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Conoabe s B. r. 

Y4eT npH H4H na naynH B KB a3H 4aCTH4H0-~0HOHHOH 
MOAe!lH flAPa 

E4 · 12623 

B KBa3H4aCTH 4HO- ~OHOHHOH MOAe!lH HAPa o6~4HO HC nOilb3Y~T c fl RPA -
<!><>HOH~ .H KBa 3 ~-t60 30HHOe np ~-t6!1 HlKeHHe ~1 He Y4HT~BaiOTCfl KOppe!lfl4HH B oc 
HOBHOM COCTOflHHH. ~OKaJ aHO, 4TO B03MOlKeH T04H~H y 4e T npHH4 Hna naynH . 
Anfl CI1Y4afl , KOrAa BO!lHOBafl ~YH K4H fl COAe plK HT OAHOKBa3H4aCTH4Hy10 H 
KBa3H4aCTH4a-nn~c - ~OHOH KOMnOHeHT~ , nO!ly 4eH~ T04 H~e H npH6!1H
lKeHH~e CeKY!lflpH~e ypaaHe HHA. 06CYlKAe HO B!lHAHHe np HH 4Hn a 
naynH B C!ly4ae , KOraa BO!lHOBaA ~YHK4HR coaeplKHT H ABYX~OHOHH~e KOMnO
HeHT~. B o6oHx cny4aflx npoHcXOAHT CABHr non10coa a ceKynApH~x ypaa He 
HHflX H A06aB!lfliOTCA 4IleH~, CBA3aHH~e C B3aHMOAeHCTBHeM KBa3H4aCTH4 
C ~OHOHaMH. 04eHeHO 4HCI10 KBa3 H4aCTH4 B OCHOBH~X COCTOflHHflX H YTBeplK
AaeTCR, 4TO B 60!lbWI'IHCTBe Ae~OPMHpoaaHH~X RAep KOppe!lfl4HH B OCHOBH~X 
COCTOflHHRX HeBe!lHKH. noKa3aHO, 4TO B KBa3H4aCTH4HO-<!><>HOHHOH MOAe!lH 
flAp a MO)t(HO, KOrAil 3TO He06XOAHMO, npOBOAHTb paC4eT~ C T04H~MH nepe-. 
CTaHOB04H~MH COOTHOWeHHAMH. 

Pa6ora £~nonHeHa a fla6opaTOPHH TeopeTH4eCKOH ~H3HKH OHRH, 

n penpuHT 0 6beA HH e HHOrO HHCTHTy Ta AAepH hl X HCcneAOBB HHft , fly6Ha 1979 

Solov iev V. G. 

On Inclusion of the Pauli Pr inciple in the 
Quas i partic l e -Phonon Nuclea r Model 

E4 · 12623 

Us ually the RPA- phonons an d the quas iboson approx ima tion are 
used in t he q uasipa rti cle-phonon nu c lea r model, whe r eas t he co r
re l a t io ns in the ground state a re not take n into account. It is shm-m 

t hat the Pauli princip l e can exactly be taken into account. The exact 
and approximate secular equations are obtained for the wave function 
containing the one- quasiparticle and quasiparticle plus phonon 
components. The effect of the Pauli principle is discussed, when the 
wave function co~tains the one- and two-phonon components . In both 
the cases the poles are shifted in the secular equations and the 

quasiparticle- phonon interaction terms are added. The number of 
quasiparticlcs in the ground states is estimated. I t is stated that 
in the majority of deformed nuclei the correl a tions in the ground 
states are smal l . I t i s shown that wi thin t he qu asipa r ticle- phonon 
nuc l ear model the calcu lations ca n be pe r formed with the exac t 
commutation relations, if necessary. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, J INR. 

Preprint o f the Jo int In stitute for Nuclear Research. Dubna 1979 

I. INTRODUCTION 

The generalization of the Hartree-Fock Variational 
Principle 1 11 suggested by N. N. Bogolubov and then called 
the Hartree-Fock-Bogolubov Variational Principle 12 · 41 and 
the time-dependent selfconsistent field method 15/ formulated 
by him provided to a great extent a foundation of the 
contemporary theory of atomic nucleus. 

