

сообщения объединенного ин Ститута ядерных исследований

дубна $17 / 12-79$ E4-12611
J.Bang , S.N.Ershov, F.A.Gareev, G.S.Kazacha

DISCRETE EXPANSIONS OF CONTINUUM WAVE FUNCTIONS. NUMERICAL EXAMPLES

Банг Е. и др.
Дискретне разложения волновых Функций континууша Численные примеры

Данная работа является окончанием серии статей (I, II) ${ }^{1)}$, посвященных дискретным разлошениям волноных функций континуума в конечной димости Вайнбанства. В работе проводится численное исследевание схо непрерывного спектра. Рассматривается случай одночастичных Функций континуума для потенциалов Саксона-Вудса и прямоугольной ямы. Обсумяа ютСя некоторые численные методы для решения задач на собственные значения встречаюџихся а данных разложениях.

Работа выполнена в Лаборатории теоретической фиэики оияи.

Сообщение Объедшиениого института ядерных шсследовании. Дубна 1979

Bang J. et al.
Discrete Expansions of Continuum Wave Functions
Numerical Examples
Different methods of expanding continuum wave functions in terms of discrete basis sets are discussed. The convergence properties of these expansions are investigsted, both from a mathematical and a numerical point of view, for the case of potentials of Woods-Saxon and square well type.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1979

1. Introduction

In two preceding papers $(I, I I)^{1)}$ different diacrete expansions of continuum wave functions in a inite region were reviewed. Particular attention was payed to the wttag-Leffler and Weimberg expansions.

In this paper, where we use oommon notation with I, II, we investigate the convergence of the Vainberg expansions, particularly the real Weinberg expangions, muerically. We look at the case of single particle continume fteten and corresponding S matrices, with square well and Voods-Saxon potentials.

A new type of real Weinberc etetes, propoead in I, is shown to give expansions with particularly convenient converjemce properties. Som numerical methods for solving the eigenvelne problene, corresponding to the different expansions, are discusaed in the Appendix.

Nunerical Resulte

In the aame way an it.was shown for the bound atate SturiHiouville oase ${ }^{2}$), it can be mown, that all the eiganvaluea montioned bove, which have the dimension of an onorg for larg vaInes of the radial quantim number, a, $w 11$ bohave an n^{2}. that mang, that $K_{n} \sim n$ (Kapur-Peierle or IBC), λ_{n} (Sturm-Liou-
ville, real and complex Weinberg) $\sim \frac{h^{3}}{n^{3}}$. Hote, that we have here, in agreement with rofs. ${ }^{3,4)}$ introduced $\lambda_{n} \equiv \lambda_{n}^{185}=1 / \gamma_{n}$, the Lippman-Schwinger eigenvalue, whereas the Sturm-Liouville eigenvalue of ref. ${ }^{2)}$ was defined as $\lambda_{n, 2} \equiv \lambda_{n}^{54}=\chi_{0}$

In fig. 1 , the eigenvalues $\lambda_{n}{ }^{4=\pi / 2}, \quad E=0$ for a square well are shown as a function of \mathcal{H}. Mote, that the minor of posi-

Pig. 1. The k-dependence of the eigenvalues $\lambda_{n}\left(\Delta=\frac{\pi}{2}\right)$ of the real Weinberg functions for the rectangular weil with $V=-48.72 \mathrm{MeV}, A_{0}=R_{0}\left(\frac{2 m}{\hbar^{2}} / \mathrm{K}_{0} /\right)^{\frac{2}{2}}=5.0$. The full curves denote the positive λ_{n}; the dotted, the negative百。

Pig. 2. The k-dependence of the eigenvalues $\lambda_{n}\left(\Delta=\frac{\pi}{2}\right)$ of the real Weinberg states of the Woods Saxon potential with the parameters of the text. Symbole as in fig. 1.
tive eigenvalues is infinite for all \propto values, the number of negative eigenvalues is an increasing funotion of \mathcal{K}.

