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oynraK A. H AP· E4- 12641 

Mb$a-pacnaA KaK $epMH-lKHAKOCTHbiH npot.~ecc 

npeAJlaraeTCR HOBaR MOAeJlb TeOpHH aJlb$a-pacnaAa Ha R3b1Ke 
HenpHBOAHMOH aMnJlHTYAbl o6pa30BaHHR anb$a- 4aCTHLibl B 4eTblpex-
4aCTH4HOM KaHane. DbiJla BBeAeHa HOBaR YHHBepcaJlbHaR KOHCTaHTa, 
OnpeAeJlReMaR CBR3b~ MelKAY COCTORHHeM THna $epMH-lKHAKOCTH H 
anb$a-KJlaCTepHbiM COCTORHHeM. KOHCTaHTa 6b!Jla nOJly4eHa npH $H
THPOBaHHH TeopeTH4eCKOH WHpHHbl pa3peweHHOro aJlb$a-nepeXOAa 
c 3KCnepHMeHTaJlbHbiMH AaHHbiMH H3 pacnaAa 210 Ra ... a +206 Rn. DbiJlH 
paccMOTpeHbl HeCKOJlbKO pa3peweHHbiX H Hepa3peweHHbiX anb$a-nepe
XOAOB a pal:ioHe RAeP CBHHl.la. nony4eHHble AaHHble xopowo corna
cy~TCR C 3KCnepHMeHTOM. 

Pa6oTa BblnonHeHa a Jla6opaTOPHH TeopeTH4ecKol:i $H3HKH 
011.fH1. 

Coo6weHHe 06bellHHeHHOrO HHCT'HT'yT'a SlllepHbiX HCCnellOB8HHA. ,Uy6Ha 1979 

Bulgac A. et al. E4 - 12641 

Alpha Decay as a Fermi Liquid Process 

A theory of the a -decay in terms of irreducible ampli 
tude of the a-particle formation in the four particle 
channel (T 4 _.a) is proposed. By introducing a new univer
sal constant determined by the coupling interaction between 
the many body Fermi liquid state and the a-cluster ~tate 
we have calculated the a-widths for some favoured and 
unfavoured a-transitions in the translead region. Good 
agreement with the experimental data is obtained. 

The investigation has been performed at the Laboratora 
of Theoretical Physics, JINR. 
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1. INTRODUCTION 

An analysis of the existent a -decay models 
11

'
51 

shows 
that the nucleus was treated therein as a Fermi gas object. 
This observation results from the vray the a -particle 
has been treated in these models. Thus, the c o n s tituent 
nucleons of the a-particle either fly away independent-

1"2·4/ ly from the nucleus and subsequently gather together 
(cluster) to form an a-particle, or the corresponding 
a -width formula uses, in some way, the p e rturbation ap-

proach. 
The R-matrix theory~ / does not get along this line, 

but it encounters difficulties in defining the internal 
region nuclear states and the channel radius which are to 
a great extent artificially introduced. 

All these models lead to constantly lower values of the 
theoretical a -widths with respect to the experimental 

data / 1. 2·51. 
The previous models propose themselves to transport to 

the continuum a group of four particles, from the mother 
nuc leus, but they do not consider the mechanism of forma
tio n of the cluster. However, in our opinion it is more 
important to describe the a- clustering because, once we 
have done it, the a -decay process reduces to the well 
known problem of the barrier penetration. 

The nuclear states involved in the a -decay models are 
d e scribed by the shell model with residual interactions 
whe re small momenta and energies participate. The same 
kind of interactions were al s o used in perturbation 
theories /2·4 / for the a -transition operator. However, 
during the a -decay four nucleons, initially distributed 
over the whole mother nucleus, undergo a transition to 
a state in wh-ich they occupy a small volume. Such a transi
tion can take place with a significant probability only 
if large enough momenta aretransferred to the four nucleons. 
At the same time the energy involved in the a -decay is 
quite small. Therefore, it is clear that some other inte
ractions must be responsible for the a -particle clustering 
inside the nucleus. They cannot act in the frame of a 

Fermi gas model. 
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The nucleus is a system of strong interacting particles, 
where the mean distance between the nucleons is of the 
same order of magnitude as the range of the nuclear forces. 
This fact tells us that, the nucleus has to be treated as 
a Fermi liquid with strong correlations among the nucleons. 
The possibility of clusterization is equivalent to the 
coexistence of two different kinds of states in the nuclei. 
One kind of states describes the nucleus as a Fermi liquid 
drop in which the particles are more or less uniformly 
distributed over the whole nuclear volume. The other kind 
of states describes two Fermi liquid fragments (a -particle 
and daughter nucleus) in relatively weak interaction 
(a cluster state). 