N.N . Bogolubov derived the equations of collective vi 
brations in a general form 151. In these equations, in order 
to described the vibrations, the average field and the 
interaction in the particle-particle and particle-hole 
channels have been separated in ref.16 1

· As a result the 
system of equations identical with the equations of the 
finite Fermi-system 171 has been derived. These equations
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are widely used for describing the collective one-phonon 
states in atomic nuclei. 

A few-quasiparticle components of the nuclear wave 
functions at low, intermediate and high excitation ener
gies are described within the quasiparticle-phonon nuclear 
model 18 ·91. The quasiparticle-phonon nuclear model takes intc 
account the interactions of quasiparticles with phonons, 
the one-phonon states rather than single-particle states 
being used as a basis. One of the most important achieve
ments is the description of the fragmentation (distribution 
of strength) of single-particle and one-phonon states . 
The spectrosco~ic factors of the one-nucleon transfer 
reactions 1 10

•11 and the neutron and radiative strength 
functions 112 ·131 in spherical and deformed nuclei are 
calc ulated on the basis of the fragmentation. 

In describing the one-phonon states the quasiboson 
approximation or the RPA are used . There . are introduced 
the phonon oper ato rs which, for the deformed nuclei, have 
t he f o rm 

Q; = ~ I I t/J g, A+ (q q ')- cf> g, A ( qq ') !. 
qq' qq qq 

(1 ) 

where 
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1 ,A '( qq') = \~;:; ! 
u a · a , 

q-o q (J 
or L ~ a a J 

\ 2 u rfl q'u 

a~ is the quasiparticle creation operator , (qo) - are the 
quantum numbers of the single-particle state , <T ± 1. The 
phonon operators satisfy the following commutation rela 
tion s 114 1 

I 1 t/J g , 0 g, - ~~ g ,,,, g ' [Qg.Qg' J - ~ ( ) ·-
2 qq 

qq qq qq '1'1 

1 L ( 1/J g </1 g 0" chi.!. )!3(q.lq ). - (2) 2 q1 q2q 3 '11!j2 q { 13 qlq3 ql q ~ • 

[Qg ,Qg, l ' [Q I, Q I 
g • g I c o. 

where 

B(q,q ' ) ~a 
t 

~ aa a 
q'u or a 

q'u a qo 
(J q-a 

The following condition should be fulfilled 

. [ Qg,Q~, l 8 ' . gg . (3) 

in which the averaging is performed over the ground state 
of a doubly even nucleus. 

In the RPA two approximations are used: 1) the commuta
tion relation (2} is taken in the form 

I 
[Qg . Q g, " 8 : gg (4) 

2) it is assumed that in the ground state of the doubly 
even nuclei the number of quasiparticles is small, and 
hence it is assumed that 

< B ( qq ' ) · = 0 • (5) 

or 
~ 

a q± a q ± -~ 0 
(5 ') 

When d€scribing the one-phonon states, approximations (4) 
and (5) are equivalent. 
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The wave functions in the quasiparticle-phonon nuclear 
model contain the quasiparticle plus phonon, two phonons 
and so on components. When describing the wave functions 
with these components, one should not ignore the fact that 
the phonons are composed by the superposition of quasi
particle pairs. One also needs to take into account the 
Pauli principle and to study the cases of application 
of approximation (4). The exact commutation relations (2) 
for the two-phonon components have been taken into account 
in refs. 1 15 .16 ' . . In this paper the Pauli principle is 
exactly taken into account for the quasiparticle plus phonon 
components. We consider the effect of the Pauli principle 
in the deformed nuclei. We also discuss to what extent 
the use of approximation (5) is valid. To this end we derive 
the expression for , B(qq') ~ and find its numerical values 
for different states qq~ 

