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Three-Body Molecular Description of 9Be. 
I I. Adiabatic One-Level Approx ima ti on with 
Correct Angular Momentum 

The low lying spectrum of the 9Be nucleus is calcula
ted in an a + a + n three-body model. The molecular approach 
to this three-body problem based on the exact evalution 
of the two-center wave functions f or separable n -a poten
tials is considered in de t ail. The numerical results are 
obtained in a generalized Born-Oppenheimer approximation 
which prese rves total angular momentum and parity. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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1 . INTRODUCTION 

It is commonly believed (see, e.g., ref ./11 ) that the 
low-lying states of the 9 Be nucleus can be well described 
in terms of ana + a + n model. Most recently this idea has 
found its realization in the framework of microscopical 
variational calculations 1 2·4/ (generator coordinate 
method, resonating group method); the antisymmetrized 
trial wave functions depend on all nucleon coordinates, 
eight of them form two a-clusters, and the relative 
motion of these two clusters and the remaining neutron 
is suitably parametrized. This means that the dynamics 
is completely attributed to the three-cluster relative 
motion, and the presence of the eight individual particles 
of the two a-s manifests itself only through the Pauli 
principle. 

Therefore, if the effect of the overall antisymmetriza
tion could be appropriately incorporated into the inter-
cluster interaction ~ - 7~ the solution of the dynamical 
three-body equations for the a +a +n system could yield 
a deeper understanding of the low-lying states of 9 Be. 
Unfortunately - to our knowledge - the only Faddeev calcu
lation of this system was done in 1970 by R.Grubman and 
T.Whitten !S t . This work was aimed at reproducing only 
the ground state binding energy (E~alc =1.22 MeV) since 
the method used for treating the Coulomb force was valid 
only for negative total energies. There was also no 
discussion of the effects of the Pauli principle. 

Thus, the complete dynamical treatment of the a + a + n 
system does not exist yet. In our opinion the three-body 
molecular approach is a step towards this goal; an attempt, 
which, in spite of its calculational simplicity, offers 
some physical and easily visual izable insight into the 
structure of this nucleus. 

In a previous paper ~/ the Born-Oppenheimer Approxima
tion (BOA) was considered for the 9Bt>; it has been 
shown, that even this simplest form of the molecular 
treatment of this three-body system can provide a qualitative 
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description of the low-lying states of 9Be. In this picture, 
the presence of the neutron produces an effective potential 
between the twoa -particles which, when added to the 
original a-a- interaction, is strong enough to account for 
the weak three-body binding in the ground state of 9 Be. 
The long-range character of the positive-parity part of 
the effective force indicates the presence of low-lying 
positive-parity states in the 9 Be spectrum. 

The main difficulty of the BOA which does notal low 
making quantitative statements on its ground is the non
conservation of total angular momentum in the BOA. In the 
present paper we demonstrate how the conservation of the 
total spin and parity can be explicitly incorporated into 
the molecular approach and derive the "minimal extension" 
of the BOA having the correct quantum numbers. 

In section I I we give a short review of the molecular 
approach to the three-body problem; section I I I contains 
the derivation of the basic system of coupled ~q uations 
of the molecular treatment; in section IV we introduce 
the adiabatic one-level approximation and in section V 
we present the results of its application to 9 Be: in secti
on VI we draw some conclusions. 

I I. REVIEW OF THE MOLECULAR APPROACH 

The description of the u i a r n three-body system can be 
conveniently performed using the Jacobian coordinate and 
momentum variables 

... 
9{ ___ .: ____ ( m ; 

2m a. mn u a 1 
~ - · evJ· - · --+ mr . mr) :- p '- P p a a 2 n n a

1 
u

2 
n 

. 
R - ral- r~; p 

Y2 (Pa
1 

- Pa
2
>· 

_, -+ 1 . --+ 1 ___, ~ , 
r ~ r - -- ( r ., r ) ; p ~ ---- ---- (2m p - m (p p ) ) . n 2 a 1 a 2 ?m t- m a n n a 1 ~ 

a n 

( 1) 

After separating the center of mass variables (~. P) the 
Hamiltonian can be written as 

}{ - _! ___ P ::! , - L P 2 

2p. 2m 
' v na 

·• 1 - ~ -· 1 -· ~ 
( r ·- -- R) ' v ( r • -- R) . v ( R) 2 nu 2 ua (2) 
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with the reduced masses 

p. = Lm 
2 a 

2mamn 
m = --------- . 

