сообщения объединенного ИНСТИТУТа ядерных исследований
 дубна

C323
B-2 2

E4-12497
J.Bang, S.N.Ershov, F.A.Gareev, G.S.Kazacha

DISCRETE EXPANSIONS
OF CONTINUUM WAVE FUNCTIONS. general concepts

E4-12497
J.Bang, S.N.Ershov, F.A.Gareev, G.S.Kazacha

DISCRETE EXPANSIONS OF CONTINUUM WAVE FUNCTIONS. GENERAL CONCEPTS

Банr Е. и др.

дискретные разпожения волновых функиий

континуума. Общий подход
рассмотрени различнне дискретные разложения волновых функций континуума: польсные разлошения /согласно теореме Миттаг-Лефпера/, Вайнберговские состояния и т.д. Общими свойствами данных групп состояний является их полнота в конечной области пространства, они удовлетворяют уравнениям шредингеровского типа и сшивавтся на границе со свободными решениями уравнения Шредингера. Исследуется сходимость разложений для S - матриць, Функций Грина и волно вых Функиий непрерывного спектра. Вводится новая группа состояний, обладающих наилучшей сходимость.

Работа выполнена в Лаборатории теоретической физики оияи

Bang J. et al.
E4-12497
Discrete Expansions of Continuum Wave Functions. General Concepts
Different methods of expanding continuum wave functions in terms of discrete basis sets are discussed. The convergence properties of these expansions are investigated, the case of potentials of Woods-Saxon and square well type.

The Investigation has been performed at the Laboratory of Theoretical Physics, JINR.

1. Introduotion

In this artiole, the oonvergence of different expansions of single partiole states in the continuum is considered.

Continum states are met in a number of nuclear physios problems, ranging from elastic soattering, over different reaotions, to caloulations of nualear struoture, where the continurm states oame into play in a Firtual way.

In many of these cases, it is from a calculational point of Fiew very convenient to replaoe the continuum functions, partly or completely, by a disorete set of states. Thls can be done in many ways, sinoe essentially any oomplete set of funotions will do; the set does not even need to be complete in all spaoe, oompleteness in a final volume, whioh contains the nuoleus, will in many calculations be sufiloient.

Eren this limited completeness courd be disposed of in a conorete oalculation, but it is a very reassuring feature of a basis, and we shall here only look at suoh sets, which are oomplete in a certain region of space, say for $r \leqslant a$, and more specially suoh sets, whioh satisff equations of the Sohrödinger tjpe.

We shall further conoentrate on suoh funotions, which satisfy physical boundary conditions. This means that if the Interactions (apart, possibly, from the Coulomb field) can be neglected for $r>a$, the functions are oontinued into solutions of the free particle (or Coulomb) Schrodinger equation. This
means, that the important Green funotions G^{+}and G^{-}have stmple expressions in terms of our basis functions.

We are thus excluding, e.g., the harmonic oscillator functions, the infinite well egienfunctions, and the funotions of Wigner and Eisenbud /1/ used in R-matrix theory from our discussions. Sinoe the existing literature concerning these states is very extended, we do not feel this as a serious limitation of our work.

The applioation of the expansion schemes discussed here, to, e. g., continum shell model oalculations, is fairly straightforward, see, e.g., ${ }^{\prime 2,3,4 /}$ and reforences therein. Once a discrete representation of the Green function is known, the wave funotions are in general obtained by matrix inversion. Such calculations will be published elsewhere.

We shall in the next seotion list the main properties of the sets of funotions, we are looking at. In seotions 3 and 4, we shall oonsider the problem of using these funotions as a basis of expansion in the oaloulation of potential scattering wave functions, as well as of the oorresponding S matrix. Although suoh expansions are partioularly usefull in the many-ohannel oase, with residual interactions, some of the important oonvergence properties are seen already for one channel with potential soattering, and we shall limit our expansion calculations to that oase.

In seotion 3 we are looking at the Mittag-Leffler expansions $/ 4 /$ mainly, whereas in seotion 4, we shall consider different expansions in terms of energy dependent, discrete sets of wave functions. In this oonneotion, a new set, with particularly good convergence properties is proposed.

With a given expansion basis, a number of presoriptions oan be used for the oaloulation of the S-matrix. These prescriptions are discussed below in connection with some concrete numerical examples.

2. Properties of the Bigenfunotions

As $1 s$ said above, we shall here limit ourselves to a certain class of eigenfunotion expansions, used in nuolear physios. Common to them is that the funotions satisif equations of the tJpe

$$
\begin{equation*}
\left(H_{0}+\gamma V(\imath)-\varepsilon\right) \psi=0, \tag{2.1}
\end{equation*}
$$

where $V(r)=0$ for $r>a$. H_{0} might include a coulomb potential, but we shall here limit ourselves to the oase, where it is the pure kinetic energy operator. We are looking at spherioal symmetrio V^{\prime} 's only, and write

$$
\begin{gather*}
\psi=\frac{Y_{\ell m}}{\tau} \varphi_{l} \tag{2.1a}\\
\left(-\frac{d^{2}}{d r^{2}}+\frac{\ell(l+1)}{r^{2}}+\gamma V(r)-k^{2}\right) \varphi_{l}(r)=0 \quad\left(\frac{\hbar^{2}}{2 m} k^{2}=\varepsilon\right)
\end{gather*}
$$

Te are partioularly interested in the case, where V is the Toods-Saxon potential

$$
V=\frac{V_{0}}{1+\exp \frac{2-1}{\alpha}}
$$

This is different from 0 for all τ, but if $a \gg+\alpha$, the error by outting off the potential at $r=a$ is negligible. When we in the following talk about a Voods-Sazon potential, we mean suoh a out-off potential, and the same with the possible spin orbit term of the type

$$
V_{s o} \sim \frac{1}{z} \frac{d v}{d z} .
$$

We shall also look at the limiting oase of $\alpha \rightarrow 0$, the square well potentiel.

