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Calculation of Neutron Strength Functions in
Doubly Even Spherical Nuclei

The neutron strength functicns are calculated and the
spin dependence in several doubly even spherical nuclei is
investigated within the quasiparticle-phonon nuclear model.
The results of calculation of the s- and p-wave strength
functions are in good agreement with the available experi-
mental data. The s-wave strength functions are calculated
for two values of spins J=I, +1/2 , and it is shown that the
functions 8% and 8~ are, as a rule, close to each other. The
results of calculation for the spin dependence of the neut-
ron strength functions agree with the corresponding experi-
mental data.

The investigation has been performed at the
Laboratory of Theoretical Physicsg, JINR.
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INTRODUCTION

The neutron strength functions are important characteris-
tics of nuclei at the excitation energies higher than the
neutron binding energy By . They can provide the informa-
tion on the values of a few quasiparticle components of the
wave functions of highly excited states. The most complete
experimental data on the neutron strength functions are col-
lected in ref.’! . The experimental data are analyzed in
ref.’?’  in order to study the spin dependence of the strength
functions. Among the recent theoretical papers devoted to

the description of the s-neutron strength functions in the
spherical nuclei, we should like to mention the calculations
within the shell approach to the theory of nuclear reactions.

In recent years many investigations have been performed
within the quasiparticle-phonon nuclear model’4/ to study
the fragmentation of a few quasiparticle components of the
wave functions at low, intermediate and high excitation enér—
gies/5“7/ . The neutron strength functions are well descri-
bed in the odd deformed and spherical nuclei. The fragmenta-
tion of the one-phonon states due to the interaction of
gquasiparticles with phonons has been studied in refs. 8.9/,
The partial radiative widths and the giant resonances in
doubly even spherical nuclei are well described within the
quasiparticle-phonon nuclear model. This paper is aimed at
calculating the fragmentation of the one-phonon states in
doubly even nuclei within the quasiparticle-pheonon model and
at obtaining the s- and p-wave neutron strength functions.
The calculations are performed for certain spins of the com-
pound-states, thus allowing the study of the spin splitting
of the neutron strength functions.



BASIC FORMULAE

The neutron strength functions for a given value of spin
I of the compound nucleus are determined by the following
relation:

S() = I T(I)/AB, (1)
3

where I  is the reduced neutron width of the state 1 ; the
summation over i is performed in the energy interval AE.

In the case when the neutron with orbital momentum ! is ab-
sorbed by the target - nucleus with spin I , one can find
the sum strength function for the states with different spins

3
S, = X gMsy’ (2)
Jj
where g(J)= 2Jd is the statistical weight, and
1 2@Iy+1)(2¢ +1)
Sfl is the value of the [ ~strength function with a given

value of spin of the compound—-nucleus f:jb+?+17é=f0 +f in
the channel j .

Let us find the form of the strength function Sg in the
quasiparticle phonon model. The wave functions of the target-
nucleus and compound-nucleus have the following form:

+

T(IOMO)"‘GIOMO 10> (3)

v, (M-SR, gD+ 3 Pt . Q) Jioxa)
1 IMi ’klil 1\22 Aptgd T Agp 212.1

2ig

where «'(@Q%) is the quasiparticle {phonon) creation operator,
|0> is the guasiparticle (phonon) vacuum, and v is the
state number. The secular equation for finding the energies
7j, Of the states ¥,(JM) has the form’®’

(J )[I (J1 )
ff(r{)edetlm” —T’JV Yo ., - | =0.