The decay of the cluster state is allowed or forbidded 
mainly by the barrier. 

The presence of the above-mentioned two states can be 
also found in the stable nuclei. Such a picture could 
explain why in the high energy nuclear reactions with 
different projectiles ( p, d, a, light nuclei) one can 
observe a large yield of a -particle emission 122·241. 

It is naturalto assume that the clusterization is a surfa
ce phenomenon. At the nuclear surface the density is 
relatively low and the clusterization is favoured. The 
collisions of the a-particle with the neighbouring nucle
ons far inside the nucleus lead to a very improbable exis
tence of the a -cluster in that region. The a -scattering 
experiments are described by using a rather large imagina-
ry part of the optical potential which shows that the a -
particles are melted inside the nucleus. ·The large incom
pressibility of the nuclear matter excludes the presence 
of inhomogeneities like a-clusters far inside the nucleus. 

These arguments exclude the channel state wave functions 
with a resonant behaviour. However, the total wave function 
of the system has a resonant character I ll. 

Assuming that the nucleus is a Fermi liquid, one can 
expect that the a -decay is a strong collective phenomenon 
taking place in two steps: the clusterization and the 
barrier penetration . The clusterization process is a transi
tion between the many-body Fermi liquid state to the 
a -cluster state. The transition operator must be determined 
by a new quantity, namely the irreducible amplitude of the 
particle formation in the four particle channel n I : 

T, • • • $" (11 
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An analogous situation occurs in the description of the 
pairing correlations in nuclei, where irreducible amplitu
des n1 in the particle-particle channels are introduced. 

By assuming a model for the amplitude (1) we have calcu
lated the a -widths for some favoured and unfavoured a -
transitions between spherical nuclei in the translead 
region. A unique constant determined by fitting the 
favoured a -transition 210Ra ->a +206 Rn to the experiments 
was used. 

2. MODEL FOR THE IRREDUCIBLE AMPLITUDE 
OF THE a-PARTICLE FORMATION IN THE FOUR 
PARTICLE CHANNEL 

In the framework of the many-body theory an equation 
for the four particle Green function can be deduced in the 
usual waynl. The equation for the residue of this Green 
function at the pole, corresponding to the decaying state 

t 
is 

' 
• /~\ + 

(2) T = 
4->a 

where 

lA~ (3) T (O) 
4->a 

is the irreducible four particle amplitude from which the 
contribution from the s.p. states arround the Fermi sea 
is excluded. 

In the following we will propose a model for T ~0la and 
neglect the second term in eq. (3). The amplitude T~~a 
must have an universal character, determined by the proper
ties of the nuclear matter (through the density dependen
ce), i.e., by the states deep inside the Fermi sea: 

(0) 
T 4 --a ;; K Cen v l p(R) o <e 1 lo <e 2lo <e 3) t. (4) 

Here en is a unit normal to the nuclear surface, v 
is the gradient operator, 

~ ~ . + 
p(R) =< A+4Jp(R)IA+4> ;p(R) = l ¢*(R)¢,(R)a a, 

rr' r r r r 
(5) 

in the nuclear matter density, where lA~ 4 > stands for the 
initial state wave function, ¢r - for the single particle 
wave function and a~(ar ) - for the fermion creation 
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(absorption) operator of a nucleon in (from) the state lr > . 
~ i are the internal Jacobi coordinates of the a -

particle. The 8(~i) functions describe the packing process 
of the four nucleons in a small volume of the order of 
the a-particle volume. The t -operator selects the terms 
containing two protons and two neutrons from among the 
four fermion orbitals. 

The constant K must have a unique value for all the 
a -transitions. 