In fig. 2 the corresponding eigenvalueg with a cut-off WoodsSaxon potential, $V=-V_{0}(1+\exp ((\varepsilon-R) / \alpha), R=3.26 \mathrm{f}$, $\quad \alpha=$ $=0.63 \mathrm{fm}, V_{0}=53.35 \mathrm{MeV}$, are shown. Hote, that the oscillation of fig. 1 diaappears for the more smooth potential.

Due to the presence of the factore λ_{n} the expansions (4.8), etc., must converge at least as fast as m_{z}. Hote, that (4.21) does not contain the factor λ_{n}, whereas (4.20) doas. It should further be mentioned that in integrale, containing the Green operator (4.8) or the K-aperator (4.21), the oscillations of the P_{n}, which become more rapid for larger n-values, will also contribute to the convergence, so that, like in ref. ${ }^{2)}, \frac{1}{n}$ is actually an upper limit for the convergence of auch integrals. That the P_{n} are oscillating more rapidly for higher n values, is particularly obrious for the real Weinberg states, it is, however, also true for the ordinary ones as well as for the KapurPeierls states and the resonance functions of the preceding section, when we consider $\quad<\leqslant Q$.

In order to demontrate the convergence propertiea, we have listed the relative errors of

$$
\begin{equation*}
K=(k|k| k) \tag{4.28}
\end{equation*}
$$

and S, obtained with N teres in the expansions (4.20) and (4.21) ($\left.\Delta=\frac{\pi}{2}\right)$

$$
\begin{align*}
& \Delta K=\left|\frac{K^{N}-K}{K}\right| \tag{4.29}\\
& \Delta S=\left|\frac{S^{N}-S}{S}\right| \tag{4.30}
\end{align*}
$$

in table 1. It is meen, that the convergence obtained with expresbion (4.20) is much blower than with (4.21), and particulaviy for large values of $K,(4,20)$ is rether $\operatorname{low} \frac{18}{5}$ convergent. This seens to be the reason, why the authors of ref. 5 clain, that the basia of real Weinberg states is uselose for higher onargios. It is seen that the corresponding relative errorn of the S-values foliow the sam pattern as for K, but that they are in general emaller. Slace S is here obtained fron a Homitian K-natrix, it is unitary, independent of the nuber of terms in the expressions (4.20) or (4.21).
 the man error and the maximal arror of the ecetteri calculated by expangions in terne of real Weinberg etatea for the equare well potential with the paremetere $R=1$ in and $V=20.75$

$\left.K_{1}^{K}\right)$	λ_{2}	$\Delta \mathrm{X} 1$	$\Delta K 2$	$\Delta s 1$	$\Delta s 2$	$\Delta \Phi$	ΔY
1	2	3	4	5	6	7	8
0.1	$4.0365-01$	$3.62-04$	$9.13-03$	$4.00-05$	$1.01-03$	$2.61-04$	$4.99-04$
	$4.5009-02$	$1.43-05$	$1.40-03$	$1.58-06$	$1.55-04$	$3.32-05$	$7.53-05$
	$1.6209-02$	$1.42-06$	$4.32-04$	$1.57-07$	$4.78-05$	$8.69-06$	$2.24-05$
	$8.2719-03$	$3.45-06$	$1.86-04$	$3.82-07$	$2.06-05$	$3.20-06$	$9.01-06$
	$5.0031-03$	$3.91-06$	$9.45-05$	$4.33-07$	$1.04-05$	$1.48-06$	$4.38-06$
	$3.3469-03$	$4.08-06$	$4.41-05$	$4.51-07$	$4.88=06$	$8.67-07$	$2.68-06$