2m a + m 11 

(3) 

The basic idea of the molecular approach to the solution 
of the three-body problem 

(}{ - E) 'II(;, R) = 0 (4) 

is to expand the three-body wave function 'II(~ R) in terms 
~f the eigenfunctions ~i(;; R} of the two-center Hamiltonian 

h t.c . 

1 ~2 ~ ... 1... ~ ... 1 ... 
h =--p + V (r---R)+V (r + -- R), t.c. 2m na 2 na 2 

(S) 

ht.c~i (;; R) = (i (R)~i (at). 

The expansion 

'II(;, R) =L~J. <~: R)u . (R) 
i J 

(6) 

combined with the projection of the Schrodinger equation 
(4) 

r~* cr': R)<J<- E) '11 <;: R) ct; = o * 
I 

leads to the following set of coupled 
expansion coefficients ui(R): 

1 ~ 
(- - --!'!. _, 1 vaa (R) -'- fi (R)- E)u i (R) = 

211 R 

1 -+-+ -+-+-+ 
·"--- I. I f<l>*(r;R)i\..,<1'>. (r;R)dr + 

211 i I R J 

~ 2f<~'>*(;:ii)v <t>.<~:ii); v lu.(R). 
I R J R J 

equations for the 

(7) 

*Here and in the following, if not necessary, the spin 
variable of the neutron is not explicitly indicated; 
summation over the spin coordinate is understood whenever 
integration over the coordinate or momentum variable of 
the neutron occurs. 
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The practical application of the molecular approach 
depends on the solvability of the two-center problem (5). 
In the present work we use separable n- a interactions for 
which the two-center problem can be solved exactly. Since 
we shall need them later, let use recal I briefly the 
main properties of these two-center functions. The 
separable n-a potential can be written as 

v 
na 

ema x e~'h j Npj 

~ ~ ~ ~ ln Pjm -· A p < n P jm l~ 
E= o i = E- 'h m~-j n= t n J (8) 

where the ket-vectors are defined through the form factors 
g nEj (P) as 

-e q , P <p, s lnEjm -- = g n. (p) i :1 . <n , s), 
nlJ Jffi p 

e 
'.lJim(O P, s)= ~(e ll 'halim)Yf1_t (O p)x y,a(s). 

JW 

In eq. (8) emax defines th e number of partial waves 
in which the potential acts, N ~ fixes the numbe r of 
separable terms in each wave . The solution of t he t wo
center problem for two potentials of the form (8) i s 
obtai ned as '10 · 

) -+~ i -+:; 

(9) 

~ - 2R P p 2 R P j nfJ 
I <I>MA· ··~ G0 (f M\ ·) 2 ( e ... J\(- l)e )inPjm: D I<I>,e.o) CM\ . (R), 

I I I nPjm mM' . 1 

( 1 0) 
where a o(Z) is the free Green ope rator of eq. (5 ): 

G0 (z) ~ (z - -;}mP 2
)-

1
• D ~ M is th e Wigner ..., rotation 

matrix* . <I> and e being the pola r an g l e s of R . Th e meaning 
of t he quantum numbe rs i s the f oll ow inq: M is th e projecti on 
o f . th e ne ut ron angular momentum a long t he direc ti on 
o f R: A i s as sociated with a symmetry fo llowi ng from the 
ident ity of t he two a-particle s , in the coo rdinate system 
l 1) ,_,it c~ i n~ide; with the pa rity ~ ga!n st t he inve~si on 
"r(p -- p. r -· -r):i denotes the m1s s1 ng labe l s , wh1ch 

might be necessary to specify a spate . The energy eigenva l ue 
( A .(R) and the coefficien t s C n A (R) a re obtai ned from 
t ~e\et of homogeneous algebra i c~q1uat i ons 
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*Th roughout the paper we use t he convent ion 

D j ,(a, f3, y) 
mm 

-iaJz 
' jrnl e 

- if3J y 
e 

- iyJ z 
e jm 

-1 p iRp z {3' 
~} Af3 o {3{3' - <f3M IG0(t)(l + A(-1) e )if3 'M>{CMA(R) = 0 ( 11 ) 

with the notation f3 = lnEjl. For a given value of R the 
energy eigenvalues f MAi (R) are those ·values oft for 
which the determinant of eq . (11) vanishes, allowing a 
solution C~Ai(R): the missing equation for determining 
the coefficients is the normalization condition 

<<I> I <I> > = o o o . 
M 'A'i' MAi MM' AA' ii' ( 12) 

The simplest realization of the molecular approach is the 
BOA, in which only one term in expansion (6) is retained, 
and the r.h.s. of eq. (7) is neglected. The application 
of the BOA for the 9Be case was considered in detail 
in 19 /, here we want to point out only one specific features 
of the BOA: it does not conserve the total angular momen
tum. Indeed, in the BOA we have a spherically symmetric 
Schrodinger equation in var[able R. and thus the total 
wave function w i I I have the form <I> i (r~ R) uL (R) Y LM(e, <I>) 
which is obviously not an eigenfunction of the total 
angular momentum. 

