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0 CmHMaeMOCTH HAep B MeTOAe rHnepc$epH4eCKHX 
$YHKI..IH~ 

H3y4anacb npHpOAa MOHononbH~x rHraHTCKHX pe3oHaHcoe ner­
KHX HAep B MeTOAe rHnepc$epH4eCKHX $YHK1..1H~. Pac4eTbl npoee­
AeHbl AnH HAeP A =4 -c 16 c l.leHTpanbHbiMH noTeHI..IHanaMH rayccoec­
Koro THna. noKa3aHO, 4TO B MHHHManbHOM npH6nHmeHHH MeTOAa 
3$$eKT 11AblxaHHH 11 HApa 4eTKO npoHBnHeTCH npH yeenH4eHHH 
3HeprHH B036ymAeHHH. 3TO HnniOCTpHpyeTCH pe3ynbTaTaMH paC4e­
TOB cpeAHHX KBaApaTH4H~X paAHYCOB H nnOTHOCTe~ C B036ymAeHH­
eM "breathing mode" -cocTOHHH~ . 

Pa6oTa e~nonHeHa B fla6opaTOPHH TeopeTH4eCKO~ $H3HKH 
OHRH. 

npenpKHT 06beaKHeHHOro HHCTHTYTB HaepHbiX HCCneaOBSHHA, ny6Ha 1979 

Kaschiev M., Shitikova K.V. E4 - 12722 

On the Compressibility of Nuclei in the Method 
of Hyperspherical Functions 

The nature of the monopole giant resonances of light 
nuclei is studied by the method of hyperspherical functions 
The calculations were performed for light nuclei A =4716 
with potentials of the Gaussian type. It is shown that 
already in the minimal approximation of the method the 
effect of nuclear "respiration" is taken into account. This 
effect is illustrated by the results of calculation of the 
mean-square radii and the densities of the ground and 

"breathing mode" states. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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1. Among various collective excitations, the monopole or 
"breathing mode" oscillations are distinguis~ed by the 
fact that they correspond to variations in the nuclear mat­
ter density, i.e., they characterize its compressibility. 
The nature of the monopole giant resonances of light nucl e i 

is studied by the method of hyperspherical functions. Such 
investigations are stimulated, on the one hand, by the 
difficulty of solving the nontrivial problem of identifica­
tion of monopole giant resonances in experiments 1 11 ; for 
most light nuclei it has not yet been solved unambiguously 
Therefore, theoretical studies, which shed light upon the 
nature of wave functions and various properties of monopole 

resonances are of interest. On the other hand, the method 
of hyperspherical functions 121 provides a convenient basis 
for a microscopic description of monopole vibrations 13·41 

The point is that in the method a collective variable 
(hyperradiusp) is introduced which is associated with the 
mean-square nuclear radius p2 = A< r 2 '> , i.e., with the mean 
nuclear density. The excitations in this variable correspond 
to the monopole vibrations of the nucleus as a whole, the 
density being a dynamical variable. 

2. In the me thod of hyperspherical functions, the wave 
function 111 of a nucleus consisting of A nucleons should be 
translation-invariant. Accordingly, its a rguments are 
usually represented by the Jacobi coordinates:~ 1. x2 , ... ,X A-1 

~ - 1 -· 1 - -=-<r,-r 
y2 2 

x2 = \ ~ l ~ Cr1 +r
2
)-r

3
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__, A-1 [ 1 ~ __, __, ] 
x = y -- -- "" r . - rA 
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The method of hyperspherical functions is specified by that 
in the 3 (A -1) -dimensional space of Jacobian coordinates 
the spherical coordinates are introduced: the hyperradius 
p and thB hyper spherical angles (3A-4 ). These angles 
81,82, ... 8n - 1 can be chosen so that the relation 
between the rectangular and hyperspherical coordinates has 
the form: 

x 1 =P sin 8
11

_ 1 .. .. .... sin82sin8 1 

x 2 = psin8
11

_ 1 ........ sin82cos8 1 

(2) 
x

11
_

1 
=P sin8

11
_ 1 cos8

11
_ 2 

xn ~ p cosen - 1 

p2 ~ ~ X~ 
i-t I 

0!:. p ::;: OQ 

0~8 1 < 2rr 

n=3(A-1) 

