1 p2 K[2 1«1and ImT 11 does not depend on K 11 andK 12 
and ReT 11 practically gives no contribution. Our calcula
tions show that at S = T = 0, f = 2 ~ e.g. , the sec ( 15) are 
worse fulfilled and we have approximately 

ImT 11 "'-(p 1 +1/ p2 Kf2)-1 , IReT11 / ImT
11

1/ "'0.14. 

However, for f = 0 , as 
on K12 rather than on 

fO 

, 
so 

40 
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Cll 
~ 
~ 

10 

fO 

'Hf,..}'l!e 
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K11 and ~2 .but ReT 11 is much smaller than lrnT11.Thus, the 
weak dependence of differential p 3H scattering cross 
sections on the singlet-pair exchange and strong dependence 
on the coupling to the d + d channel is caused by the weak 
dependence of partial T 11-amplitudes on matrix elements 
K 11 and strong dependence on K 12 (that takes place, as 
is seen, when the conditions (15) are fulfilled). 

3 H(p, n) 3He. Figure 6 shows the differential cross 
sections of reactions 3H(p,n )3He calculated in all four 
variants at proton energy 13.6 MeV for the BKR potential. 
With the d + d channel taken into account the theoretical 
curves qualitatively reproduce the experimental rise at 
Oc.M. ~ 120° but exceed the experimental values by about 
a factor of two. All the conclusions concerning the singlet 
pair exchange mechanism and d +d channel drawn for p3H scat
tering remain probably valid, as well. 

D(d, p) 3 H. Figure 7 shows the results of calculation 
of differential cross sections for reaction D(d,p)3 H at 
deuteron energies 6.1 MeV (a), 12-15 MeV (b) and 51.5 MeV 
(c) for all the considered NN-potentials. The theoretical 
curves describe well the shape of experimental cross sec
tions at small angles, but exceed them in absolute value 
(by a factor of 2-2.5 at 6.1 MeV and 4 at 51.5 (MeV). In 
Fig. 7 there are shown the curves obtained in variant 1 
and not shown those calculat.ed in variant 3, i.e. , without 
exchange of the singlet pair in the K-matrix element of 
N + T .... N + T. They almost coincide which means the weak 
dependence of the amp~itude T 12 on K11. There also are not 
shown the results of calculation of the differential cross 
section of reaction D(d, p) 3 H in the T-matrix Born 
approximation. The corresponding Born curves are rather 
higher than the K-matrix curves and experimental points, 
especially at low energies. Thus, though in the case under 
consideration the coupling with other channels is weak 
(weak K 11 -dependence), nevertheless, the Born approxi-
mation essentially· differs from the K-matrix one. This 
testifies to the importance of the contribution of diagrams 
containing odd number of pole blocks K12 . As numerical 
calculation reveals the cross section for D(d, P) 3H is 
less sensitive to the form of the NN-potential then the 
cross section for backward elastic p3H and p3He scattering. 
With growing energy this sensitivity increases for both 
processes, however, for the scattering this increase pro
ceeds much faster. 
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Consider reaction D(d, p) 3 H from the view point of the 
· two-channel problem with strong coupling in the K-matrix 
formalism. From formulae (14), under the conditions (15) 
it follows tha t: 

1 1 K 11 
ReT ~ - --------- lrn T == - --------- • --------12 ' 12 2 ' 

P1P2K1 2 P1P2K12 p2K12 
(16) 

Kll 
lim T 12 , ReT 121 == --- --2-- « 1. 

P 2K 12 

Numerical calculations have shown that the conditions (15) 
a re f ulfilled f or P = 0 at low energies, as well. In par
ticular, the K -ma trix calculations of reaction D(d, p) 3H 
at Ed= 6.1 MeV for the MT potential produce 1 ~ /p.,Kf~= 
= 0.053 « 1 and p 1p2 K;{ 54.2 » 1 in the state e =~= T=q 
while the approximate formulae (16) give the result for T 12 
within an accuracy of 2%. Formulae (16) provide an interes
ting result for the case of the SCC: ReTur ·1/ K12. ImT 12- K1:. 
i.e., the stronger the coupling of channels 1 and 2 (the 
larger K12 in the K -matrix approach) , the smaller IT 121. 
For the same state S= T=O but for e = 2 we have IK11/ pK[21= 
=0. 316, p 1p 2 K1 2 = o. 365 and the conditions (15) sec do 
not hold. With growing energy the conditions (15) are worse 
fulfilled. 

Qi~L~· In our approach K22 =0 therefore the agreement 
with experiment for elastic d + d->d+d scattering cannot 
be expected to be good. Indeed, the differential cross 
sections of elastic D(d, d)D scattering calculated 
in the K-matrix formalism for several energy values are 
by a factor of 5-10 smaller than the experimental ones, 
and we do not cite them here. 

CONCLUSION 

It has been shown that the multi-channel K -matrix 
approach used in this paper allows us to obtain the correct 
shape of angular distributions at large scattering angles 8 
for processes N + T .... N + T and at small 8 (or 11-8 ) for 
reaction N +T->d +d. And for the p3H and p 3ge scattering 
the theory satisfactory reproduces also absolute values 
of cross sections. 
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Now we will discuss possibilities for improving an accu
racy of the results obtained. First, one may include into 
consideration in K11 and K12 some other mechanisms, in 
particular, the transfer of the uncorrelated NN pair and 
triangular diagrams corresponding to the impulse approxi
mation. Further, one should take into consideration the 
K -matrix element K 22 for dd -scattering; here we put 
K22=o. As K22 , one may take the simplest diagrams drawn 

in Fig. 8. And finally, one may take into account the three
(2~hd) and four-particle (4N) channels though this compli
cates considerably a calculation procedure. We note that 
by including into the K-matrix triangular diagrams and 
those of Fig. 8b containing the NN-scattering amplitu
des we partly take account of three- and four-particle 
states. 

(a.) (I) 

Fig. 8. The Feynman diagrams corresponding to the 
elastic dd -scattering. 
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