2. THE PAULI PRINCIPLE IN ODD-A DEFORMED NUCLEI 

The Hamiltonian of the quasiparticle-phonon nuclear 
model, taking into account the secular equations for the 
one-phonon states for the isoscalar multipole forces, 
has the form 

H =H I H M v qv 

H 
v 

1 
- ~ , (q)B(qq)- S 
q 

~ 
g -- AILi 

g'~ ILAt' 

g t X g~x QQ, 
---- g g 

v y g y g' 

(6) 

(7) 

qv 
_!_ ~ - 1

- ~ v , f g( qq ')I(Q .. , Qg)B(qq ')t- B(qq ' )(Q~ ~ Q~l (8) 
4 g v'Y qq' qq g 

H 

g 
AIL 

We use the following notation: f (qq') are the matrix 
elements of the multipole moment A operator with projec
tion IL. g = AIL i . i is the root number .Q.L!h_~secular equa
tion for the one-phonon state, E(Q) = y' C 2 1 {E(q)-Ao12. E(q) 
is the single-particle energy, C is the correlation func
tion, A o is the chemical potential, '(qq ' ) •·· f ( q) 1 < (q' ) 
uqq' = uqvq' + uq ' Vq , vqq' = UqUq' -v4 vq' ,where u 4 and v 4-
are the Bogolubov transformation coefficients, 
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2 
xg _ 

2
}; (fg(qq')uqq') ,(qq') 

'2(qq') - w 2 

y 
g 

qq 
g 

')' (fg(qq')uqq' )
2

' (qq')wg 

- ( '2 ( qq ' ) - w 2 ) 2 ' qq 
g 

The one-phonon state wg energy is obtained from the secular 
equation 

1-" 
0
<AJ X g(w ) • 0, 

g (9) 

where K~Al is the isoscalar constant of multipole forces. 
Let us consider an odd-A deformed nucleus, the groun·: 

and excited states of which are described by the wave 
function 

ll'n (K TT) - _!_ 
\ '2 

where 
Q Ill - 0 

g 0 • 

II 

}; l c'lo a qo C) 
(J 

~on a' Q 1 I Ill 
g ' q g<(' rp g 0 . ( 10) 

( 11) 

and n is the number o f the nonrotational state with given 
KTT. 

Now we give the following commutation relation s : 

IQg I 

uqou o 
- _L_ ~ lo l1Jg u 

\ 2 q 0 'loQ q- "o 
l~ g (l 

, <I ,,CI 'l"o 
I. ( 12) 

' I II Q , .. u ~ u J ,Q • I 
n o o h::! 

t - ' I 
~ I S < g~ 2 ; q oq ' ) u, 'o J 

0 0 S(~!!. i q oq ) u <I '--<~ 1• ( 1 3 l 
q' l I) () 

where 

1 g1 g2 - b[ -1-'"2 
S(gg;qq) = --L(I/; 1/1 ~v' tf, ) , 

1 2 1 2 2 q q q 1 qq 2 qq 1 q q 2 
( 14) 

1 g1 - g2 -g 1 g2 
s (g 1 g 2 ; q 1 q 2) = - - 1 ( V' 1/1 - 1/1 1/1 ) • 

2 q qq1 qq2 qq 1 qq2 ( 14,) 

with the functions .P~q' and ~q~' differing by the addition 
of the projections of angular momenta (K + K'), given in 

/ 17 / . 
ref. . In what follows we use the notat1on 
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sao' ( gg '; qq ') =000' s (gg'; qq') +000 .~ ' s (gg'; qq' ) . (15) 

1 g 2 -g 2 
S(g,q) = -

2 
11(1/1 ,) +(1/J ,) I. 
q ' qq qq 

(15 ,) 

Using the exact commutation relations we obtain the 
normalization condition of the wave function (io) in the 
form 

n 2 1 n 2 
(Cg ) t - }; (0 ) (1 t S(g ,q)) i 

o 2 gr;p gqa 

t 1.. l' on 11 2 gqo gqa 0 g'q'o'Soo '(gg';qq ') ~ 1 
(16) 

g ' q ' o ' 

f o r S 0 conditj on ( lG) becr)!ne s the o rdinary e xpress Lo n 
used in ref. ' 17 ' fo r the description of the nonrotational 
levels in defo rme d nuclei. 