Ve are looking at expansions for $r \leqslant a$ only, sinoe we want to expand only suoh funotions, whioh for $r>a$ satisfy an equation

$$
\begin{equation*}
\left(H_{0}-E\right) \psi=0 \quad r>a \tag{2.3}
\end{equation*}
$$

or, for the radial parts

$$
\begin{equation*}
\left(-\frac{d^{2}}{d \tau^{2}}+\frac{e(l+1)}{\tau^{2}}-k^{2}\right) \Phi_{l}=0 \quad\left(\frac{\hbar^{2}}{2 m} k^{2}=E\right) \tag{2.3a}
\end{equation*}
$$

So once the expansion for $r \leqslant a$ is giren, ψ is know for all r-values.

The basis states φ_{Q} satisiy the boundary oonditions

$$
\begin{equation*}
\varphi_{e}(0)=0 \tag{2,4}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d}{d z} \ln \left(\varphi_{l}(i)\right)=b, \quad r=a \tag{2.5}
\end{equation*}
$$

The different sets in common use are characterized by the ohoices of (γ, ε) and of $B, i_{0} e_{0}$, of the continuation of φ for $\varepsilon>a$.
a) The bound state boundary oondition is common to all
the sets:

$$
\begin{equation*}
b=\frac{O_{l}^{\prime}(k)}{O_{l}(k)}\left(=k \frac{h_{l}^{+)}(k a)}{h_{l}^{+}(k a)}\right) \tag{2.6a}
\end{equation*}
$$

(When Coulomb
field absent)
where O_{ℓ} is an exponentially decreasing solution of (2.3) (equal the Riccatti-Fankel function $h_{l}^{+}(k r)$ in the absence of Coulomb foroes).

$$
\begin{equation*}
O_{\ell \rightarrow a} \sim e^{-x \tau} \tag{2.7}
\end{equation*}
$$

characterized by the positive number

$$
\begin{equation*}
x=-i k, \quad E_{\text {binding }}=-\frac{\hbar^{2}}{2 m} x^{2} \text {. } \tag{2.8}
\end{equation*}
$$

This means that our eigenfunotion, continued as O_{ℓ} for $r>a$, are square integrable in all spaoe.

We have, however, already here a choioe of different eigenvalue problems, all with E, ε and γ real.

Aa) Schrödinger eigenfunotions; γ fixed, eigenvalue

$$
\varepsilon_{i}=E .
$$

Ba) Sturm-Liouville funotions; $\varepsilon=E$ fixed, eigenvalue

$$
\gamma_{i} \text { (often oalled } \lambda_{i}{ }^{5)} \text {) }
$$

(a) Kapur-Peierls functions, γ, E fixed, eigenvalue $\varepsilon_{i} \neq E$.
The Schrödinger eigenvalue problem Aa) has for the potentials, in wich we are interested, only a finite number of eigenvalues. However, the Sturm-Liouville functions, Ba) form a oomplete set in $\mathscr{K}_{2}(a)$ (and this will even be the case for $a \rightarrow \infty / 5 /$, and so do the Kapur-Peierls funotions ${ }^{/ 6 /}$ Ca).

For other α values, a solution, which satisfies (2.3) will in general not be square integrable in all space, but that does not prohibit the use of similar expansions for $z \leq a$.

Here b must be chosen acoording to other oriteria:
b) One possibility is to use again the same boundary oonditions as in a), this means that our funotions are obtained from those of a) by analytio continuation in k, ε and γ.

The eigenvalue problems, analogous to those listed above are then

Ab) The solutions oorresponding to general poles of the S-matrix. Together with those mentioned under Aa), these form an overoomplete set for $\quad r \leqslant a$ /4,7/.
$\mathrm{Bb})$ The weinberg states: $E=\varepsilon$ real $>0, \gamma_{i}$ oomplex. For the potentials in whioh we are interested, the oompleteness of these states was proved $18,9 /$, see below.
cb) The Usual Kapur Peierls States, E real, ε_{i} oomplex form a oomplete set for $r \leqslant a^{16 /}$
o) Another possibility oonsists in ohoosing real boundary oonditions, also for the positive energies, i.e., φ_{l} for $r>a$ oontinued as

$$
\begin{equation*}
F \cos \Delta_{e}+G \sin \Delta_{e}{\underset{r}{r \rightarrow \infty}}_{\sim}^{\sin }\left(k r+\Delta_{e}\right) \tag{2.8}
\end{equation*}
$$

where F_{e} is a regular, $G e$ an irregular solution of ($2.3 a$), or in other words

$$
\begin{equation*}
b=\frac{F_{e}^{\prime} \cos \Delta_{e}+G_{e}^{\prime} \sin \Delta_{e}}{F_{e} \cos \Delta_{e}+G_{e} \sin \Delta_{e}}, \tag{2.60}
\end{equation*}
$$