In principle, it would be possible to follow the famil i
ar angular momentum projection procedure to construct good 
angular momentum states from the "deformed" BOA solution 
'~~soA : 

JM ~ JM 
'~~so A = P '~~soA • 

,J IIIJM I}{ ' "'JM ,,JM 'IIIJM 
EBOA = ',..-BOA • 1 '~'BOA ·. '· '~'soA I TsoA' • 

~ JM 
P being a suitable projection operator. There are two 
possible objections to this procedure: 

a) the resulting wave functions and energy values are 
no lo~g er solutions of, may be, _approximate but sti 11 
dynamical equations; we would have a mixture of a dyna
mical and a variational calculation; 

b) for the two-centre functions (10) the practical 
realization of the projection is more difficult than 
the correct tr eatment of the angular momentum from the 
ve ry beginning. 
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I I I. DERIVATION OF THE COUPLED SYSTEM IN R 

Let us rewrite (10) in momentum representation: 

i -+-+ i-+ -) 
~ ~ --Rp E - Rp -E E · f3 

<I> A. (p;R) = l (e 2 t- 11.(-1) e 2 )i Y (n ,s)DJ l<ll,O,O)¢ II. (p,R) , 
M i {3m Jffi p mM' M 1 

where the notation (1~) 

{3 {3 1 2 - 1 
¢MII.i (p, R) = CMII.i (R)g{3 (p)(f Mll.i (R)- -2mp ) ( 1 4) 

was introduced. Our task is the evaluation of the r.h.s. 
of eq. (7): 

X = -~- l I {<1> *11. (p;R)~ _, <I> 'A.,(;; R)d; 
2 J1 M'i' M i R M i 

+ 2 f<ll *A. · (p; R) \f _, <ll •• . • (p ; R)dp\f _, luM •• . • (R). 
M 1 R M 1\l R 1\l 

-+ ... - ~ - ,. ( 1 5) 

In writing (15), besides the explicit indication of the 
quantum numbers of the two-center functions, we have 
taken into account that p2 commutes with ;r , and thus no 
coupling in A. occurs. Before calculating X we note 
that at this point our approach differs from the one used 
in molecular physics: since our two-center functions (13) 
are explicitly given for arbitrary direction of R, there 
is no need to introduce a "body-fixed" frame (with z 
axis along R ) and thus in our formal ism no Corio! is inte
raction occurs. 

The calculation of X is straightforward but tedious; 
the main steps are: 

- the evaluation of the effect of the operators ~ • and _, R v R upon the functions (13); 
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- spin-angular_ integration using elementary angular
momentum algebra; 

- summations over the magnetic quantum numbers using 
the orthogonality properties and Clebsch-Gordan expansion 
of the rotaion matrices. 

The result is as follows: 

1 Mil. Mil. 1 2 M2 cosO a 
X = - --li[D , (R)+N ,(R) ---(2M ------- - 2M - -----i ---) + 

211 i # 1i ii R2 sin2 e sin2 e a<I> 

Mil. ~ MA+ · cosO . ~ 
+B .. • (R)a 0 ]u A. ·,(R) + Q ..• (R){a +{M+1)-- ----)u A. · ' (R)+ 

11 M 1 11 + sin 0 M + 1 1 ( 
1 

6) 

Mil.- oosO ~ 
+ Q .. , (R) (a + (M-1) -----) u A.. ,(R)l 

11 - sinO M-1 1 

with the notation chain: 

Mil. L ~ 
D .. , (R) = l A{3{3,..(j 'MLO\jM) < {3iMI d(p, R) l /3 'i 'M > 

11 {3{3'L p 
( 17) 

Mil. L · 
N .. • (R)= l A{3{3,(j'MLO\jM) < {3iM i f(p,R) If3'i'M > , 

11 {3{3'L • p 
( 18) 

B ~~ (R) = l Af-lLf-1' (j'MLO\jM)< {3iM I b(p, R)l~ 'i 'M > 
11 {3{3 'L fJfJ p 

( 19) 

Q~i~± (R) = -~- l A~f-)l(j 'MLO\jM)y'(j '+M)(j ' :t: M+1)<{3iM•it{p,R)If3 'i 'M ±1 > -
R2 f1{3'L I'P . p 