Now we c alc ul a te the average value of liM o ver s tate 
( 10) a nd obtain 

II 2 
( ljl * H M ljl ) • < ( q0 ) ( C ) t 

11 n Q0 2 
}; ( ' ( q) t co )( 0 n )2 -
gqn g gqo 

1 

1 
2 

II , II I V q c/12 g2 , 1 /: ( ll 
C ~ D ---- f ( q q ) ~ ~ -- s·o ~!!. 2: q oq 2 i 

<tog q.U g 2q2o 2 ' Y- 0 2 g -Y 2 

+ _!__ l 
2 " q (J "2 2 2 

g~ q'2a~ 

2~2 Vg 'vg 

2 (17) 
On nOn''a'l~(q)~(J) )S ,(g2g2';q2q2')-

g2q2 2 g2q 2 2 2 g2 °2°2 

1 g g~ 
-- "' , X tX S , , . , 

8 g-~/12i \ YY-, o2a2(g2g2,q2q2)l. 
g g 2 

Using the variational principle, we derive the following 
system of equations: 

n 1 n v QoQ 1 g2 
(c(q~,w -71 )Dg q 0 --2 

Cq 1 _ f (q
0
q l~ 

g2 11 2 2 2 o V y i! 

~o2 (gg2;~qt 
l l+ 

g2 
g vY-

g 
(18) 
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-1 1_ :£ D
11

''a'l(c(q)+w +f(q')~w,-2r/)S ,(gg'; qq ' ) 
2 g'q'a' g2q2 2 2 g2 2 g2 n a2o2 2 2 2 2 

2 2 2 

1 
g g2 

:£ [ -~_!__ s 0: (1 ,( g 2g 
8 g v'Y y' 2 2 

g g2 

;q2q~)+ ~=-+ X So:a '(g~g; q2q~)]I = O, 
v' Y y 2 2 

g g2 g g2 (19) 

n 
(f(g 0 )-ry )Cq 

II 0 

n v qoq2 
I·--- _!_ :£ Dg 2qf2 VY 

2 gil2"2 g2 

g2 ) ~ 
f (q0q2' Tg 

fa2 (gg ~ qoq.) 

lo-0, 

where 

f; (gg2; q0q2 
"2 

:£ 
q vqqo [Sgg 2( qqo; q2q ) ~ a2Sgg2(qqo;q2q)l 

~ v qq2 [Sgg2(qq2; q qo l+a2Sgg2 (qq2; qqo)] I. 

\ y g 

(20) 

1 g g g2 -g - g2 8 gg2( qtq2;q3q4) = --2r (qtq2)l(l/J, 1/J, '1/J, 1/J, )~ 
q 1 q q3 q q4 q q 3 q q 4 

(21) 
1 - g g - g2 - g g2 

-j -2 f ( q q ) :£ (l/J' 1/J ' - 1/J' 1/J' ). 1 2 q' qq2 qq4 qq3 qq4 

- 1 g g - g2 - g g2 
8 gg( qtq2.,q3q4) = --f(qtq~:£( ifJ, 1/J, - 1/J, 1/J, l+ 

2 2 . q ' q q3 q q4 qq3 Q'l4 

(21 I) 

1 - g g g2 g g2 
+-2f (qlq2):£,(ljJ, 1/J, +1/J, 1/J, ) . 

q q q 3 q q4 q q 3 q q4 

Thus, the exact consideration of the Pauli principle in 
the quasiparticle plus phonon components of the wave 
function (10) leads to a complex system of equations (18) 
and (19). These equations become the equations of the 
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quasiboson approximation if S and f; are assumed to be 
equal to zero. To solve the aforesaid system , one has to 
find the function n;qa from eq. ( 18); this means that one 
should perform diagonalization in the s:_>.1ce ~il:.!":.!, i. e ., 
to diagonalize the matrix of the rank of about 10!3 . Then 
the function D~\ 1 " is substituted into eq. ( 19), the so l u
tion of which gives the level energies 'In of an odd-A 
deformed nucleus. The solution of the problem is very 
complicated in comparison with the quasi-boson approxima 
tion and one should find the approxin~te solutions . 