| 1.0 | $2.6369-01$ | $1.27-03$ | $3.54-02$ | $8.24-04$ | $2.30-02$ | $3.78-03$ | $7.21-03$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | $4.1434-02$ | $7.87-05$ | $6.57-03$ | $5.08-05$ | $4.24-03$ | $5.54-04$ | $1.30-03$ |
| | $1.5691-02$ | $9.41-06$ | $2.15-03$ | $6.08-06$ | $1.38=03$ | $1.51-04$ | $4.12-04$ |
| | $8.1344-03$ | $2.29-07$ | $9.64-04$ | $1.48-07$ | $6.23-04$ | $5.67-05$ | $1.74-04$ |
| | $4.9531-03$ | $2.41-06$ | $5.24-04$ | $1.55-06$ | $3.38-04$ | $2.59-05$ | $8.68-05$ |
| | $3.3281-03$ | $3.03-06$ | $3.36-04$ | $1.96-06$ | $2.17-04$ | $1.34-05$ | $4.91-05$ |

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $9.2219-03$ | $1.80-05$ | $4.17-03$ | $9.93-06$ | $2.29-03$ | $1.70-04$ | $4.34-04$ |
| | $5.3406-03$ | $7.00-06$ | $2.09-03$ | $3.84-06$ | $1.15-03$ | $7.49-05$ | $2.09-04$ |
| | $3.4969-03$ | $3.87-06$ | $1.20-03$ | $2.12-06$ | $6.60-04$ | $3.81-05$ | $1.13-04$ |
| 3.0 | $-1.3393-01$ | $2.23-02$ | $2.91-01$ | $7.08-03$ | $9.29-02$ | $2.67-02$ | $4.62-02$ |
| | $8.1003-02$ | $3.10-04$ | $1.95-02$ | $9.83-05$ | $6.19-03$ | $1.42-03$ | $3.05-03$ |
| | $1.9297-02$ | $3.33-05$ | $5.19-03$ | $1.05-05$ | $1.64-03$ | $3.10-04$ | $7.90-04$ |
| | $9.0031-03$ | $5.62-06$ | $2.11-03$ | $1.78-06$ | $6.69-04$ | $1.06-04$ | $3.09-04$ |
| | $5.2656-03$ | $7.33-08$ | $1.05-03$ | $2.32-08$ | $3.34-04$ | $4.68-05$ | $1.48-04$ |
| | $3.4656-03$ | $1.51-06$ | $5.99-04$ | $4.78-07$ | $1.90-04$ | $2.39-05$ | $8.01-05$ |
| 4.0 | $-1.0983-01$ | $4.19-02$ | $6.11-01$ | $9.07-03$ | $1.32-01$ | $3.36-02$ | $5.50-02$ |
| | $7.4784-02$ | $9.48-04$ | $6.34-02$ | $2.05-04$ | $1.37-02$ | $2.26-03$ | $4.91-03$ |
| | $1.8559-02$ | $1.37-04$ | $1.97-02$ | $2.97-05$ | $4.27-03$ | $5.43-04$ | $1.47-03$ |
| | $8.8094-03$ | $3.97-05$ | $8.66-03$ | $8.60-06$ | $1.87-03$ | $1.96-04$ | $6.22-04$ |
| | $5.1906-03$ | $1.85-05$ | $4.58-03$ | $4.02-06$ | $9.90-04$ | $8.80-05$ | $3.14-04$ |
| | $3.4281-03$ | $1.20-05$ | $2.68-03$ | $2.61-06$ | $5.80-04$ | $4.59-05$ | $1.76-04$ |
| 5.0 | $-7.2105-02$ | $2.44-02$ | $7.74-01$ | $5.14-03$ | $1.63-01$ | $2.33-02$ | $4.05-02$ |
| | $5.1722-02$ | $3.23-04$ | $3.07-01$ | $6.80-05$ | $6.48-02$ | $2.17-03$ | $6.32-03$ |
| | $1.3484-02$ | $4.59-04$ | $2.49-01$ | $9.65-05$ | $5.26-02$ | $6.96-04$ | $5.19-03$ |
| | $6.6656-03$ | $5.96-04$ | $2.29-01$ | $1.25-04$ | $4.82-02$ | $3.77-04$ | $4.80-03$ |
| | $4.0531-03$ | $6.35-04$ | $2.19-01$ | $1.33-04$ | $4.62-02$ | $3.19-04$ | $4.62-03$ |
| | $-3.2148-03$ | $1.98-05$ | $1.54-02$ | $4.17-06$ | $3.24-03$ | $1.39-04$ | $4.35-04$ |