In this way the collective variable p is introduced, the 
Laplace operator being then given by 

~ 
n 

2 
l-a- = _1_..Q_ n- 1 a 1 
n a 2 n- 1 ap(p -a-)+ -2~n. 

x n p p p "n 
(3) 

The angular part of the Laplacian is written as follows: 

A 1 a · n - 2 a 1 
u 0 = --- - ( sm e --) ~ ~ 

n sin11 - 2e aen n 1 ae . sinz-e On - t 
n- 1 nt n· l 

(4) 

The hyperspherical harmonics are the eigenfunctions of the 
angular part of the Laplace operator 
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~n y (8i)=-k(k +n-2)Yky(8i ). un ky (5) 

Here k is the analog of the angular momentum with n =3 
and is called the global momentum. y- denotes all quantum 
numbers necessary to express various degenerate states in 
the equation. For example, y=[f) (r)LM. 

In the method of k -harmonics, the wave function for 
the nucleus A is sought as an expansion in the standard 
hyperspherical functions 

3A - 4 
IJI = P- -2- I X ( P) y (e . ). 

k k,y k,y I ,y 

where 

I x 2 (p)dp = 1, 
ky 

Y=[f)cLST. 

The nuclear Hamiltonian has the form 

h2 3A-4 a h2 
H=-- __l_ .iL(p -)----~0 +V(p) 

2m p3A-4 ap ap 2mp2 H 

(6) 

(7) 

and the set of equations for finding the radial eigenfuncti­
ons and eigenvalues is written as: 

d2 .S\(.S\+1_) __ 2m (E+Wky (p))lxky(p) 1----- h2 ky dp2 p2 

=~ I wky' 
h2 k}"hy ky (p)xk'y' (p). 

(8) 

where ~k = K + 3A-6 
2 

k' ' 
W kyy (p) are the matrix elements of 

the potential energy of the nucleon-nucleon interation 

V = I V (r .. ). 
i< j I J V (r i j ) =f ( r i j ) War (9) 

which may be expressed in terms of the two-particle fracti­
onal parentage coefficients in the form: 
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'Ky 
w (p) = 

ky 

=< AK[fJ t LSTMLMsMT t v t Ai<CrJ; r:.s TMLMsMT 

( 10) 

= A(A-12_ ~ < AK[f)tLST \A-2 K '[ f '!t 'L'S 'T'; AS0 T 0>x 
2 
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kk 
x< SOTO \War \ SO To > . Rk 'A (p). 

Here 
k k 3A-7 2 

R (p) = f cte (sine ) (cose ) x 
k'A 1 1 1 

0 

2k' 2 A 
x f(pcoset Nkk'A N , , (sine) (cose 1) 0 x 

0 
'Kk 1\

0 
1 

k'+~-1 ,\ +__!_ k'+~-1,A + _L 
x p 2 ' 0 2 (cos20 1)P_ , 

0 2 (cos2e 1). 
k -k '-A 

0 
k- k -A 0 

(11) 

The matrix eleme~ts for an effective interaction are calcu­
lated by the method proposed by A.I.Baz' in ref.

131
. Accor­

ding t o this method a matrix element, which depends on p, 
is expressed in the hyperspherical function technique in 
terms of a matrix element in the translation-invatiant 
shell model: 
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k 'y' w 
k y 

r (k + 3A-~ 
(p)= -2 

21Ti p 2k+3A-3 
J 
c 

dSesp2 k, , w y 

s .k+ 2_A-1 k y 
2 

-112 
s ). (12) 

The oscillator parameterr0 is related to the integration 
variable S as follows r0 = S -112. 