- _l,_(j 'M ± 1 L :;: 1\jMh!L(L + 1) < {3iMig(p,R) If1'i 'M ±1 > PI, 
2 

(20) 

A ~{3' =2./ +P+ L (2L t·1){-l)i 't-y~/(-2£-.~-~)(;j~;;)(E 'OLOI eo) t ~, ~ ~, l ( 21 ) 

The matrix elements < {3iM IO(p, R) l{3'i'M'>P 
integral over p: 

denote the 

<{3iMIO(p, R) I,B 'i 'M \ = f p2
dp¢:A.i (p,R)Ocp,R)ct>!-~i .(p,R) (22) 

0 

while the operators and functions occuring in these matrix 
elements in eqs. (17}-(20) are defined as 

d(p,R) = f(p,R) (- _!.p 2 + _!__ ~-R 2-~-- _ _!_j '(j '+ 1))-h(p,R)-~- + 
4 R2 aR aR R2 aR 

+ _!._2g(p,R) (j(j + 1)- j '(j '+ 1)- L(L + 1)), 
2R 

( 23) 

9 



~ a 
b(p,R) = 2f(p, R) ---- h(p,R), 

aR ( 24) 

e· 1 e· 
f(p ,R) =oLD + A.<-1) jL(pR); g(p,R) = 3 oL

1
pR-A(-1) jL(pR), 

e· a h(p,R) ~ _),_o p - A(-1) ---j (pR). 
3 L 1 aR L ( 25) 

The set of differential operators a
0

,a± is defined as 

ao 
a 
alf ; a± 

_ a i a 
= + --- - ------ ----- . 

ae sine ac'l> (26) 

It is seen immediately from eq. (16) that coupling oc
curs only between functions uMAi and uM.Ai' for which 
~M=M'-M = O,±l. The next thing to be noted is that the 
normalization condition (12) written out in detail coinci
des with (18), so we have 

MA 
Nii'(R) = oii ' (27) 

This fact enables us to rewrite eq. (7) in the form: 

[- __ !__(_;1-- R2 _i! __ + __ ! __ _j}_ sinO -~- +- __ l ___ _ a 2
_ - 2iM-c_9_~ -~--

21LR
2 

aR aR sine ae ao sin 2e ac'l> 2 sin 2eac'l> 

M2 
2 - ... 

-------+ 2M ) -.- v (R) + f _ ( R)- E]u _(R) ~ 
sin2 1J aa MA1 MA1 

(28) 

1 MA MA a --. MA+ cosl} -• 
= --- 1 {( 0 1.1. '(R)+B __ ,(R)---)uMA-{R) + Q __ , ( R)(a - (M+ 1)-~---)uM-

1
, • (R)-.-

2/l i ' 11 a R I 11 .,. sm e 1\ I 

MA-
+ Q • (R)(a cose -· 

+ (M -J)------) u , (R)l . 
sine M-1 Ai 11 -

The system (28) allows an exact separation of angular 
dependence of the functions uMAi(R) in the form: 

-· J J 
u A- (R) = u A- (R)D (c!>. 0, 0). 
M I M 1 -MJ-M 

10 

(29) "' 

Substituting (29) into eq. (28) and taking into account 
that 

cos e J -------------- J 
(a+ + (M± 1)--:---- )D __ ....,(c'l>,e,O)=-y'(J + MXJ±M + 1)D_M -M(c'l>,e,O) (30) 

- sme MJ (M-'-1) J 

we get final~y for the functions u~Ai (R) the following 
set of equattons: 

1 d 2d 2 J 
[------(--- R ---- J(J + 1) ~ 2M ) + v (R) -'-c A- (R)-Elu A. (R)= 

21LR2 dR dR aa MHI MHI 

1 MA MA d J JMA+ J ( ) 
= --- l{(D . • (R) + B. . •(R)---)u A.(R) + Q .. , (R)uM A-' (R) -1 31 2¥ i • 11 11 dR MHI 11 • 1 HI 

+ QJM,A- (R)u:_-1 Ai, (R)l. 
II 

For convenience in (31) we have redefined the Q-s as 

JMA± - - - ----- - - ------ MA± 
Q __ , (R) = - v·(J+M)(J±M · 1)Q , (R). (32) 

II - II 

Using the explicit form of the two-center functions 
<I>MAi(p;R) (13) and expanding the product of the two 
D-functions, it is easy to show that 