1	2	3	4	5	6	1	8	
6.0	$-5.7941-02$	$9.40-03$	$5.48-01$	$1.59-03$	$9.35-02$	$1.66-02$	$4.31-02$	
	$4.5041-02$	$4.82-03$	$2.33-01$	$8.20-04$	$3.96-04$	$6.27-03$	$1.83-02$	
	$-2.5910-02$	$3.37-04$	$3.39-02$	$5.73-05$	$5.76-03$	$1.17-03$	$2.57-03$	
	$1.2284-02$	$5.52-05$	$1.09-02$	$9.38-06$	$1.85-03$	$3.07-04$	$7.98-04$	
	$6.2344-03$	$1.84-05$	$5.02-03$	$3.13-06$	$8.54-04$	$1.19-04$	$3.48-04$	
	$3.8594-03$	$9.72-06$	$2.76-03$	$1.65-06$	$4.70-04$	$5.72-05$	$1.79-04$	
7.0	$-5.4801-02$	$2.01-02$	$5.59-01$	$2.65-03$	$7.37-02$	$1.82-02$	$3.35-02$	
	$4.3722-02$	$1.34-04$	$9.48-02$	$1.76-05$	$1.24-02$	$2.64-03$	$5.59-03$	
	$-2.4043-02$	$6.04-04$	$6.41-02$	$7.95-05$	$8.44-03$	$1.46-03$	$3.44-03$	
	$6.1656=03$	$3.31-05$	$1.10-02$	$4.36-06$	$1.45-03$	$1.61-04$	$5.44-04$	
	$3.8281-03$	$1.46-05$	$6.19-03$	$1.93-06$	$8.15-04$	$7.91-05$	$2.90-04$	
8.0	$-4.3410-02$	$1.74-02$	$7.03-01$	$2.22-03$	$8.96-02$	$1.59-02$	$2.91-02$	
	$3.5522-02$	$5.91-04$	$2.27-01$	$7.53-05$	$2.89-02$	$1.97-03$	$4.59-03$	
	$-1.8605-02$	$8.54-04$	$2.13-01$	$1.08-04$	$2.71-02$	$1.68-03$	$3.91-03$	
	$1.0022-02$	$2.13-04$	$1.49-01$	$2.71-05$	$1.90-02$	$5.74-04$	$1.64-03$	
	$5.2156-03$	$7.67-05$	$1.23-01$	$9.77-06$	$1.56-02$	$2.75-04$	$9.13-04$	
	$3.2844-03$	$2.96-05$	$1.08-01$	$3.77-06$	$1.38-02$	$1.54-04$	$5.76-04$	

Pig. 3. The Δ-dependence of the relative errors ΔS_{N}, calculated according to equation (4.21). Here N is the number of eigenstates in the expansion, the potential as in fig. 1.

In table 1 we also give the integrated numerical error of the wave function

$$
\Delta \Phi=\int_{0}^{0}\left|\psi^{N}-\psi\right| d z
$$

and the maximal numorical error

$$
\Delta \psi=\left|\psi^{N}-\psi\right|_{\operatorname{MAX}}
$$

whore $\boldsymbol{\psi}^{N}$ is obtained by taking into account N terms in the expansion (2.14a).