We should like to mention a property of eqs. (18) and 
(19). To solve them, one should perform the summation over 
all roots of the secular equations for the one- phonon 
states. That is , beyond the scope of the quasi-boson 
approximation one should not restric t himself to the cha
racteristics of those phonons which enter into the wave 
function (10) , but calculate all the roots of the secular 
equation for each necessary phonon with given Aft. Note , 
that in the quasiparti c le-phonon nuclear model this fuct 
is of no ~ifficulty , since the full phonon space is 
calculat ed . 

Let us derive the approximate equations . To this end , 
in eq . ( 18) we shall preserve only the diagonal terms 
in the space g~q~"~ s ince the nondiagonal corrections 
are small, alternating and strongly fluctuate. As a 
result we have 

v q o'l<! . ~2. . f;":! ( ~~ i qoq J 
n -=- t \Q0q2) i ~ --==-----

Cqo \ Y gi:! g- v Y g 
D . -- --------------------------------------·-
~lllf' <! 2 A · . 

2112 1 t:8 

tt(q.) t (<) -TJ )(1 tS(g, Q, ))- L ~ -~-----.!..-~---S(A I( i.g ,q q 
g2 11 2 2 8 I \ y----y-- 2' ;! :! ;! '! 

A.f 2
1 g2 ( 22) 

A0L21 g2 
It is possible to use the equation 1/2 (X . X ) 1/" 
Substitute this value D~ 2 q:f7 into eq . ( 1 'J) and get the 
following secular equation for finding the energies: 

•(Qo)-ryn-

~ )2 2 
(vqoq/ (qoqt (1 t S(g2.-<t.)l 

:£ 1 y~2 

4 g2 q2 (•(q2)~w -TJ )(1tS(g q ))_.!_~_1_ S(A21t2i,g2;q2q2) 
g2 II 2 2 4 (A ) ----

K 2 \ y y 
\fl2 I g2 

0. 

(23) . 
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In the numerator we have left the diagonal numbers only. 
Thus, due to the Pauli principle the quasiparticle q2 

plus phonon poles are shifted and additional terms appear 
in the quasiparticle-phonon interation. When calculating 
the shift of the quasiparticle q2 and phonon g 2 ~ A2 11 2 i 2 
pole, one should calculate all the roots i of secular 
equation (9) for the phonons A2 11 2 . The shift is the 
larger, the stronger the collectiveness of the phonon. The 
values of S(g,q) determined by formula (15') are the 
larger in absolute value, the stronger the violation of 
the Pauli principle in the corresponding quasiparticle 
plus phonon component of the wave function (10). If 

s<go,qo) = -1 

then, as is seen from eq. (16), the component g0 q 0, forbid
den by the Pauli principle, is absent in the normalization 
condition of the wave function. 

It is necessary to know in what cases the Pauli princip
le should strictly be taken into account in the calcula
tions with the wave function (10), and when t~e quasi
boson approximation can be used. For this purpose we should 
find the roots of secular equation (23), and calculate 
the strength functions of EA- and MA-transitions, the cross 
sections of the reactions with electrons and hadrons, 
and so on. 

3. PAULI PRINCIPLE IN EVEN-EVEN DEFORMED NUCLEI 

In ref. 1151 the Pauli principle has been taken into 
account in the two-phonon components of the wave functions 
of even-even deformed nuclei. The model Hamiltonian is 
taken in the form of (6), (7) and (8) ,and the double 
commutator is used 

[[Qg1·Q~2],Q;3 1 =~!K(ggtg2ga)Q; + K(ggtg2ga)Qgl. (24) 

where 

K(gg 1g 2g
3
)=-_!_ ~ (t/Jg1 t/lg2 -¢g1 ¢g2 Xt/Jga t/Jg +¢.ga cp_s ). 

