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Hoe~~ eap~aHT Ae~cTB~TenbH~x ~YHK4~~ Ba~H6epra 

noKa3aHa B03MOmHOCTb BBeAeH~~ Ae~CTB~TenbH~X ~YHK4~~ 
Ba~H6epra An~ n~6~x ~a3oewx CAB~roe. PaccMoTpeHw pa3nomeH~~ 
no AaHHWM ~YHK4~~M K-MaTP~4. ¢YHK4~~ rp~Ha, BOnHOB~X ~YHK-
4~~ HenpepWBHOrO cneKTpa. noKa3aHa paBHOMepHa~ CXOA~MOCTb 
AaHHbiX pa3nomeH~~. YcTaHoeneHo, 4TO cxoA~MOCTb pa3nomeH~~ 
Ha~ny4Wa~, KOrAa ¢a30BW~ CAB~r paBH~eTC~ ~a30BOMY CAB~ry 
noTeH4~anbHoro pacce~HH~. Pe3ynbTaTw pa6oT~ AeMOHCTP~PY~Tc~ 
Ha np~Mepe noTeH4~ana np~MoyronbHO~ ~M~. 

Pa6oTa ewnonHeHa e na6opaTop~~ TeopeT~4ecKo~ ¢~3~K~ 
O~H~. 

Coo6weHHe 06beOHHeHHOr'O KHCTKTYT8 S!JlepHbiX KCCneOOBSHKl!, lly6Ha 1979 

Bang J., Ershov S.N., Gareev F.A. E4 - 12437 

A New Type of Real Weinberg Functions 

The concept of real Weinberg states is generalized to 
arbitrary phase shifts. Expansions in terms of such states 
are investigated mathematically and numerically. Such 
expansions are shown, in some important cases, to have 
particularly convenient convergence properties. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 

Communication of the Joint Institute for Nuclear Research . Dubna 1979 

© 1979 06•eJ1/IH6HHbiJI /IHCT/IryT' Sl/16pHb1JC JICC06110BIIIIJIJI /1y6HII 

~ 

1, INTRODUCTION 

The complex Weinberg states W?re introduced by 
Meetz Ill and Weinberg 121 as a means of improving the 
convergence of the Born approximation in elastic single 
particle scattering and, hopefully, other scattering prob
lems. These states are eigensolutions of a Lippman
Schwinger equation ( with outgoing boundary conditions). 

The completeness of these states, for well behaved 
potentials, was proved by means of analytic continuation 
from the corresponding expansion negative energy, the 
Sturm-Liouville expansion,which by Merce r's theorem is 
sho\'lin to be absolutely and uniformly convergent. 

Real Weinberg states were introduced by Huby 13/ 
and Sasakawa /4/. These states are eigensolutions of a 
similar problem as the original Weinberg states, but with 
real boundary conditions for r-.oo corresponding to those 
of a scattering state (phase shift 6. = t ). 

The eigenvalues are therefore also real, It should, 
though, be noted that they can have both signs 151. For 
the potentials of physical interest, mentioned below, however, 
only a finite number of the eigenvalues are negative, 
and Mercer's theorem may be used in a direct way to 
prove completeness. 

Although these rea l Weinberg expansions are not so 
directly tied up with the scattering problems as the origi
nal complex states, they can in general be used in a 
similar way, constructing the S matrix from the K-matrix, 

We shall in this ' article look at a more general defi
nition of real Weinberg states, corresponding to those 
of Huby and Sasakawa, but '.'.rith arbitrary values of the 
phase shift. For the potentials of interest also these 
states form a complete set, and most of the properties 
of the above-mentioned states with 8=-i find their 

counterparts in the general case. It is not surprising, 

that the states with 8 = ; work well as an expansion 

basis in the neighbourhood of a single particle resonance 
of the relevant particle; therefore, e.g., Huby could calcu-
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late an important part of the cross section of continuum 
transfer, using only one real Weinberg state, However, 
in other cases, far from resonances, other boundary con
ditions may lead to a considerably better convergence 
of the expansions, as we shall s·2e below. 

2, FORMALISM 

The generalized real Weinberg functions can be defi
ned as the solutions of 

6. 
(H0 + yV(r)- E)¢ = 0, 

6. 
6. ff 

¢ = ---- Yn (!1) 
r Lm 

(1) 

with E given, and y as eigenvalue with the boundary 
conditions 

f(O) = 0. (2) 

f(r) - F(r)sin(f"o.) + G(r)cos(f"o.), 
r ... oo 

(3) 

where F and G are regular and irregular solutions, respec
tively, of the radial Schrodinger equation. 