The convergence of the K-matrix for $\Delta=\frac{\pi}{2}$ was investigated for different potentials in ref.5). The other convergence questions, discussed above, seam not to have been investigated earlier. Hote that, as seen in table 2, the convergence of the expansion in real Weinberg functions for the Woods-Saxon case is in contrast to what was concluded in ref. ${ }^{5) \text {, very fast in a large }}$ energy interval ($0 \leqslant \mathrm{E} \leqslant 1250 \mathrm{MoV}$). Here, with only 2 terms in the expanaion, we have $\Delta S<1$ percent.

It is interesting to compare the convergence of the real and complex Weinberg expansions. It is seen in table 3 that for the S-matrix, the expansion in real functions is faster than the other by a factor of 10^{2} in average. When we compare the expansion in terms of real Weinberg states with the Mittag-Leffler expansion, see table 4, we also see that the former expansion is considerably faster converging than the latter.

All what here is said about the S-matrix is valid for the expanaion of the wave function as well, and we may conclude, that the expansion on terms of real Weinberg functions $\left(\Delta=\frac{\pi}{2}\right)$ is in general far superior to the other ones.

In the neighbourhood of narrom resonances, this type of expansion must be particularls good; the calculations of Huby and Liu ${ }^{6}$) actualiy showed, that in some cases, one term is sufficient.

In the general case, as was mentioned above, we still have the possibility of the free choice of Δ. In fig. 3 we show,how ΔS, for a fixed value of K, depend on Δ. As expected, the convergence of the expanaion becomes very sast, when Δ approaches the eigenphase δ_{0}; for $\Delta=\delta_{0}$ only one term is needed.

Table 2. The relative errors, $\Delta S=\left|\frac{S_{\text {emer }}-S}{\text { Sexarr }}\right|$ in the calculation of the S-matrix by expansion in real Weinberg atates (N indicates the number of termb) for a Woods-Saxon potential; $\ell=0$, the potential is that of the text, corresponding to ${ }^{16} 0$.

$K_{\left.(\underline{m})^{-1}\right)}$	0.1	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0
$\mathrm{Y}=1$	0.619	1.065	1.265	1.000	0.541	0.362	0.255	0.186	0.139
2	0.079	0.590	0.007	0.004	0.005	0.004	0.006	0.007	0.009
3	0.023	0.012	0.001	0.001	0.001	0.001	0.001	0.003	0.008
4	0.020	0.023	0.006	0.001	0.006	0.005	0.006	0.008	0.010
5	0.019	0.031	0.007	0.004	0.005	0.004	0.005	0.007	0.009
6	0.017	0.004	0.005	0.004	0.003	0.003	0.004	0.006	0.010

Table 3. The relative errors $\triangle S R W$ and $\triangle S C I$. In the calculation of the S-matrix by expansion in terma of real and complex Weinberg statea, respectively (I is the number of terna) for the rectangular well with the parameters as in table 2.

1	$\mathrm{k}=0.1 \mathrm{fm}^{-1}$		$\mathrm{k}=1.0 \mathrm{fm}^{-1}$		$\mathbf{k}=5.0 \mathrm{Im}^{-1}$		$\mathrm{k}=8.0 \mathrm{fm}^{-1}$	
	\triangle SRI	\triangle SCI	\triangle SRW	\triangle SCl	\triangle SRW	$\triangle S C W$	\triangle SRIV	$\triangle \mathrm{SCW}$
1	4.00-05	1.09-04	3.24-04	4.79-03	5.14-03	2.69-03	2.22-03	1.72-03
2	1.58-06	1. 10-04	5.08-05	5.21-03	6.80-05	1.08-03	7.53-05	5.86-04
3.	1.57-07	1. 10-04	6.08-06	5.22-03	9.65-05	1.34-03	1.08-04	5.62-04
4	3.82-07	1.10-04	1.48-07	5.22-03	1.25-04	1.36-03	2.71-05	7.13-04
5	4.33-07	1. 10-04	1.55-06	5.22-03	1.33-05	1.36-03	9.77-06	7.28-04
6	4.51-07	1. 10-04	1.96-06	5.22-03	4.17-06	$1.36-03$	3.77-06	7.30-04

 and real $\left(\Delta-\frac{\pi}{2}\right)$ Weinberg expansion, =48.72 MeV. The Mittag-Leffler is the optimal expansion with 16 terms, in the Weinberg case, 6 terms were used.