11
&J . —-
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The detailed description of sclving this equation and find-
ing the coefficients RV(Ji%, is given in refs. 8.1

The strength function Sp is expressed through the co-
efficient R (Ji) defining the contribution of the one-pho-
non component to the wave function of the state v and is

S;rj =FS°_p' S (J9) “
AE VvAE
V2GS RGN0 1T 0 =3 0 g b g ()
v i 1 1 n nel nJ'noc’Icr“
Here U g are the Bogolubov transformation ccoefficients,
¢i%,no%10 are the phonon amplitudes which can be find

by solving equations in the RPA’1%/ ; the single-particie
states are denoted by nlj , where n is the principal qu-
antum number of the single-particle state. It is seen from
egs. {6) and (7) that the value of Sfj depends, first, on
the contribution of the one-phonon components R (Ji} to
the wave function (4), second, on the value of the amplitude

¢A? nololg entering into the phonon Q*JMi , and
i

third, on the coefficient u p. . The value of u_p; is
close to unity for the highly—iying particle states and small
for the hole states. To evaluate the reduced single-particle
widths FZ in the case of the Saxon-Woods potential, we

use the semiempirical formula from ref.’1%/
. 12 2
I ~2kR T (1.674d% ), (8)
51 MR2/E

where ¥ is the neutron wave number, R is the nuclear ra-
dius, and d is the diffuseness parameter of the Saxon-Woods
potential. For the nuclei under consideration I:n)q “§%§%V,

. SBaf). A
Let us calculate the strength function with the Lorentz
weight function by the following formula

A
2 2.
(T]_‘T]JV)_;A'LI

2 TR T ;
y2 ()~ 2y 200e (g-n,) = 2 Sy 2(I)) (9)
J] P 27 v !

where A is the interval near the energy nJL; over which the

averaging is performed. We use the theorem of residues and
eXpress yf,(q) through the contour integral around the
i



poles, which are the,solutiong of eq.(5), and after some
transformations, we (see ref.’4/) have

2
ye. (q)»_--l-l 9@ (5+iA/2) 109
Ti i’ F (n+ iA/2)
where %= E M @ ¢ . and M, . are the minors of the de-

1
termlnant in eq. (5) When calculating the strength functions
SE . one should change

2 .
VEE Ly (T3] - Ai: dy v, ().
The model Hamiltonian includes the average field as the
Saxon-Woods potential, the pairing interaction, the isosca-

lar and iscvector multipole and spin-multipole forces. The
values of the pairing constants have been fixed by the ex-
perimental data for the pairing energies. The constants of
the gquadrupcle and octupole forces have been chosen so as to
reproduce the experimental data for the 2? and 3: levels
in the calculations with the wave function {4). We use the
parameters given in paper'%/ ; therefore there are no free
parameters when calculating the neutron strength functions.

2., NEUTRON STRENGTH FUNCTIONS

It is known that in the dependence of the neutron strength
functions on mass number A, there are maxima and minima. So,
for instance, the s -wave strength function S¢ has maximum
in the region A~55 and decreases more than by an order of
2 'when passing to the region A -~ 100 . Figure i1 shows the be-
havicur of the one-quasi-particle state energy, 38,5 as a
function of A , for the Saxon-Woods potential reckoned from
the neutron binding energy B, . The strength function §; has
the maximal value when the state 3s,,p ~is near B, . The
deeper the one-quasiparticle state 3s,;,5 , the lesser the va-
lue of 8, .

The interaction between the quasiparticles producing the
collective one-phonon states, is responsible for the frag-
mentation of the two—quaSLpartlcle components over some one-

phonon states. The value of _.|¢'h ]2 approximately
nfj, 0, L1,

determines the contribution of the two—quasiparticle state
{nfj,nglyIy} to the one-phonon state i . Figure 2 shows how

the strength of the two-quasiparticle state {2d 3s

5/27 1/2}

6
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Fig.l. Dependence of the 3s1 one—quasiparticle state

energy on A,

/2

is distributed among the gquadrupole phonons in 96M0 .- The
main strength of this state is concentrated at 3.4 MeV; there
are notable components at lower energies. The states with

an energy higher than 5 MeV exhaust 1.5% of strength of this
state. The contribution of the component {2ds,z,3s(/2} to the
one-phonon state near B = 2.15 MeV is close te zero. There-
fore, the calculation of the strength functions in the one-
phonon approximation gives very small walues.