Our model is still in a preliminary stage, mainly beca
use we have neglected the second term in eq. (2). By sol
ving eq. (2) one could also attempt to calculate the 
a -decay energy, but this problem is as complicated as 
the similar problem of the binding energy. Therefore in 
our calculations experimental a -decay energies are used. 
Generally speaking, the second term in eq. (2) leads to 
a rescattering of the four nucleons of the cluster over 
the whole nuclear volume and so it can be expected to be 
nonessential for the a -decay. 

The amplitude (4) in the second quantization form can 
be written as follows: 

6 

T(O) 
4->a 

Here 

I. 
s4 sa ill 

. + 
T J (R) b . 

s4 sa sa JIL 
A . 

s 4 lll 

As4il1 =((avav')ip (awaw')jn )ill • 

(6) 

(7) 

where vv'(ww') stand for the s.p. proton (neutron) orbi-
tals, (e.g., v = lnvfv jv 1), 

~ + ~ ~~~~ 

< R.~ lbs · IO >= ((Ye (R)t/Js (~1'~2'~3))L Xs s s(S1S2S3S4))i 
a a Jli a ~ a p n a 11 

(8) 
is the a -cluster wave function, where 

t/1
5 

m (~1 .~2 .~3 )= <{3~ 1 ,f3~2 .{3~3 lnc fc n.c fc (fc )n~ f~ ;f~m~> 
~ ~ . .., 1 '-'1 '>2 .., 2 .., 12 3 3 ( 9) 