$k=0.1 \mathrm{~m}^{-1}$		$k=1 \mathrm{fm}$		$\mathrm{k}=2 \mathrm{fm}^{-1}$		$k=3 \mathrm{fm}^{-1}$		$\mathrm{is}=4 \mathrm{fm}^{-1}$	
$\triangle s / d$	\triangle SRW	ASIL	\triangle SRT	$\triangle S M$	\triangle SRW	\triangle SML	\triangle SRW	\triangle SMU	\triangle SRW
3.06-04	2.12-05	5.96-03	1.12-04	2.92	1.7	1.08-03	1.66-04	1.28-03	4.18-0

$\triangle S M U \quad \triangle S K W \quad \triangle S R W \quad \triangle S R W \quad \triangle S M L \quad \triangle S W$

\footnotetext{

sinns are of little value in connection with the problen of scattering in a potential as such. The usual continuum problema, mot in nuclear physics are of a more complicated sort, where residual interactiong of different types are inportant both for elastic and inelsstio scattering and for nuclear reactions. The potential scattering wave functions will in such problems only play the role of a P1rst approxibation in a perturbation expansion, as in DVBA.

These perturbation methods have a linited region of applicability, and if wo think of such processes as $(\gamma, \rho),(\gamma, \eta)$, otc. proceding at such onergies, where the nuclear wave functions are made up of several componente, the alternative mothods of coupled channels are very tedious.

In such csses, an expangion of the total wave function, incInding continuous parto (at least in some part of opace), in terme of a diserete basis, will be very useful. Such expansiong are in use in a vide range of problems, from the expansion of potentiala in separable Weipberg termg, used in few body problens, to R matrix or IBC expansions, used for heavier nuclei.

In this article, we have compared the convergence propertiea of some of the ex expanaions, including a new one, our version of the real Weiaberg states, on2y for the case of potential scattering. When residual interactions are taken into account, sinilar convergence properties must in genorel exift, as can be arsued from the oonvergence of the Green functions. Only in the case, wher a number of eigenvalnes lie very near to each other, the adrixtures of the corresponding oigenstatea, caused by residual interactions are beyond the estimates of perturbation theom ry. However, this can only concern a linited number of oigenthtates, corresponding to different chamels (e.g., inith different (-values).
the extremely fagt convergence of our real Weinberg expanalon, in the case when Δ approwches the of of the potential
scattering，is of course not expected，when residual interactions are included，still，as mentioned above，this expanaion will retain some very nice convergence propertios，and in general，both numerical and mathematical facts speak in favour of the real Wein－ berg（or in some cases the $⿴ 囗 十 ⺝ 丶)^{\prime}$ ）expansion as being the fastest converging of all．

The practical applicability of expansions does not depend on their convergence properties only．The real Neinberg states may provide the best posaible expansion basis，if we want to describe，e．g．，elastic scattering with given projectile and target，at a certain energy．If，on the other hand，we are in－ terested in the general solutions of the Schrödinger equation of a given nucleus，the energy dependence of the Weinberg，Kapur－ Peierls，and other states of eection 4 is a drawback，and an ex－ pansion in terms of a fixed basis，like the pole states has great odvantages，even if it should turn out，that the number of terns needed is comparatively large．

The authors acknowledge helpful discussions with menbere of the ataffs of the Joint Institute for Huclear Research and the Miels Bohr Institute．

One of the authors，（J．B．）wants to thank the J．I．I．R．for paying his atay in Dubna during the period in which the work was done，and the Danish Research Council for a grant，covering his travelling costa．