In equation (1) H 0 includes the kinetic energy operator, 
but it may also be convenient to let it include possible 
Coulomb repulsion and spin-orbit terms. The first because 
the Coulomb field is of infinite range, and known, i.e., 
it gives a known contribution to the asymptotic behaviour 
of the wave functions, The spin orbit term is neither 
positive nor negative definite, By including these terms 
in H0 . we may limit ourselves to a negative definite, 
finite V of finite range, as, e.g., the Woods-Saxon potential 
or its square well variant, 

For a finite range poten tial, (3) can also be written 

f(r) -.... sin(kr + 6.) 
r -+ "" 

... 2 k2 
(~----=E). 

2m 
(4) 

4 

f 

; 

The functions of Huby and 

choice 6. = -g- . 
Sasakawa correspond to the 

If 

V(r) = 0 for r > a, (5) 

we can instead of (4) write 

ff (r) = c j f (kr + 6.) r > a, (6) 

where j f is a Ricatti-Bessel function. In this case, the 
set of eigensolutions, fi. of (1) with the boundary 
conditions (2)-(6), corresponding to different Yi form, as 
shown by Kato ,'\) / , a complete set in the interval (o, a), 
They are orthogonal with the weight function V(r), i.e., 

a 
r dr f n v f m = 8 nm an 
0 

and may be normalized by putting an =--1. 
The completeness relation may be written 

~ V
11
\r)f. (r) f. (r')VV2(r ') 

. I I 
I 

=- 8 (r- r ') 

= ~ V(r)fi(r)fi (r1 
1 

= ~ f. (r) f. (r ') V(r '). 
i 1 I 

(7) 

(8) 

In general, the different forms of (8) correspond to slightly 
different spaces, for bounded functions in the interval 
(0, a) they are, hoNever, all valid with the potentials 
in which we are interested, 

Using the completeness relation, we can write the 
Green function, corresponding to the asymptotic behaviour 
of the second term in a Lippman-Schwinger-like equation 
being given by (4) as 

!l ') ~ 1 !l r !l ') c. (r, r =- ... ----- r 0 (r) , (r 
L n y _ 1 Ln .n 

n 

tt2 . 
(---- 2 1) • . 

2m 
(9) 
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The SchrOdinger equation 

(H + V - E)I/J = 0 (10) 

of a general scatterin!?, problem has solutions 1/J +, which 
describe scattering from an initial channel, say a, in 
which we have a normalized free particle wave function, .p

0 

+ + 
1/J = .Po +a v .Po (11) 

but equation (10) has other solutions, with other boundary 
conditions, e.~ .• 

/',. /',. 
1/J =.Po +a VI/Jo , (12) 

where the second term behaves asymptotically as ¢ /',.. 
H~re, !'. may take different values in different channels, 
and in (12) and the followin~ equations, we shall think 
of /',. as an operator, operating on channel indices. 

Equations (11) and (12) may also be written, respecti
vely as 

+ + + 
1/J =.Po +GoV.P (13) 

and 

/',. /',. /',. 
1/J =1/Jo+GoV.P (14) 

Here 

-j/',. 
/',. + e 17 

G = G ~ --------- 8 (E - H ) = 
o o sin(/',.) o 

+ e-i/',.17 
= 0 0 - ------- ~ 1/J (E) > <1/J (E), 

sin (/',.) f3 of3 of3 

. (15) 

where the sum runs over the different channels in scat
tering (characterized by spins, etc,). 

Subtracting (13) from (14) we get, usin~ (15) j 

A -j/',. 
'-' + /',. 77e + 

1/J -1/J = D.p = G VD.p - ·------B(E-H )V.p 
a a 0 sin(/',.) 0 a 

/',. 
=G 0 VD.p-~ 

f3 

-j/',. 
e f3 

----- • 17 

sin {~7;>- 1/J of3 :I f3a 

-j/',.{3 

=-~ -~-- •17 /',. 

f3 sin (~-;) 1/J f3 j" f3a ' 

where 1/J 0 belongs to the channel a, and 

j" f3a = < 1/J of3 V 1/J: >. 

Introducting 

/',. /',. 

K{3 =-77<1/J f3 V.p > a 0 a 

we see, that for the T -matrix we have 

So 

and 

-j/',. 

77T =- K /',. - -~----! __ If T . 
sin(/',.) 

-j/',. 
e /',. -1 /',. 77T=- (1 + ------K ) K 
sin(!'.) 

e -i!'. !'. -1 e i!'. !'. 
S = 1- 217iT = (1 + -------K ) (1 + ------K 

sin(/',.) sin(/',.) 

for the usual K -matrix we get 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 
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rrT t( ) I!. -1 K = -------- = (l+Co 1!. K ) Kl!. (22) 
i rrT - 1 

So all the usef~l quantities of scattering theory may be 
derived from K , which in turn may be expre'ssed by 
means of the generali z ed real Wei~berg states, since, 
from ( 18) and ( 9) we get for the K -operator 

/!,. /!,. 
K =-rr(V + VG V) = 

(23) 
1 /!,. /!,. 