2 qlq2 qlq2 qlq3 q1q3 qlq2 q4q2 q4q3 q4q3 q4q2 

q3q4 - (25) 
Here we do not distinguish between t/1 g' and t/1 g, . qq qq 

J10 

The wave function is taken in the form 

IJI (K 
17 

) = I ~ R" Q t ~ - 1- ~ p" Q+ Q~ I'P 
n i I g ~ glg2 g1g2 gl g2 0 (26) 

After the same calculations as in the previous section, 
we get the secular equation 

detll(w 1 -TJn)o 11 , -Wii' 11 ~ 0. (27) 

('J, g (.l.pi}+V (,\pi}X'1.._
1

(,1.pi'}+V 1 g (.l.pi' }} 
I 2 glg2 > 2 I 2 w ·= l: 

II 'J_I2 

K(~g~2gt} 1 K~&z;\l't1 o> K<~;g1"'2"N 
(w +w -TJ Xl + }- l: I + -- I 

It 12 ° 1+1) 4(1+1l } io (A 1) -- (~) --
glg2 1 112 K ..;v,~.., v

11 
K vv,~. .v, 

tr11o ll'to 2 

(28) 

with the functions U and V given in ref: 16 1 In ref/ 161 

a more general case has been considered, when the isoscalar 
and isovector multipole forces are taken into account. 

Due to the Pauli principle the two-phonon poles are 
shifted and additional term appears in the quasiparticle
phonon interaction. It is shown in ref/16 / that the 
shift towards the increase in the two-phonon pole energies 
in eq. (28) is considerable for the first collective 
phonons wg1 and wg

2 
and very large for g 1 =g 2 . The largest 

shift is given by the first equal phonons g 1= ~ for i 0 = 1; 
a further summation over io =1 results in the decrease 
of this shift. In some cases, when one phonon is the most 
collective low-lying phonon and the other is the collective 
phonon forming the giant resonance, the shifts may appear 
to be not small and be of (0.1-0.4) MeV. In the majority 
of cases the shifts of poles are small. 

It is necessary to study the effect of the Pauli prin
ciple on the energies of nonrotational states, on the 
strength functions of EA -transitions and on the cross 
section of excitation of giant resonances. First, of all 
it is necessary to study the effect of the Pauli principle 
on the position and properties of the low-lying states 
with large two-phonon components. The verification of 
the Axeal-Brink hypothesis about the giant resonances 
on the exited states is of much interest.' 
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4. ON THE NUMBER OF QUASIPARTICLES IN THE GROUND STATE 

· Let us derive the expression < B(qq') .estimate the number 
of quasiparticles in the ground state, and study the 
fulfillment of the following condition: 

· B(qq') . . 0, 

' which is used in all the calculations. This should be done 
in order to investigate when the RPA-phonons can be used 
in the quasiparticle-phonon nuclear model or a modifica
tion is needed. 

Using £ormula (11) the wave function 1P0 of the ground 
state of a doubly even nucleus has been derived in ref . . l4 
This wave function determined as vacuum for the phonons of 
multipolarity AJL, has the form 

<AJL! 1 1 . . . - tAJl.l AJl.l , . 
'11

0 • -=.-exp!-- L ~ ~ (if; ) ,,P , A (qq')A (q q')!lll .( 29 ) 
yN' 4 i qq'q2q~ qq q~/' 2 2 2 oo 

where N' is the normalization factor, and 

a ljl - 0 q (J 00 . . 