Appendix

In this appendix，we shall shortly discuss some different numerical methods，used for obtaining the resonance functions as well as the Weinberg functions，otc．

Here it is convenient to look at the homogeneoum Lippaan－ Schwinger equation

$$
\begin{equation*}
G_{0}(\varepsilon) V \psi=\lambda \psi \tag{1.1}
\end{equation*}
$$

（or rather，the radial part of this）satiafied by all these func－ tions，with different G_{0} corresponding to the different boun－ dary conditiona．
a）The separable representation of the potential was propo－ eed in ref．${ }^{5}$ ．Here we get

$$
\begin{align*}
V_{e}\left(N, K^{\prime}\right) & =\int_{0}^{\infty} j_{e}(\pi \tau) V(\tau) j_{e}\left(K^{\prime} r\right) d r \tag{4.2}\\
& \approx \sum_{i=1}^{N} V_{i} d_{e}\left(x_{i}\right) d_{e}\left(x^{\prime} r_{i}\right)
\end{align*}
$$

Then（A．1）takes the form

$$
\begin{equation*}
\sum_{i}\left\{\lambda_{n e}(\varepsilon) \delta_{i n}+\left(V_{i}, V_{x}\right)^{k} G_{o e}\left(\tau_{x}, \tau_{i}, \varepsilon\right)\right\} c_{i}=0 \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{i}=\frac{2}{\pi} V_{i}^{*} \int_{0}^{\infty} d e\left(x^{\prime} z_{i}\right) \psi_{n e}\left(x^{\prime}\right) d x^{\prime} \tag{1.4}
\end{equation*}
$$

for

$$
G_{o e}^{ \pm} \text {we have }
$$

$$
\begin{equation*}
G_{p e}^{t}\left(\varepsilon_{i}, \eta_{x}, \varepsilon\right)=\frac{2}{\pi} \int_{0}^{\infty} d x \frac{\dot{d e}\left(x \eta_{i}\right) d \dot{p}\left(x q_{x}\right)}{\varepsilon^{2}-\kappa^{2} \pm i \eta} \tag{A.5}
\end{equation*}
$$

which can be integrated analytioally．
The aysten of equations（A．3）has a aymetric coofficient matrix，which can be diagonalised by gimple methods，so the λ_{i} are easily found．If，instead，we want the resonance values of \mathcal{E} ．for which，agein，the determinant of（4．3）is zero，a some－ what complicated calculation is necessary．

Since the aeparabilization method mentioned above is suffi－ ciently precise for the λ－igenvalue problem 5），the two fol－ lowing methode were mainly used for finding resonances（the \mathcal{E}－ eigenvalue problem）．For that case，the method 5）was used to find a first approximate solution of（ 1,1 ）．Starting from this， more precise solutions were found by one of the following methods．
b）The finite difference method with stepwise pursuit
Here we approxiaste the radial Sohrödinger equation（2．1a）

$$
\begin{equation*}
\varphi_{e}^{\prime \prime}+\left(x^{2}-\frac{e(P+L)}{r^{2}}-V(r)\right) \varphi_{e}=0 \tag{1.6}
\end{equation*}
$$

－ith the boundary conditions

$$
\begin{align*}
& \varphi(0)=0 \tag{1.7a}\\
& \frac{\varphi^{\prime}(\tau)}{\varphi(\tau)}=b(K) \tag{A.7b}
\end{align*}
$$

in term of finite differencen（etep length h ）es reapeotively

$$
D_{n+1} U_{n+1}-C_{n} U_{n}+D_{n-1} U_{n-1}=0
$$

and

$$
\begin{align*}
& U_{0}=0 \\
& S_{N+1} U_{N+1}-26 h U_{N}-S_{N-1} U_{N-1}=0 \tag{A.9b}
\end{align*}
$$

(A.9a)
here

$$
\begin{aligned}
& U_{n}=\varphi_{e}(h \cdot n) \\
& D_{n}=1-\frac{Q_{n} h^{2}}{12} \\
& C_{n}=2+\frac{5 Q_{n} h^{2}}{6} \\
& S_{n}=1-\frac{Q_{n} h^{2}}{6} \\
& Q_{n}=V(h n)+\frac{e(P+1)}{(h \cdot n)^{2}}-K^{2}
\end{aligned}
$$

which gives an approximation to (4.6), (A.7) with orrors h^{4}.
This systen of difference equations was nolved by the method of stepwise pursuit 7,8).