The quasiparticle-phonon nuclear model takes inte account
the interactions of quasiparticles with phonons, which re—
sult in the fragmentation of strength of the one-phonon sta-
tes over many nuclear levels. As a result the strength of

7



‘the two—quasiparticle state {2d5/2,3sl/22 is distributed in

a wider energy interval including’B[], as compared to the
one—phonon approximation. Figure 3 shows the functions

yJ1/2 () for J=2 and J=8 calculated by formula {10). The
interaction of quasiparticles with phonons results in that
a part of strength of the two-guasiparticles state is trans-
ferred upward so that at the excitation energy of 9 MeV the
functions yJ /z(q) have rather large values. Just the values
of these compochents {2d, 381,2§at the energy equal te B
define the values of S‘TJ

2 Illj 5/2151/2’

1.0

|
S —
fmassny
e
el
-

Fig.2. Distribution of the two—quasiparticle component
{25,038 /2! over the roots of quadrupole phonons
in %Mo .
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025

Fig.3. Strength function.yil/gq) for "®Mo . The solid line

.z . : 2
is }ZI/Z(W) . The dashed line is y31/;q)'

We have calculated the s~ and p-wave strength functions
by formulae (2),(6) and (7} for those spherical nuclei for
which the single-particle states 3s;,, . 2py,;p 2pg3,, and
for Nd3p;,, and 3pg,q are the bound single~particle sta-
tes of the Saxon-Weods potential.

Table 1 gives the experimental data and the results
of our calculaticns ¢of the s-wave strength function. It is
seen from Table 1 that the calculations describe rather well
the experimental data and represent correctly the behaviour
of Sy as a function of A . The results of our calculations

9
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Table 1

S-wave strength functions of even-even spherical nuclei

Target igén Bn 104 x S50

g?rizg_ He; Ref, o . Cale. with

ret : periti. A E=0,6 MeV
53y 3/2” 9.72 1 5,03%2,06 4,5
6155 3/2” 10,6 1 3,0%0,8 2,5
T36e g/t 10,2 1 1,5%0,4 1,6
8750 g9/2* 11,1 1 0,26%0,06 0,88
Mzr 572t 8,63 1 0,9%0,3 0.6
9540 s/2% 3,15 12 0,48%0,1 0,5
ELET 5/2% 8,64 12 0, 370,15 0,8

Table 2

P-wave strength functions of even-even spherical nuclei

Spin and 4
Target parity of 'B“r Ref. 107 x 51

target LeV . Calc. with

Experim.
AL=0,6 leV

3¢y 3/2” 9,72 1 0,081%0,051 0,08
b1y; 3/2" 10,6 1 - 0,10
14434 /2" 7,82 12 1,2%0,5 1,6

10



for nuclei with A~ 90 are very close to those of ref.’3/,
Table 2 shows the results of calculation for the p-strength
functions 8; which are also in good agreement with expe-
riment. In %*Cr the large value of §; and the small value
of 81 are described simultaneously. The results of our
calculation depend weakly on the choice of the averaging
interval AE , and in all nuclei under consideration Sp
change not more than by 20% with increasing AE up to 1 Mev.
The results of calculation are more sensitive to the change
of quadrupole and octupole constants. The change of the con-~
stants within 5% {(which influences essentially the position
of the 2% and 3, levels) changes S, not more than by 30%.
An exception is the nucleus 74Ge in which the anharmonic
effects are very strong. The reliability of the obtained re-
sults can be verified by the calculation of the radiative
strength functicns. The values of the Ml-radiative strength
_functions at E,= 7.7 MeV and 7.6 MeV equal to <k{Ml)>» =

¥
=8-10"% Mev™3 for "¥Zr and<KM1) > =10-10~2 Mev~3 for’®mo
are given in ref.’!3/ | our calculations with the wave
function (4} by the method described in ref.’” with the
constants we have used when _calculating 8y , give the va-
lues <k(Ml)> = 6.6-10"2 Mev~3 for 927 and <k(M1y>=7.O'1O'9
MeV—3 for %Mo . This is in agreement with the experimen-
tal data having uncertainty factor of about 2718/ | It should
be noted that though the strength functions are investiga-
ted experimentally for a long time, the results obtained by
various groups have a rather large dispersion, especially

at minimum.