40) If we use this boundary condition in the ordinary Schrödinger equation, we know that there corresponds, to each value of E, l a phese shift $\delta_{\mathcal{l}}(E)$. So we must either, for a general ohoice of Δ, expeot to get only, at most, a few solutions $\delta_{\ell}\left(E_{i}\right)=\Delta$, or ohoose $\Delta_{\mathcal{L}}(\ell, E)=\delta_{\ell}(E)$
in whioh oase all positive, real I values are eigenvalues. With proper normalization, we shall in this was get the soattering states, whioh, together with the bound states form a complete set $/ 10 /$ which, however, being oontinuous, falls outside the oategory of sets in whioh we are interested.

Bo) The real Weinberg states. These are usually defined with $\Delta_{l}=\frac{\pi}{2}(+2 n \pi) / 11,12 /$. This choioe, which gives a simple expression for the prinoipal value Green funotion, is not neoessary. If we want to expand a funotion ψ, whioh satisfies (2.3) with $E=E_{0}$, and has the shape given by (2.9) with $\Delta_{l}=\Delta\left(\ell, E_{0}\right)$, a natural choice of basis states would
be given by (2.6c) with the same $\Delta_{\ell}=\Delta\left(\ell, E_{0}\right)$.
The real Weinberg states oorrespond to γ_{i} real (often oalled /11,12/).

Co) The natural boundary oondition states are defined as the Kapur Peierls states, but with (2.60), where $\Delta_{\ell}(E)$ can again be ohosen aocording to the funotion, which is to be expanded /13,14/. Since we are here only interested in the one-channel case, we may include the e1genohamel states 13% in (0).
d) The Wigner-Eisenbud functions are solutions of (2.1) with a fixed, energy-independent b in (2.5). A oonvenient choice is $B=0$. They form a complete orthogonal set of functions, which, however, as said above, falls outside the olass of funotions, in wioh we are interested here.

	9	B	c
square integrable	x		
exponential asymp.	x	x	
real boundary oonditions	x		x
given γ A $\varepsilon_{i}=B$ eigenvalue	Sohrödinger bound states	$\begin{aligned} & \text { Generalized } \\ & \text { resonance } \\ & \text { states } \end{aligned}$	$\begin{gathered} \text { Scattering } \\ \text { states } \end{gathered}$
$\varepsilon=\mathrm{E}$ given B γ_{i} eigenvalue	$\begin{aligned} & \text { Sturm-Liou- } \\ & \text { vil1e } \end{aligned}$	$\begin{aligned} & \text { (usual) } \\ & \text { weinberg } \end{aligned}$	$\begin{aligned} & \text { General real } \\ & \text { weinberg } \end{aligned}$
$c \begin{aligned} & \gamma, z \text { given } \\ & \varepsilon_{i}(\not(E) \text { eigenvalue } \end{aligned}$	KapurPeierls	$\begin{aligned} & \text { (uaval) } \\ & \text { Kapur } \\ & \text { Peierla } \end{aligned}$	N.B.C. ot al.

In the above scheme, we have ordered the basis funotions aocording to their main properties.

The analogy between the functions listed in line \mathbb{A} and those of the two other lines is somewhat limited, whereas the analogy between the latter two is very olose; for a square well of radius a, they are raally pairwise identioal, the difference being purely formal.

Note, however, that the expansions on line C depend on the radus a, whereas for a potential, as,e.g., that of WoodsSaxon, the expansions of line A and B will only depend on a through the neoessary out-off of the potential, i.e., negligibly for sufficiently large a-values.

It should be mentioned that a complete set can be constructed, using the bound states (Aa) and some of the resonances (Ab), with further inolusion of a oertain continuous set of states $/ 15 /$. The meaning of the completeness in Berggren's work is more general, but inoludes the bounded functions in $0 \leqslant r \leqslant a$, treated here.

Orthogonality properties and normaluation

The radial functions listed under a) and o) may be chosen real; the other ones will at most be biorthogonal.

The Schördinger bound states, Aa), together with the scattering states, Ao) are mutually orthogonal for integration over all spaoe. If, on the other hand, we introduce the generalized resonance states, Ab) together with Aa), the generalization of the orthonormality relation of the bound states is

$$
\begin{gather*}
\frac{\varphi_{n \ell}^{A}(a) \varphi_{m \ell}^{A}(a)}{k_{m \ell}^{2}-k_{n \ell}^{2}}\left[k_{m l} \frac{h_{\ell}^{+}\left(k_{m \ell} a\right)^{\prime}}{h_{\ell}^{+}\left(k_{m \ell} a\right)}-k_{n \ell} \frac{h_{\ell}^{+}\left(k_{n \ell} a\right)^{\prime}}{h_{\ell}^{+}\left(k_{m \ell} a\right)}\right] \tag{2.10}\\
+\int_{0}^{a} d_{r} \varphi_{n \ell}^{A}(r) \varphi_{m \ell}^{A}(r)=\delta_{n m}
\end{gather*}
$$

Whioh is used for the normalization of the $\varphi^{\prime} s$ (interpreting the first term as the limit $k_{n} \rightarrow k_{m}$), but whioh does not have the oharaoter of an orthogonality relation. Note that the relation is independent of a, as long as $V(r)=0$ for $r \geqslant a$.