For the quantity

$$
\begin{equation*}
A_{i}=\frac{U_{i-1}}{U_{i}} \tag{1.10}
\end{equation*}
$$

we get the recuraion formule

$$
\begin{equation*}
A_{i+1}=\frac{D_{i+1}}{C_{i}-D_{i-1} A_{i}} \tag{A.11}
\end{equation*}
$$

Wow, the recureion formula is used from both aldos, starting with A_{1} and $A_{\text {NoL }}$ given by the reapective boundary condition (A.9a), (A.9b). The eigenvalue K is deterwined by identieying the logarithaic derivatives of the two solutions et some point $n=M$. It the $A_{n}^{\prime} s$ obtained by recuresion irom left and right are called A_{n}^{4} and A_{n}^{n}, reppectively, this condition is
 where $M \& N-M$.

From this K is found by iteration, and once it is determined, the solutions are constructed by means of (A.10).
c) Integral equation method

The Lippman-Schwinger equation with $G_{0}=G_{0}^{+}$is equivalent to the Volterra equation

$$
\begin{equation*}
\varphi_{e}(x, r)=\frac{i}{2}\left[\left[x+\frac{1}{k} \int_{0}^{1} d t_{2}^{*} h_{e}^{*}\left(x \nabla^{*}\right) V\left(p_{0}\right) \rho_{e}\left(x, q^{\prime}\right)\right] h_{e}^{-}(k e)\right. \tag{A.13}
\end{equation*}
$$

$$
\left.\left.\left.-\left[1+\frac{1}{k} \int_{0}^{3} d \tau^{\prime} h_{e}\left(x Q^{\prime}\right) V\left(Q^{\prime}\right) \varphi_{e}(x,\rangle^{\prime}\right)\right] h_{e}^{*}(x\rangle\right)\right\}
$$

Since (A.13) is homogeneous, we may write

$$
1+\frac{1}{k} \int_{0}^{a} d q^{\prime} h_{e}^{*}\left(x z^{\prime}\right) V\left(z^{\prime}\right) \varphi_{e}\left(\pi, Z^{\prime}\right)=0 \quad(A \cdot 14)
$$

which may be solved by the methods of ref. 9), using (A.14) es eigenvalue equation.

In table 5 we show nome M values of $C=0$ single partickle resonances of ${ }^{15} \square$ (potential of the text) calculated by the 3 methods described above. The degree of agreement between the very different methods b) and c) indicates the magnitude of the errors.

References

1. J.Bang, S.K.Erehov, F.A.Gareev, G.S.Razacha, Communication JINR, E4-12497, E4-12538 (1979).
2. J. Beng, F.A.Gareev, Phye.Scripta 18 (1978) 289, 297.
3. S.Weinberg, Phys. Rev. 131 (1963) 440.
4. T.Sasakaws, Fuel. Phys. A160 (1971) 321.
5. V. Bfimov, H.Schulz, Lett al Nuovo Cimento B (1973) 761; Communication JINR, E4-7721 (1974).
6. R.Huby, Fuel. Phys. A138 (1969) 442; Q.Liu, Z. Phys. 258 (1973) 301.
7. S.K. Godunov and V.S.Rjabenkij, Raznoatnye Skhemy (Nauka, Moscow, 1973).
8. G.S.Kazacha, Communication, JINR, 11-9462 (1976).
9. D. L. Kirk, J. Comp. Phys. 21, No. 6 (1976).