Having found the effective-interaction matrix element 

W~/' (p), we substitute it into eq. (8) and find its 
eigenvalues E and eigenfunctions Xky(p). The equation is 
first solved for the ground state of the nucleus and then 
for the first, second, etc., monopole excitations of the 
nucleus as a whole. Let us give an expression for some 
matrix elements of the physical operators in the hypersphe­
rical function technique, which we shall use in what fol­
lows. 

~In the hyper spherical function technique, the 1 p -shell 
nuclear density has the form 

5A-11 5A-16 
r(--) 2 

16 2 "" ( 2_ r 2) 
n .. ( r ) = - J P x ( p ) x ( p ) dp + 

lJ .r- ( 5A-14 r 5A-13 i i 
v" r ---) . e 

2 

5A-15 r( 5A-ll) 
2 00 

8 (A-4) -=-- f 
2 --

r (e2-r2) 2 

+ 3 y;-- r( 5A-~ r 

2 

e"A-13 xi(e)x/e)dp 

and the mean-square radius is written as: 

-2 2 
Rii = < r ii > 

2 J n ii (r )r d V 

Jnii(r)dV 

4 
J nii(r)r dr 
----2-
J nii(r)r dr 

where the density is normalized as follows: 

4" J n ( r) r2 dr =A . 

The monopole isoscalar sum rule can be written as: 

2 h2 z 
~ ( E - E 0 ) \ M 0 j = -- < 0 \ r 2 [ 0 > , 
n n n m 

(13) 

(14) 

( 15) 
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where 

1 A 2 
M0 = < 0 I - l r . I 0 > 

n 2 i=1 I n 

3. Let us . discuss more thoroughly the method for solving 
eq. (8). Let us formulate the boundary-value problem 

xky<O)= xky<R) = O, R » 0 

and designate the effective potential including the centri­
fugal term as 

U(p)=xky(p) ( 16) 

h 2 L k (L k + 1) _ W ( p ) _ l W ~: , ( p ) 
W(p) =- 2m -p2 ky k 'y'hy (17) 

The problem involving eqs. (8)-(16) will be solved by the 
finite difference method. On a segment [O,R] we introduce 
the difference set w={pi = ihp, i=0,1,2 ... N, hp = R/ N !. Let 

Ui = U(p i), Wi = W (pi ) . We shall wr'ite the difference 
scheme, which approximates eq. (8) and the boundary condi­
tions (16) 

h 2 U i+1- 2Ui + U i- 1 

2m h 2 

hp . 
+ W i Ui =E U i , 1 =1 ,2, ... N-1 

p (18) 

Uo = UN = O 

The accuracy of the scheme (18) is a function of O(h~). The 
set of linear algebraic equations (18) shall be written 
in the form: 

h 
AU = E BU. (19} 

where A is the tridiagonal SYlllffietrical matrix of an order 
ofN-1 and B is the unitary matrix. The eigenvalue matrix 
problem (19) has been solved by the inverse iteration 
technique1 10~ This method enables one to calculate all values, 
i.e., eigenvalues, and the wave functions in the problem 
(19), which correspond to the bound, states in eq. (8). 
8 
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4. Using the method described above, we have performed 
the calculations for light nuclei A =4-16 with potentials 
of the Gaussian type 15 1 . 

Figure 1 shows the energies of the first· and second mono­
pole resonances as a function of A for nuclei from A=4 

E{tv1J8) 
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J 

'10 12 14 16 A 

Fig.1. Positions of the first and second monopole resonan­
ces as a function of A. 
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to A =16. As ciin be seen from the comparison with experiment 
(a point on the curve), these calculations reproduce fairly 
well the position of the monopole resonance of the 

4
He 

nucleus. Unfortunately, there are no other data available 
on the monopole giant resonances in light nuclei. Neverthe­
less, one may think that this curve is thought to be of 
interest. It has some characteristic features, namely, it 
increases with A and shows the cluster structure. One should 
think that, upon normalizing the curve at several experi­
mental points, one can rather reliably predict the posi­
tion of the remaining monopole resonances. In this connec­
tion, it is of interest to trace in wha t way the position 
of the "respiratory" o+ state depends o n the choice of a 
variant of the nucleon-nucleon potential. Table 1 shows 
the results of the calculation of the o+ state of the 
4He nucleus for 8 variants cf potentials, which have been 

selected to describe well the binding energy and the mean­
square radius of the 4He nucleus. 