The funotions listed under B) are easily seen to have the orthogn nality property (we shall here, and in the following omit the index l)

$$
\begin{equation*}
\int_{0}^{\infty} \varphi_{n}^{B}(r) V(r) \varphi_{m}^{B}(r) d r=\delta_{n m} C_{n} \tag{2.11}
\end{equation*}
$$

which oan be used for normalization by putting $C_{n}=1$, whereas the functions listed under C) in a sinilar way are orthonormalized by

$$
\begin{equation*}
\int_{0}^{a} \varphi_{n}^{c}(z) \varphi_{m}^{c}(z) d z=\delta_{n m} \tag{2.12}
\end{equation*}
$$

Completeness
The general pole funotions ($1 \mathrm{a}+\mathrm{Ab}$) form, as mentioned above, an overoomplete set for $0 \leqslant \imath<a$, sinoe we have

$$
\frac{1}{2} \sum_{n} \varphi_{n}^{A}(r) \varphi_{n}^{A}\left(r^{\prime}\right)=\delta\left(r-r^{\prime}\right), \quad z, r^{\prime}<a . \quad \text { (2.13) }
$$

This is proved from the expression for the Green function, given below $/ 4$.

The oompleteness relation of the Sturm-ILouville funotions (Ba), follow from Meroez's theorem $15,8 /$, when V takes one of the forms in whioh we are interested (since all eigenvalues are positive). It can be written

$$
\begin{aligned}
& \sum_{n} V(r)^{\frac{1}{2}} \varphi_{n}^{B}(r) \varphi_{n}^{B}\left(r^{\prime}\right) V\left(r^{\prime}\right)^{\frac{1}{2}}=\delta\left(r-r^{\prime}\right) \\
& \left(=\sum_{n} V(r) \varphi_{n}^{B}(r) \varphi_{n}^{B}\left(r^{\prime}\right)=\sum_{n} \varphi_{n}^{B}(r) \varphi_{n}^{B}\left(r^{\prime}\right) V\left(r^{\prime}\right)\right)
\end{aligned}
$$

If we look at the expansion

$$
\Psi(r)=\sum_{n} c_{n}^{B} \varphi_{n}^{B}(z)=\sum_{n} \varphi_{n}^{B}(r) \int \varphi_{n}^{B}\left(r^{\prime}\right) V\left(r^{\prime}\right) \Psi\left(r^{\prime}\right) d r^{\prime} \text { (2.14a) }
$$

this identity can be analytioally continued $/ 8 /$ so as to get a similar relation for the usual Weinberg functions. For the real Weinberg funotions, the same felation (2.14) oan again be proved /16/ . Here we have negative eigervalues, but only a finite number of them /17/ so Meroer's theorem is again applioable.

The three representations in (2.14) are obviously val 1 d for slightly different classes of funotions; note, however, that for the potentials in which we are interested they will all give oonvergent representation even for $a \rightarrow \infty$ when ψ is a harmonio osoillator function.

The Kapur-Peierls and Natural Boundary Condition functions (C) satisfy the completeness relation

$$
\begin{equation*}
\sum_{n} \varphi_{n}^{c}(z) \varphi_{n}^{c}\left(r^{\prime}\right)=\delta\left(z-z^{\prime}\right), \quad r, r^{\prime} \leqslant a \tag{2.15}
\end{equation*}
$$

This was shown for the oases (a) and (b) in ref. /6/. In the last case, (c), the proof of Kato $/ 16 /$ applies again.

Mercer's theorem implies, that series like (2.14a) on the similar

$$
\begin{equation*}
\psi(r)=\sum_{n} c_{n}^{c} \varphi_{n}^{c}(r) \tag{2.16}
\end{equation*}
$$

with

$$
\begin{equation*}
c_{n}^{c}=\int_{0}^{a} \varphi_{n}^{c}(r) \psi(r) d r \tag{2.17}
\end{equation*}
$$

Will be absolutely and uniformly convergent for the functions ψ in whioh we are interested (say, any bounded funotion in $r \leqslant a$).

The corresponding expansions in terms of the pole functions ($\mathrm{A} a+\mathrm{Ab}$) are, due to the non-orthogonality of the set, ambiguous. However, for a wide class of functions, we have an unambiguous, oonvergent expansion in terms of the Schrödinger eigenfunctions ($A a+10$). On the other hand, for $~ \% \leq a$, the scattering functions can be expanded in different, but unambiguous ways in terms of the pole functions, together with a small number of other funct1ons, using the Mittag-Leffler theorem /4/, as we shall consider In details below.