is the spatial part and 

~~~~ ~~~~ 11 11 
xspsnsa (S1S2S3S4)=<S1 S2S3S4 1-2- T(Sphf -2(Sn).~aa > (10) 

is the spin part. . 
The quantities T ~ 5 (R) 

ments < Sajj i T4<~a ii S4 j'S::Z 
are the reduced matrix ele

when eq. (4) is used. 

3. ALPHA DECAY WIDTH 

Starting from eq. (14) of ref. 111 (or eq. (15) of ref.
181

) 
the complicated transition R-operator can be factorized 
by inserting the correlations in both the channel and 
initial state wave functions: 

+ 
R =fi(A+a) T 4->aU (A+4). (11) 

The a -decay width can be written 111 as follows: 

r = 21T I. I<·A + a, c I T4 I A + 4>1
2 

;; a c ~a 

(A+a) oo 5 ij i 2 
;; 21TK2I.I ~ Uee' · J dRue,_(R)p'(R)ge' · (R)I 

e e . 0 

where the following notation has been used: 

+ -
ISjli>= <l> 8 . =08 . lo > 

Jll Jll 

for the nuclear state wave functions, 

(12) 

(13) 

IA+a,C >"' 7Jiu~> ,. I.n<A;a)A(...!.u ,(R)(b+ y n+ . ))I{;> (14) 
k e' ee · R e· saa srJr 

for the correlated channel wave function, in which c 
stands for the group lsa,fa. jr,sr I of quantum numbers 
and A for the antisymmetrization operator of the channel 

partners, 

(A+4) + -
1 A + 4 > = n 1 a sEc > = n . 1 o > (15) 

s i lj llj 

for the initial state wave function, 

S· j . 
g e1 1 

( R) = R <cpa (Y 
0 

<I> 
5 

j ) i . ., . I 8(~ 1 )8(~ 2 )8(~ 3) I <I> 5 . j . 11 . > = 
La r r 1 ,..1 1 1 1 

=; R < safa ll 8(~ 1)8(~2 )8(~3 ) 1\ s 4 £a 
4 

+' 
x <f\[(U

5 
. A

5 
f ) . , U 5 . ]jo> . 

rlr 4 a Ji iJi 

• X 
(16) 
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We also used eqs. (4) and (6) with 

f 
'f s:sa (R) = p '(R) < sa fa II o(~ 1)o(e2)o(e3 l ll s4 fa > ' (17) 

where p '(R) is the first derivative of the nuclear density 
( 5) • The channel radial wave function uc (R) = u c~ (R) = u ~ 
can be obtained from the total function (14)which is a solu
tion of the following scattering equation 

(£ - P J{p I A +a > = 0, ( 18) 

where 

2 + 2 2 P = 17N 17 , P + Q = 1, P ~ P. PQ = 0 = QP, Q = Q • ( 19) 

}{ = H + HQ __ l ___ QH, (20 ) 

£ - H 
and /10,11 / 

-2 + 
N =1-K=l117· 

(21) 

From eq. (18) we can extract the equation 

+ -
(£ - N 77 }{ 17N)I u ~ > = 0. (22) 

where we have defined a new channel radial wave function 

- - 1 
lu~ > =N lu~ > (23) 

with the same normalization condition 

<ii~ 1 u-~, > = s<£- ·£') (24) 

as for the channel functions (14). 
It is easy to see that the renormalized Hamiltonian 

N
17 

+ J<17 N from eq . (22) can be obtained by a folding 
procedure~/ including the exchange terms . We can obtain 
afterwords the channel radial wave function uc(R) by 
using the integral eq . (23) and the N operator /10.18/ from 

eq. (21) . 
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4. NUMERICAL CALCULATONS 
5 i ji 

To compute the overlap integral gc (R) (16) and 
the densities p(R) (5), we need the structure of the 
initial and final nuclear states (13). For the favoured 
(g. s. -. g. s. ) a -transitions in the double even nuclei 
we have used the BCS-wave functions. It is known that 
the pairing corre l ations are very important in a -decay 11

L'. 
We included them by the following procedure /13 ·15/ . The 
level scheme is recalculated for each nucleus, including 
all the bound levels and the quasibound levels with the 
widths up to 100 keV. Then, the pairing coupling constants 
GP and Gn are fitted to reproduce the experimental 
pairing energies /12/. 

It must be noticed that excluding the quasibound levels 
the theoretical values decrease by a factor of ~ 2

1151 

As an example of unfavoured transition we have chosen 
the decay of 21 0 I3i to 206 Tl, because these nuclei differ 
from double magical 208Pb by only one proton and one 
neutron and, thus, their structure can be fairly well des
cribed. We used the nuclear structure from ref. /16/, where 
the configuration mixing is introduced to reproduce the 
low-lying level energies and the corresponding gamma and 

beta transitions. 
To compute the radial channel wave function we neglec-

ted the exchange terms in the folding potential (i.e., 
N ~ 1 110 · 181 ). Thus, for the potential occurring in the 
renormalized Hamiltonian of eq. (22) the direct term 
obtained by folding an Yukawa-type effective interaction 

has been analysed: 

- ll
5
lx1-x2 -RI 

P-
3 3 V (R) = ( d X d X p (x )p (X ) ~ K (E) --------- - - ------ ---· 

Fold 1 2 1 1 2 2' s 5 1 x _ x - R 1 
1 2 (25) 

00 2 00 2 ( ll g) 
= ~ 16rr2K

5
(E) (x

1
dx1p 1(x1) (x2dx2p 2(x 2)F (x 1x 2R). 

s 0 0 

where 

(ll) -Ill z 11 -Il l z2 1 
F (x1 x 2 x 3 ) ~ lsignZ 1 (1-e )~signZ2 (1-e )~ 

-111 z I -111 zl - 1 
+ SignZ

3
(1-e 3 )-(1-e )l(41!

2
x 1x2x3) 
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.. 

with 

Z l = - ·X l + x2 ~ X 
3

, Z 2 = X l - X 2 + x
3 

, Z 
3 

= X l + x2 - 'X 
3

, Z = x1 + x2 + X 3 , 

K 
0 