=-rr(V - I ------ V lei> > < 1> IV)· 
n Yn-1 n n 

Using (8) and introducting the Lippman-Sch,vinger eigenvalue 

-1 
An= Y n equation (23) may also be writte n 

/!,. /!,. 
/!,. V1¢n> < ¢n IV 

K = TT I --------71--------
n 1 -A 

n 

(24) 

Looking at elastic scattering, we see from (21), with 
2iof 

Sf£ = e , that for 1!. = l!.e .... oe · (+ rrn) we must have 
Kel-+ oo, except possibly for the case of oe =nrr.xhis is in 
agreement with (1), (4) and (24), since y 1 -+ 1 (~1 -+ 1) f~ 
a certain i when 1!.-+o, expect for l'l-+0, wherey 1 --+0 (X 1 -+oe). 

3, APPLICATIONS 

The variant of the real Weinberg states, which is pro
posed here, may be used in different sorts of nuclear 
reaction calculations, in the same way as the other types 
of Weinberg states. The advantage of the present type of 
states is, that if we are looking at a general scattering 
problem, and use our states as expansion basis of the 
solution, we know, roughly speaking, that if the expansion 
is good inside the range of the potential, and if the 
phase shifts correspond to these of the true solution, 
then the expansion is equally good in all regions of space. 
A similar feature is met with the "Natural Boundary 
Conditions" wave functions of Danos and G .reiner nl, 
however in general, this expansion will depend on the cut-

I 

off radius, w hereas the Weinberg expansion will depend 
on this only when it is found necessary to truncate the 
potential at r = a (see equation(5)). Such a truncation ,may 
be convenient for rna.thematical and numerical reasons, 
but for the Woods-Saxon potential the expansion is inde
pendent of a, , w hen a is sufficiently large. 

If we expand a function, which satisfies a radial SchrO
dinger equation with the same energy and the same phase 
s hift as that of the basis functions, i.e., looking at the 
radial equation, corresponding to (10) 

(H 
0 

+ y V + V 
1 

- E) f = 0, 

I en f n 
n 

a a 
en=- { fVfn dr =An { drf(H

0
-E)f n 

0 0 

a 
= - y -l r dr f (y v + v ) f 

n 1 n 
0 

-1 a 
= (y- y ) { fV

1 
f dr . 

n n 
0 

(25) 

(26) 

(27) 

(28) 

2 
Now, Yn -n and the integrals must go to zero for n -+oo, so 
the expansion converges faster than n- 2. 

The absolute and uniform convergence, which by 
Mercer's theorem is proved to be valid for r < a, is in this 
case extended to all r -va lues, and this result is indepen
dent of a. 

The real advantages of the Weinberg expansions are 
seen in multichannel scattering , but the convergence 
properties of the one-dimensional problem of equations 
(25) to (28) must also be found here. The choice of the 
phase shifts of the basis, is p :-esumably the most intricate 
problem of the method suggested, as well as of the Natural 
Boundary Condition model. If experimental phase shifts are 
known, a logical method would be to use these in the 
basis, and then search for such values of free parameters 
of the Hamiltonian, that the total scattering wave function 
has the same phase shift. 
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It is in this connection interesting to see, how the 
expansion of a scattering wave function converges, when 
the phase shifts of the basis are varied. In the figure 

•2 
/0 

-5 
Ill 

lti~ 

-s 
10 

llS 

N=S 
K.:: 8 fm·' 

~+TT 
10•6(, ~I I 0 I I t I o 

S f I I I ;:1 ·-Fig, The relative error of S, as a function of ~. N is 
number of terms in the expansion. 

the 

we present a c a lculation for the one-dimensional c ase. 
The potential is a square well with parameters similar 
to those used in nuclear physics, and the states have 
f = 0. The figure shows the relative errors of the scat

tering matrix 
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s- s 
~S = 1 __ exact --------I (29) 

s exact 

w here S is calculated by the expressions (19)-(24), using 
respectively 1 and 5 terms in the expansion. The p otentia l 
depth is - 48. 7 2 MeV, the radius parameter 

2m V:! {3
0

= R
0 

(--t2) IV 
0 

\) is 5 .0 , the energy corresponds to 

k =8 fm -l. 
It is seen, that the errors become vanishingly small 

when ~ approaches Do and D0 + rr, wher~ D 0 is the elastic 
phase shift fa ~ the potential and enErgy g iven above but 
it is also seen, that w ith 5 terms in the expansion, the 
error is small for a ll ~ values. This means, that even 
if the starting v l.lues of ~ are not very good , exactness 
is not lost, when a moderate number of terms is used 
in the expansion. 

One of the authors, J.B., acknowledges hos pita lity of 
the JINR, where this work vvas done, and a travel g rant 
from the Danish Research Council. 
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