Even more important for the applications is the fact, that the single partiole Green funotions G^{+}and G^{-}have simple Mittag-Leffler expansions in terms of the pole states.

$$
\begin{align*}
& \text { The Green functions } \\
& \text { The Green function } G_{l}^{+} \text {has the expansion } \\
& G_{l}^{+}\left(k, r, z^{\prime}\right)=\sum \frac{\varphi_{n(l)}^{A}(r) \varphi_{n}^{A}(e)\left(r^{\prime}\right)}{2 k_{n}(l)\left(k-k_{n(l)}\right)} ; \quad r, z^{\prime}<a \tag{2.18}
\end{align*}
$$

in terms of the pole funotions ($A a+A b$) as shown by More and Gerjuoy (18/.

Other M1ttag-Leffler expansions of the Green function are

$$
\begin{aligned}
G_{e}^{+}= & \sum_{q=0}^{p} \frac{\left(k-k_{0}\right)^{q}}{q!} G_{e}^{+}\left(k_{0}, r, r^{\prime}\right)^{(q)} \\
& +\frac{\left(k-k_{0}\right)^{p+1}}{2} \sum_{n}\left(k_{n}-k_{0}\right)^{-p-2}\left(k-k_{n}\right)^{-1} \varphi_{n}^{A}(r) \varphi_{n}^{A}\left(r^{\prime}\right) \\
\left(G^{+}(q)\right. & \text { means } q \text { times differentiation with respect to } k),
\end{aligned}
$$ where the introduction of the entire term may improve the convergence, which for $k_{0}=0, \rho \geqslant 1$ can be proved to be absolute and uniform, ofr.refs. $19,4 /$. This convergence 1 s , though, more than needed for the Green function; only the convergence of the oorresponding expression for $\int_{0}^{a} G\left(k, z, z^{\prime}\right) \quad f\left(z^{\prime}\right) d z^{\prime}$.

f bounded is necessary. All the expansion of the Green function mentioned here have this convergence property.

In the classes of functions B) and C), only those with outgoing asymptotics, b) permit a direct oonstruction of G^{+},

1.e., respectively

$$
\begin{equation*}
G_{e}^{+}=\sum_{n} \frac{\lambda_{n} \varphi_{n}^{B}(n) \varphi_{n}^{B}\left(z^{\prime}\right)}{1-\lambda_{n}} \quad\left(\lambda_{n}=\gamma_{n}^{-1}\right) \tag{2.20}
\end{equation*}
$$

(We1nberg)
and

$$
\begin{equation*}
G_{e}^{+}=\sum_{n} \frac{\varphi_{n}^{c}(2) \varphi_{n}^{c}\left(2^{\prime}\right)}{k^{2}-k_{n}^{2}} \tag{2.21}
\end{equation*}
$$

(Kapur-Peierls)

Note, that (21) (or (20)) is not a Mittag-Leffler expansion, the $\varphi_{n \prime s}$ and k_{n} 's are k-dependent.

With the Sasakawa ohoice of boundary conditions, one obtains in a similar way the principal value Green funotion

$$
\begin{equation*}
G_{e}^{P}=\sum_{n} \frac{\lambda_{n} \varphi_{n}^{B, \frac{\pi}{2}}(v) \varphi_{n}^{B, \frac{\pi}{2}}\left(\varepsilon^{\prime}\right)}{1-\lambda_{n}} \tag{2.22}
\end{equation*}
$$

$$
\begin{aligned}
& \text { (real Weinberg } \\
& \Delta_{e}=\frac{\pi}{2} \text {). }
\end{aligned}
$$

A similar choice of phase could of course be made for the functions of the last line, Co), this seems though not to be in oommon use.

If we, instead of $\frac{\pi}{2}$ put in a general Δ_{ℓ}-value, we can in a similar way construct a Green function, whioh we can write 9.8

$$
\begin{equation*}
G_{e}^{\Delta}=\frac{e^{i \Delta_{e}} G_{e}^{+}-e^{-i \Delta_{e}} G_{e}^{-}}{2 i \sin \Delta_{e}} \tag{2.23}
\end{equation*}
$$

Which, like G_{e}^{+}and G_{e}^{p}, can be expanded either in texms of generalized Weinberg states, with a formula identioal to (2.20) or in terms of Natural Boundary condition states, with a formula identical to (2.21).

Also the bound state Green's function $G_{e}(E<O)$ has similar expansions.

In the following, we shall oonsider some of the expansions in more detail, and compare different expansions with exact caloulations for square well and Woods-Saxon potential.
3. The resonanoe functions and the Mittag-Leffler Bxpansion Mathematioal Technique
a. The Wave Functions

The physical wave functions are solutions of the radial equation, corresponating to (2.1)

$$
\begin{equation*}
\frac{d^{2}}{d r^{2}} \psi_{e}+\left(k^{2}-\frac{e(l+1)}{r^{2}}-V(r)\right) \psi_{e}=0 \tag{3.1}
\end{equation*}
$$

With the boundary conditions

$$
\begin{aligned}
& \Psi_{l}(0)=0 \\
& \begin{aligned}
\Psi_{e}(r) & =\delta_{e}\left(k_{r}\right)+\frac{S_{\ell}-1}{2 i} h_{\ell}^{+}(k r) \\
& =\frac{i}{2}\left[h_{e}^{-}(k r)-S_{e}(k) h_{e}^{+}(k r)\right]
\end{aligned}
\end{aligned}
$$