Since the condition 

Q 'Po =o g 

(30) 

should be fulfilled for the phonons of any multipolarity 
Afl . then 

(AIJl.l! (.>. Jl-2 ) (A J1. l 
1p . !p 11,"2 "'nn 

0 . 0 T 0 ,., TO 

and it can be written as 

1P 0 
1 exp l - 1_ L 

vN 4 g 

Now we calculate 

.L (cp-l)g ,rh 15 ,A' (qq')A ' (q q')!\V ,(31) 
qq', qq q2q2 2 2 00 

q2q2 

<B(qq') _, " ('PJ' B(qq')IP
0

) 

L L, J .p -l )g , ¢ ~, 
g q2q2q q2q2 q q 

(IP; A
1 
(q 2q~)A 1 

(qq ')IP
0 

) , 

(32) 

12 

g ' 
L L c w -t)g ,.~.. g -'-· 2 ·'· ~ ( IP * Q Q IP ) ~ 

,,.. ,'/', 'I' , 'f' , 0 g g' 0 
ggl g2 q2q2q ~q2 q q qq q2q2 2 2 

= L, L, Scp-l)g, cpg', ¢~, ¢g', 
gg q2q2q ~q2 q2q2 q q qq 

L L, ¢g ,¢g, 
g q qq q q 

We can write as 

'· !3 ( qq ') = ~ ·, B(qq') AJl. 
AJl. 

(33) 

. B ( q q,) L ¢ AJl.,~ /'~, i , , 
AJl. , qq q q (34) 

Hj 

' aq± a q'± 1 , B ( qq') .. =2 . 
(35) 

These formulae are derived with the commutation relations 
(2). It follows from the condition of orthonormalization 
of the one-phonon states that 

~ L,(cpg,cpg: -¢g ¢g',)-! L (cpg cpg -¢g ¢ 15 , ) < B(~qJ>:-0.,,. 
qq qq qq qq qq - qlq2q3 qlq2 q lq2 Ql Q3 Ql q2 gg 

(36) 
To calculate the functions < B (qq ') >A J1. , one should 

take into account all the roots of secular equation (9). 
This is of no difficulty within the quasiparticle-phonon 
nuclear model. The functions < B(qq')>A forq/q' should 
be small. This is due to the fact tha~ if K;c K ', then 
conserving the quantum number K 

--: B ( qq' ) >AJl. = 0 if q ~ q' K f, K '. 

For q;l q' and K = K' sum (34) is alternating and the < B(qq') . 
value is small. This is confirmed by the calculations, AJl. 
according to which < B (qq') > < lO - 4 at q ;i q, K = K' Taking 
into account that <B(qq')>A is small, condition (36) can 
be rewritten as follows: J1. 

1 , , 
-
2 

L,(cpg,cpg,_¢g ,¢g,)(1-
2
1 <B(qq) >-_!_<B(q'q') > )=o '· (37) 

qq qq qq qq qq 2 gg 

The preliminary calculations performed show that for 
the phonons A=2, Jl-=2. 
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· a a , 0 1 q± q± 2~ . . . (38) 

166 
So, i n Er o nly for two values o f q the · a 1 ~ a+ 22 q - q_ 
value s lie in the inte rval 0.05-0.10. The rest values are 
less than 0.05. The quantities ' a~± a q:t take the largest 
va l ue s for the single-particle levels q,lying near the 
Fermi energy. For the oct upole phono ns 

I 
0 .05. ll q:t a q :t 3K {39) 

and r-he sum 

I , .. 0.1 . " q± u q ± 2~ I - a q:!. a q.!. a K 
K 

(4 0 ) 

It may be expected that in the majority of de f ormed nuclei 
the number of quasiparticles in the gro und s tate s is 
srn.1 J 1 a nd the RPA-plto nons c an bP used . 

In the quasipa rticl e - phonon nuclear model the grounJ 
st<Jt e is vacuum for the phonons wit.h nll A 11 therefo re the 
aJlplicability of the RPA phono n s can finAlly be concluded 
after calculating the sum 

' 
Af' 

fl qi II q+ )..(1 

Tlte number of quasipartic les is estimated ill the ground 
state of spherical nuc lei. The multipole phonons with 
F 1-. 2 and 3- and the spin-multipole phonons with 
I" 1 ' and 2- are calculated. The largest fiumber of quasi
particles in the ground state is generated by the 2 1 phonons 
for the subshells lying near the Fermi energy. So, for the 
tin isotopes the largest value for the 2 1 phonons is 0.07. 
The total value of the number of quasiparticles in the 
ground state generated by five phonons mentioned above 
for the subshells lying near the Fermi energy, is 0.02-0.10. 
In the tellurium isotopes this value is 0.12. Therefore, 
within the quasiparticle-phonon nuclear model the Sn and 