The results of calculation enable one to conclude that 
the 0~ states calculated in the hyperspherical function 
technique are the monopole giant resonance. Indeed, as can 
be seen from table 2, about 80 to 90% of the monopole 
sum is exhausted by the first excited state and only several 
per cent by the second one. 

The calculations have been performed in the minimal ap­
proximation of the method. However, even in such approxi­
mation of the hyperspherical function technique the mean­
square radius is a dynamical variable, so that the effect 
of nuclear "respiration" is taken into account. This effect 
is illustrated in fig. 2 and table 2 which show the mea~­
square radii and the wave functions for 4He, 8 Be, 12c and 16 0 
nuclei as functions of the excitation energy of the nucleus 

in question. One can see that the mean-square radii increase 
by about 10% between the neighbouring excitations. The wave 
functions behave similarly. 

The effect of expansion of the nucleus with increasing 
exitation energy is demonstrated by the results of calcu­
lation of the density of the ground and "breathing mode" 
states,which are shown in figs.3 and !.Figure 3 illustra­
tes the densities of the ground and "breating mode" states 
and the respective transitional densities of the 

160 nucle­
us. With increasing excitation energy, the density decreases 
inside the nucleus and increases at the boundary. Indeed, 
with increasing exitation energy of the 16 o nucleus up to 
100 MeV, the nuclear density at the point r =0 at the 

. 2 112 max1.murn ( r =1) and at the boundary of the nucleus r= <R > = 

10 

Table 1 

£o -28. 6 
& 

-29.4 -29.3 -29.2 -28.1 -28.8 -28.0 

E ~ - 3 2 -4.5 - 2, 9 -2.2 -3.5 -3.8 -3.7 6 • 
E of 25.4 24 . 9 26.4 27. 0 24.6 25.0 24.4 

_ax __ 

I 2 3 4 5 6 7 

Table 2 

A = 4 

N £, [ex < R,~ > .r. (E, . - £0¥N,J~ .. ,· " s. 
0 -28.00 0 1.?6? 0 

I -3.68 24.32 3.48? !93.8 

s'l. = 259.4 r s. = !93.8 . { 

' 

A= 8 

N E~ Eu ( f. 1. >~~ ( E,. - £.,)I H,, I~ 

'" 
: s,. 

0 -40.12 - 2.353 

I -2!.59 18.63 2.940 830.95 

2 -9.23 30.89 3.7?4 59.3 

3 -1.99 38.03 5.!!6 !!.3 

901.59 

-28.5 

-3.8 

24.7 

8 

s~ i. 
0 

?4.? 

~~ '!. s, • 

90.4 

6.5 

!.2 

=919.3) 
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=2.25 fm decreases by a factor of 2. In the same energy 
region, nuclear diffuseness increases from 4.5 fm to 
6.5 fm. 

As an illustration, fig. 4 shows the change in density 
with incre asing exitation energy in the 12 C nucleus (at its 
centre and at the boundary). It is seen that the density 
descreases by 4 times with increasing energy by 80 MeV at 
the centre and the point equal to the mean-square nuclear 
radius and the density increases by 6 times at a distance 
equal to the double mean-square radius. 

The transitional density decreases very rapidly as a 
function of the increasing exitation energy. This accounts 
for the effect that 90% of the monopole sum is exhausted 
by the region of the first monopole resonance and only 
several per cent, in the region of the second one. 
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