(Here $b_{e}, h_{e}^{ \pm}$are Ricati-Bessel and Ricati-Hankel funotions, defined as in ref. $/ 20 /$), or otherwise said, Ye satispies the radial Lippman-Schwinger equation

$$
\begin{align*}
& \Psi_{e}(r)=\gamma_{e}(k r)+\int_{0}^{a} d r^{\prime} G_{o l}^{+}\left(k, r, r^{\prime}\right) V\left(r^{\prime}\right) \Psi_{e}(k r) \tag{3.3}\\
& G_{o \ell}^{+}\left(k, r, r^{\prime}\right)=-\frac{1}{k} j_{e}\left(k r_{<}\right) h_{e}^{+}(k r>) \tag{3.4}
\end{align*}
$$

Going to the Born approximation limit, we see, from (3.1)-(3.4) that the function

$$
\begin{equation*}
\psi_{e}^{G}(k, r)=\frac{h_{e}^{+}(k a)}{k} \psi_{e}(k, r) \tag{3.5}
\end{equation*}
$$

is bounded by

$$
\psi_{e}^{G}(k, r)<\left\{\begin{array}{l}
c_{1} e^{-(a-2) \beta_{c}}, \beta_{e}>0 \tag{3.6}\\
c_{2}|k| e^{(a-2) \beta_{e}}, \beta_{e}<0
\end{array}\right.
$$

where $\beta_{1}=$ Im $_{m}(k)$
(When $V(z)=0$ for $z>r_{o^{\prime}}(3.6)$ is obtained for $a>\varepsilon_{o}$ see ref. /19/ for $a=\tau_{0}$). When (3.6) is fulfilled, ψ^{*} has Mittag-Lefiller expansions

$$
\begin{align*}
\Psi_{e}^{G} & =\sum_{i=0}^{p} \frac{k^{i}}{i!} \psi_{e}^{G}(0, r)^{(i)} \tag{3.7}\\
& +\sum_{n=1}^{\infty}\left(\frac{k}{k_{n e}}\right)^{p+1} \frac{c_{n e} \varphi_{n e}}{k-k_{n e}} \quad r \leq a
\end{align*}
$$

where

$$
\begin{equation*}
C_{n e}=-\frac{\varphi_{n e}(a)}{2 k_{n e}} \tag{3.8}
\end{equation*}
$$

whioh for $P \geqslant 0$ are absolutely and uniformis oonvergent for values inside an arbitrary oontour, whioh does not oontain poles.

With Cauchy's formula, an analogue expression without an entire term, formally oorresponding to $\rho=-1$ in (3.7), is obtained. In some important oases, even this expression is convergent.

The asymptotio form of the $\varphi_{n e}$ for $n \rightarrow \infty$ (wich corresponds to complex poles) is easily seen to be

$$
\begin{align*}
& \varphi_{n e}(z) \approx i^{-\varepsilon-1} \frac{e^{i k_{n e} r}}{\sqrt{2 a}}, \quad r \leq a \tag{3.9}\\
&\left|k_{n e}\right| \rightarrow \infty \\
& J_{m} k_{n e}<0
\end{align*}
$$

The oomplex poles fall in pairs, so that

$$
\begin{align*}
& k_{\tilde{n} \ell}=-k_{n \ell}^{*} \tag{3.10}\\
& \varphi_{\tilde{n} \ell}=\varphi_{n e}^{*} x i^{e+1} \frac{e^{-i k_{n \ell}^{*}}}{\sqrt{2 a}}
\end{align*}
$$

To enumerate the poles, we may arbitrarjly use the system, that when we increase the well depth, starting from $\gamma=0$, the poles whioh first meet at the imaginary axis are called 1 and 2, the next 3 and 4 and so on. Further, we aan then let odd numbers denote those which move downwards on the axis, and even numbers the others (which beoome bound states). For the complex poles, we cen let the odd numbers oorrespond to negative $\operatorname{Re}(k)$, so that $\tilde{n}=n-1$, $1 f \quad n$ even.

For $n \rightarrow \infty$ we have

$$
\begin{aligned}
& \left|\operatorname{Re}\left(k_{n e}\right)\right| \approx \frac{1}{a}\left(u_{n}-\frac{m+2}{4 u_{n}} \ln \left[\frac{\left(2 u_{n}\right)^{m+2}}{A^{2}}\right]\right. \\
& Y_{m}\left(k_{n}\right) \approx-\frac{1}{a} \ln \left[\frac{\left(2 u_{n}\right)^{m / 2}+1}{A}\right] \\
& u_{n}=n \pi-\frac{\pi}{2}\left[\frac{m}{2}+\tau\right] \\
& \tau=\left\{\begin{array}{l}
0 \\
1
\end{array}\right\} \text { foz }(-1)^{e} V^{(m)}(a)\left\{\begin{array}{l}
>0 \\
<0
\end{array}(n<m)=0\right.
\end{aligned}
$$

(but we oan, without loss of generalits assume $m=0$, chosing $a=r_{0}+d, d$ arbitrarily small).