(E)= e 2 ; K 1(E) = 1528.75 MeV· fm; K 2(E) = -784.4 MeV· fm; 

11
0

= 0. 11
1 

=4 rm-t. 112=2.5fm-1 

/19/ 
The parameters K s (E), 11 s were taken from ref. . They 

were obtained by fitting the even-state G -matrix elements 
of the Reid interaction and assuming the odd-state inte
raction of a purely OPEP type. No imaginary part has been 
used. The case S = 0 (K0 •11 0 ) corresponds to the Coulomb 
part of the folding potential. 

Unfortunately, the calculations of the channel radial 
function with the potential (26) are very cumbersome, 
therefore we compared the folding potential with the poten
tial obtained by summing two single proton and two single 
neutron (fig. 1) shell model potential: 

V = 2V + 2V 
4 p n 

(26) 

Assuming that the exchange terms from eq. (24) lead to 
the decrease~5.26/ of the difference between the folding 
potential and the potential (26) in the surface region, 
in the calculations we have used the potential V 4 . 

In figs. 2 and 3 we have plotted the overlap integral 
(16), the derivati;e (p') of the nuclear density of the 
initial nucleus (5) and the radial channel wave function 
for the favoured 2l0Ra-.a + 206Rn and 210Bi(1-)->a + 206 Tl(C) 
a-transitions using the set of Woods Saxon parameters 
taken from ref /17 I. These functions were also calculated 
with the s.p. Woods-Saxon's parameters obtained from the 
scattering experiments ~O/ and a small difference is 
obtained. This is shown in fig. 2 also. From these figures 
we conclude that the integrand from eq. (12) is relatively 
large in the surface region only. 

10 

The calculated rations r exp I r theor. for some favoured 
and unfavoured a -transitions are given in the table. The 
value of the universal constant K from eq. (4) fitted to 

The calculated 
· 107 HeV fm 14 

Mother 
nucleus 

Ra 

Rn 

Bi 

A 

208 
210 
212 
214 

202 
206 
210 

210 

Table 

r e x/ rtheor ratiOnS With K =1.044 • 
and Woods-Saxon parameters from ref.~0 1 

I i"i (E (MeV)) ... I r"r (E (MeV)) r e xp ; r theor 

o+(g:s)~ o+(g.s) 0.56 
o+(g.s)~ o+(g.s) 1. 00 
o+(g.s)~ o+(g.s) 1. 56 
o+(g.s)~ o+(g.s) 2.95 

o+(g.s)~ o+(g.s) 0.)1 
o+(g.s)~ o+(g.s) 1. 60 
o+(g.s)~ o+(g.s) 1.56 

1- ( g • B ) - 1- ( 0 • J 04 ) 1. 54 
1-(g.s)~ 2-(0.266) 1.26 
9-(0.205)--1-(0.)04) 7.10 
9- (0.265) --2- (0.266) 0.2 

the favoured transition 210 Ra-+a + 206 Rn is equal to 
1. 044. 10 7 MeV fm 14. We can see that the calculated a

widths for both favoured and unfavoured a-transitions 
are in agreement with the experimental data. Here we 
have chosen the a-transition, where the involved nuclear 
states have the best known structure. The fluctuations 
of the ratio rexp l rtheor (see the table) are not large 
and they could be removed either by taking into account 
higher order terms in eq. (2) and/or by improving the 
description of nuclear structure and channel wave function. 

Of course, calculations in the actinide region have 
to be done in addition. Such calculations are on the way. 
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Fig. I. The direct term of the folded po
tential and Y4obtained with the set of Woods
Saxon parameters taken from refs. /17,20/(on the 
plot F and G. respectively)for thea+208Pbchannel. 
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taken from refs. 117 ·201 for 
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Fig. 3. The same as in the fig. 2 , but with the Woods
Saxon parameters taken from ref. / 17 / for the a-decay of 
210 Bi(l-) to 206 TI (1- ). 

5. CONCLUSIONS 

In this work we have proposed a new picture to describe 
the a -decay phenomenon. First, we assume the coexistence 
of two kinds of states in the nuclei: the Fermi liquid states 
and the cluster states. The a -decay phenomenon takes 
place in two steps: the clusterization and _the barrier 
penetration. The clusterization process is a (phase) transi
tion between the Fermi liquid state and an a -cluster state. 
The barrier penetration process is practically the way 
the a-cluster state decays. 
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Our model is in a prelimintary stage. The second term 
in eq. (2) has to be also analysed, especially to study 
the a -decay energy. In order to be self-consistent we 
should also calculate the a-decay energy and obtain the 
a -decay width on this basis. 

The exchange part of the folded potential might also 
give a significant contribution to the a -decay width. 

Such calculations are on the way, but they lead to 
complicated expression for the potential, hard to be compu
tert 

A coupled channel analysis (especially for deformed 
nuclei) has to be done, to obtain a realistic radial 
a-channel function. 

The authors are gratefull to Dr. G.Ciangaru for fruitful 
discussions at different stages of this work. 
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