Te isotopes can be calculated without taking into account 
the number of quasiparticles in the ground states. For 
the spherical nuclei lying near the transition nuclei, 
it is necessary to calculate the number of quasiparticles 
in the ground states; it is obviously very large. 
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5. CONCLUSION 

The effect of the Pauli principle, the improvement of 
the RPA and correlations in the ground states have been 
considered in many papers, for instance, in refs. 1 18 - 24 / . 

Our aim is to study the effect of the Pauli principle and 
the correlations in the ground states in the calculations 
within the quasiparticle-phonon nuclear model. It is 
necessary to investigate in what cases one can work in 
the RPA and when the Pauli principle or the correlations 
in the ground states should be taken into account. 

The calculation of all the roots of the secular equa
tion for the phonons of multipolarity Ap when only one 
root is used is the main difficulty. The space of the 
one-phonon states is the basis in the quasiparticle-phonon 
nuclear model. This means that the phonons with multi
polarity A up to A =7 or 8 are calculated (in spherical 
nuclei the spin-multipole phonons are also calculated), 
and all the roots of the secular equations are calculated 
for each multipolarity. The number of roots is determined 
by the number of single-particle levels of the average 
field in the neutron and proton systems. Therefore, this 
difficulty is not important; it results in the increasing 
computational time, which is very large sometimes. 

In the calculations with the wave functions containing 
the quasiparticle-plus-phonon or two-phonons components, 
the effect. of the Pauli principle gives more complex 
secular equations having the pole shifts in comparison 
with the equations with the RPA-phonons. The effect of 
the Pauli principle may turn to be essential in the 
calculation of the structure of low-lying states, the 
wave functions of which have large quasiparticle plus 
phonon or two phonons components, and of the giant 
resonances on the exited states. The fragmentation of the 
one-quasiparticle and one-phonon states and the correspon
ding strength functions with the RPA-phonons can be 
calculated without taking into account the Pauli principle. 

Within the quasiparticle-phonon nuclear model one can 
easily calculate the number of quasiparticles or cor
relations in the ground states. These calculations are 
performed for the spherical and deformed nuclei. In most 
of the deformed nuclei the number of quasiparticles in 
the ground states in small and we may use the RPA-phonons. 
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For the solution of the nuclear many-body problem,one 
should first of all take into account those terms of the 
interaction and those components of the wave function which 
determine the calculated properties. The approximate method 
of calculation should give the most accurate value of 
this nuclear property. At each stage of solving the problem 
it is important to avoid the calculation with higher 
accuracy than the accuracy of final approximate results. 
This is due to the fact that almost any overestimated 
accuracy of calculation needs much computational time. 
Nothing can be obtained gratis when solving such a compli
cated problem. 

A great success in the solution of the many-body nuclear 
problem is attributed to the approximate rather than 
exact consideration of the conservation laws. For the 
solution of the problem one should take into account the 
conservation laws in the same approximation. It is the 
fundamental work on quasiaverages / 25 / by N.N.Bogolubov that 
allowed a mathematically correct statement of the problem 
taking approximately into account the conservation laws. 
Just the approximate fulfillment of the laws of conserva
tion of the angular momentum, number of particles, the 
conditions of translational and Galilean invariance, the 
Pauli principle and so on gave the approximate solutions 
of such complicated problems, which could hardly be solved 
otherwise. 

The quasiparticle-phonon nuclear model allows the 
calculations taking exactly into account the Pauli princip
le. The latter should be taken into account only when 
it is necessary. In most the cases the calculations can 
be performed with the RPA-phonons. This conclusion relates 
also to the approximate consideration of the translational 
and Galilean invariance, and the different conditions 
of self-consistency. 
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