We see from this, that (3.7) is oonverging as n^{-2} for $P=m+1$, and, for $P>m+1$, $n^{-2-(P-m-1)}$, so the convergence of the Mittag-Leffler expansion is easily promoted, by ohosing a suffioiently large p.
b. The S-matrix

It was shown in $/ 4 /$, that the expression

$$
\begin{equation*}
F_{l}(k) \equiv\left(\frac{S_{e}(k)-1}{2 i k}\right)\left(h_{e}^{+}(k a)\right)^{2} \tag{3.12}
\end{equation*}
$$

and therefore also the Smatrix has absolutely and uniformly convargent Mittag-Leffler expansions for $p \geqslant m+1$ (see above)

$$
\begin{align*}
S_{e}(k)= & 1+2 i k\left(h_{e}^{+}(k a)\right)^{-2}\left(\sum_{q=0}^{p} \frac{k^{q}}{q!} F^{(q)}(0)\right. \tag{3.13}\\
& \left.+\sum_{n=0}^{\infty}\left(\frac{k}{k_{n e}}\right)^{p+1} \frac{C_{n e} \varphi_{n e}(a)}{k-k_{n e}}\right)
\end{align*}
$$

On the other hand, the M1ttag-Leffler (or Cauohy) expansion for the Green function (2.18) with no entire term ($P=-1$) is also convergent, in an operator sense, operating inside $r=a$.

Since the S-matrix can be determined from integrals of the wave function or the Green function, it should be expected, that With a given P, suoh formulae can be used to obtain more rapidly converging expressions for the S-matrix.

Actually we have /20/

$$
\begin{equation*}
S_{e}(k)=1-\frac{2 i}{k} \int_{0}^{a} d r j_{e}(k r) V(r) \psi_{e}(k, r) \tag{3.14}
\end{equation*}
$$

from which, by means of (3.7), we obtain

$$
\begin{align*}
& S_{0}(x)=1-2 i\left[h_{0}^{+}(k \sigma)\right]^{-1}\left(\sum_{i=0}^{P} \frac{\kappa^{i}}{i_{!}}\left\langle j_{e}\right| v\left|l_{i}\right\rangle\right. \\
& \left.+\sum_{n}\left(\frac{K}{k_{n e}}\right)^{p+1} \frac{c_{n e}\left\langle j_{e} \mid V / \varphi_{n e}\right\rangle}{K-K_{n e}}\right), \tag{3.15}\\
& \left\langle\dot{d}_{e}\right| V\left|e_{i}\right\rangle \equiv \int_{0}^{a} j_{j}\left(N(x) V(r) Y_{e}^{\epsilon}(0, r)^{(i)} d t\right. \\
& \left\langle j_{e}\right| V\left|\varphi_{n e}\right\rangle \equiv \int_{0}^{a} j_{p}(x q) V(z) \varphi_{n e}(z) d z \tag{3.16b}
\end{align*}
$$

where

In terms of the Green fungtion, S is expressed by

$$
\begin{aligned}
S_{e}(x) & =1-\frac{z^{i}}{h}\left\{\int_{0}^{a} d q d_{e}\left(x^{r}\right) V(r) j_{e}\left(x^{r}\right)\right. \\
& \left.+\int_{0}^{a} d r \int_{0}^{a} d r^{\prime} d_{e}(x \tau) V(r) G_{e}^{+}\left(x, z, z^{\prime}\right) V\left(r r^{\prime}\right) d_{e}\left(x r^{\prime}\right)\right\}
\end{aligned}
$$

Introducing here $(2.19)\left(K_{0}=0\right)$, wo get

$$
\begin{aligned}
& S_{e}(k)=1-\frac{2 i}{K}\left\{\sum_{i=0}^{p} \frac{k^{i}}{i!} \int_{0}^{0} d r \int_{0}^{i} d r^{\prime} d_{e}(x r) V(r)\right. \\
& G_{e}\left(0, r, r^{\prime}\right)^{(i)} V\left(r^{i}\right) f_{e}\left(x r^{\prime}\right)+\sum_{n}\left(\frac{k}{k_{n e}}\right)^{n+1} \frac{\left\langle d_{e}(k) \mid V / \varphi_{n e}\right\rangle^{z}}{2 x_{n e}\left(k-k_{n e}\right)} \\
& \left.+\left\langle j_{e}(k)\right| V\left|j_{e}(k)\right\rangle\right\}
\end{aligned}
$$

Whioh is identical to the formula of ref. $/ 21 /$ if we ohose $p=-1$. At the threshold we have $110 /$

$$
\begin{equation*}
S_{e}(x)-1=O\left(K^{2 e+s}\right) \quad K \rightarrow 0 \tag{3.19}
\end{equation*}
$$

In this sense, all the three expansions, (3.13), (3.15) and (3.18) show the oorreot threshold behariour, independent of the number of terms in the expansion, sinoe

$$
\begin{equation*}
\kappa\left[h_{e}^{*}(x a)\right]^{-2}=\square\left(x^{2 e+2}\right) \quad x \rightarrow 0 \tag{3.20}
\end{equation*}
$$

$$
\begin{align*}
& \left.\left[h_{e}^{+}(x a)\right]^{-1}\left\langle f_{e}(\kappa a) / V / e_{i}\right\rangle=0 / \kappa^{2 e+1}\right) \kappa \rightarrow 0 \\
& \frac{1}{\kappa}\left\langle d_{e}(x) / V / d_{e}(x)\right\rangle=D\left(x^{2 e+1}\right) \quad x \rightarrow 0 \\
& \frac{1}{k} \int_{0}^{a} d r \int_{0}^{a} d q^{\prime} d_{e}(x q) v(q) G_{e}\left(a, 2,7^{\prime}\right) v\left(r^{\prime}\right) d_{e}\left(x^{\prime}\right)=D\left(k^{z e n}\right)
\end{align*}
$$

Por $K \rightarrow \infty$, we must have $S(K) \rightarrow 1$, and the expressions (3.15) and (3.18) do actually fulfil this requirement, sinoe for large k-values, the $f_{0}(K \approx)$ are rapidly osolllating, so the integrals tend to zero. Since the expansion (3.13) is unformly oonvergent, it must also give the oorreot asymptotio behaviour, but in this oase only after summation over a large number of terms.