3. SPIN DEPENDENCE OF s-WAVE STRENGTH FUNCTIONS

The spin dependence of the neutron strength functions
has been much discussed in the literature. The most complete
experimental data are in ref.’®’ | In the case when s -ne—
utron is absorbed by nucleus with an odd number of nucleons
with spin I ¢ , the compound-states with J=1011/2 are exci-
ted. For each value of spin J the strength function can
have the values of §* and S™(8*=8[o*!/2Y? unequal between
themselves. The statistical analysis of the experimental
data performed in ref.’?’ shows that for the majority of
nuclei §t=8" and the deviations from this fact are purely
accidental. However, in some nuclei st differs noticeably
from §© . As a rule, such a difference takes place for the
nuclei in which the averaging is performed over a small
number of resonances. Because of poor statistics the accu-

1



racy of the determination of S-r is small. Rather keen
experiments on the transmission of polarized neutrons
through a polarized nuclear target allowing the direct de-
termination of the difference 8t_-8  , have been performed
in refs.’14.1% for some nuclei of the rare-earth region.
Within the experimental error it is obtained that s*t.s .
It is easy to calculate the values of 8T and 8~ within
cur approach. As it is seen from fig.?;y:'zl/,2 {} have diffe-
rent form depending on the excitation energy for different
values of J . Therefore, whether the values of 8% and §~
will coincide or not depends on the ratio of yfllz {(n)

for two values of J in the B, region. The quantities

2 . : .
ylniI/Q.UQ are deterimed by different matrix elements,

and therefore, they may differe from each other. Table 3
shows the results of calculations for §* and 8§~ and for
+

S -5
8*4 8"
gence of s' from $~ . As is seen from table 3-there is
no strong difference between 8' and 8§~ though there is a
certain spin dependence for §r and Mo . For 9 Mo the cal-
culation gives the value a =0.27, whereas the analysis of
the experimental data in this nucleus /2’  gives the value
a =1.2. It should be noted that the analysis has been per-
formed for & resonances with J==10m4/2 only. Therefore, the
determination of a is not accurate. The strongest spin de-
pendence is chtained foE 88gr . Unfeortunately, there are no
experimental data on 8= in this nucleus. :
Based on the available experimental data and the results
of calculations performed, we may conclude that for the
majority of nuclei 8t= 8~ . But for some nuclei, due to
their individual properties, this regularity can be distor-
ted. A further experimental study of the spin dependence
of the neutron strength functions is necessary with better
statistics and in a wide range of mass numbers. It is ad-
visable to search for deviation of 8% from 8  in nuclei
with the number of nucleons N close to the values N=50,82,
as in these nuclei there are observed many deviations from
the statistical regularities. It is also necessary to cal-
culate the values of §-° for a large number of nuclei.

the guantity a4=2 which characterizes the diver-

12



Table 3

Spin dependence of s-wave strength functions

Compound-
4oy 4,64 4,37 © 0,06
62y 2,46 2,4 0,025
S8 0,7 1,1 =0, 44
92y p 0,65 0,58 0,11
96, -
to 0,55 0,42 0,27
Byo 0,86 0,75 0,24
CONCLUSION

The calculations of the neutron strength functions berfor—
med in this paper and in refs. /5.8 differ essentially
from the standard calculations within the optical nuclear
model. Within the quasiparticle-phonon nuclear model the
fragmentation of the one~ and two-quasiparticle states is
calculated over many nuclear levels. The values of the cor-
responding components of the one- and two-guasiparticle sta-
tes at the excitation energy near B determine the values
of the neutron and partial radlatlve strength functions.
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