In general, the above argument leads us to expect, that the expression (3.15) oonverges faster than (3.13) and (3.18) faster than (3.15). In analogy with what was just said about amelioration of the convergenoe of the Mittag-Leffler expansions for S, faster oonverging expressions for the continum wave function can also be obtained, using integral equations.

From $/ 10 /$

$$
\begin{equation*}
\psi_{e}(x, z)=j_{e}(x,)+\int_{0}^{a} G_{e}\left(x, r, z^{\prime}\right) v\left(z^{\prime}\right) d\left(x z^{\prime}\right) d z^{\prime} \tag{3.22}
\end{equation*}
$$

and the expansion (2.19), we obtain

$$
\begin{aligned}
& \Psi_{e}(x, z)=d_{e}(k z)+\sum_{i=0}^{p} \frac{k^{i}}{i!} \int_{0}^{a} G_{e}\left(0, z, z^{0}\right)^{(i)} \\
& V\left(z^{i}\right) j_{e}\left(x z^{i}\right) d q^{i}+\sum_{n=1}^{\infty}\left(\frac{k}{k_{n}}\right)^{p+1} \frac{p_{n e}(\eta)\left\langle d_{e}(k) / v / n_{n e}\right\rangle}{2 x_{n e}\left(k-x_{n e e}\right)}
\end{aligned}
$$

We have here considered different disorete expansions of continuum ware funotions. The different sets have in common, that they are oomplete in a finite region $Z \leqslant Q$ that the funotions in the set satisfy Sohrödinger-like equations, and that at the boundary $z=a$, they satisfy such conditions, that they can be joint with a solution of the free particle Sohrödinger equation for $t>0$.

The usefulness of suoh expansions depend on orthogonality relations and other equations, used to determine expansion coefficients, and on the fastness of the convergence of the expansion. For the problems, in whiah these sets are used, the expansions of Green funotions are partioularly important. We have here dis oussed these aspeots of the different expansions. The convergence problems will be treated and illustrated with numerical examples in a later publioation, whioh will also oontain a more detailed disoussion of the new type of real Weinberg funotions, introduced here.

References

1. E.P.Wigner, Phys.Rer. 70, 606 (1946);
B.P.Wigner and I.Elsenbud, Phys.Rev. 72, 29 (1947).
2. C.Mahaux and H.A.Weidenmuler, Shell-Model Approaoh to Nuclear Reactions (Korth-Holland) Amoterdam, 1969.
3. GeBrown, Unified Theory of Nuclear Models (North-Holland, Amsterdam, 1964).
4. J.Bang, F.A.Gareev, M.H.Gizzatkulov and S.A.Gonoharov, Nuol.Phys. A309 , 381 (1978);
J. Bang and F.A.Gereev, Communioation JINR E4-11902 (1978).
5. J. Bang and F.A.Gareev, Phys.Soripta 18, 289, 297 (1978).
6. P.L.Kapur and R.R.Peierls, Proo. Roy.Soc. 4166, 277 (1938).
7. J.W.Romo, Nuol. Phys. A116, 618 (1968).
B. K.Meetz, J.Math.Phys. 3, 690 (1962).
8. S.welnberg. Phys.Rev. 1连, 440 (1963).
10.R.G.Newton, Soattering Theory (Mc Graw-Hill, New York, 1966).
11.T.Sasakawa, Muol.Phys. 1160,321 (1971)
9. H. Huby, Nucl.Phys. Al38, 442 (1969); O.İa, Z.Phys. 258 301 (1973).
10. M.Danos and W.Greiner, Phys.Ret. 138, 1393 (1965);

Phys.Rev. 146,708 (1966).
14.S.S.Ahmad, R.F.Barrett and B.A.Robson, Nuol. Phys. A257, 378 (1976).
15. T. Berggren, Nuol. Phys. 1109, 618 (1968).
16. T. Kato, Progr.Theor. Phys. 6, 394 (1951).
17. V. Elimov, H.Sohulz , Lett. al Nuovo Cimento g, 761 (1973);
communication JIRR, B4-7721 (1974).
18. R.M. More and E.Gerjuoy, Phys.Rev. A7, 1188 (1975).
19. H.M. Nussensweig, Cansality and Dispersion Relations
(Academio Press, New York, 1972).
20.J.Taylor, Soatterling Theory (Wiley, New Tork, 1972). 21.J.W. Homo, Nuol. PhFs. A302, 61 (2978).

Reoeived by Publishing Department on May 291979.