1 ~ ..... i -· , • J __ 4_____ J-MJ -2Rp p 2 Rp (i 
(I> \ · (p': R)D (ct>.O.Q) ~ v __ !! __ l (-1) (e · A(- 1) e .)~~ A (p,R)x 

M 1 -MJ - M 2J - 1 {3 M/\1 

L (jMJ - M LO) l (jmLM iJM ) i-P '.4 f (!.1 ,s)Y (!1 ). 
I mM L · J Jill p LML R 
• L 

(33) 

This means that due to the angular dependence (29) each 
t erm in the expans ion (6) has total angular momentum J 
and projectjon M J .In other words, eq. (7) "knows" how to 
re store the rotation invariance of the pro__tllem, "destroyed" 
by a symmetry - breaking basis set <I>MA i @;R). 

Th e next conserved quantum number which has to be 
reconstructed by studying eq. (7) or (31) is the total 
parity "· The special feature of eq. (31) that permits 
us to do so is its property against the substitution 
M ~ -M. We have 

(-My\_ MA . ...t-M )~ MA . J (-M)A~ JMA-. J(-M)A- _ JMA+ 
D __ , - D __ , , ts __ , - B_ , , Q _, - Q __ , ,Q _ , - Q __ , . (34) 

II II 11 11 11 11 11 11 
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In deriving (34) we have 
of the coefficients cf3, .( R) 

MHI 

used the following property 
of eqs. (10) and (14) lO ' 

c 13 (R) = C-1) j ... e + ~ c f3 . 
~M~i MAt 

( R). ( 35) 

lntroducting now instead of the pair of functions u t IA · (R) 
and u_!IMIA f R) the pair M 1 

Jv - 1 J J . - + ( 3 6) 
uiMIAt - ~-::.2-::.(u i M I At ~ v u_ I M I A (' v - - 1 

the resulting equations will be uncoupl ed in , . due to eqs . 
(34) and a new quantum number v occurred: 

1 d 2 d 2 . J J' 
[- - - ---(- -- R ---- - J(J "'- 1) + 2M ) + v (R) · l . (R) - E iu .. (R) 

211 R 2 dR dR aa MAt M" t 

1 MA J~A- MA d Jv 
-- L{(D, (R) .,. v o Q __ , (R) + B . ,(R) ---)u • . ( RJ 

2p. 1 ' II M Y, II II dR M/\1 

+ QJ.~A+ (R) u Jv . , (R) + QJ.~A-(R)u Jv . (R) l . 
II M+tAt II M- t A t (37) 

In eq. (37)~1 > 0 and in view of the last term of (37) some 
special care must be taken for the case M ·=Vz : it was 
convenient to define u_!~At' , o and . ~o incorporate the 
contribution of the "non'-diagonal" Q J ~,, - term into the 

• • II diagonal matr1x element. 

Due to the decoup 1 i ng in v in the forma 1 inversion 
of (36) 

J 1 Jv J 1 Jv 
uiM!At = -:[2.:: ; u i_M/At; u-I MIAt = ~lf ~vu !M!At 

the summation may be omitted since at one time either the 
ufJ!At or the u l~~? are different from zero. Using 
this argument, the total wave function can be written as 

JMJ .., ..., J ..., ..., J 
IJI (p, R) = L uMAi (R) <l>MAi(p; R) D_MrM (¢, e, 0) = 

12 

1 

., 

L! J J J J l 
= M ' 0 UMAi <l>MA i 0- MrM T u- MAt<l>-MAi D_.MJM = (38) 

Jv J J + 
= M~ 0 UMAi (<I> MAl 0-MJ- M!- rA>- MAi 0 - MJM) . 

j • 

Now we can demonstrate that the ·quantum number v ar1s1ng 
from the symme try (34) of the equations (31) is directly 
associated with the parityrr of the total wave function~. 
Using eqs. ( 13), (35) and ( 38) we get for the operator rr 
eli ... - p: R ... - R): 

~ JMJv ., .., JMJL' .., _, J- ~ 
11 IJI ( p , R) ~ rriJI .(p, R); rr = •· (- 1) (39) 

since 

"' -4 ~ J J- 'l2 .. -.. J 
rr<l>MAi (p , R)D_M - M(¢, e, 0) ~ (- 1) <1>- MAi(p;R)D_M J<t>, e, 0). 

J J 

Finally, for a three-body wave function with quantum num
bers J . MJ and 11 we have: 

JMJ11 J11 J J-~ J 
IJI (p , R) ~M ~ouMAt (R)(<l>MAt 0- MJ- Mt 17 (- l) ¢- MAiD- MJM ) (40) 

j 

and the functions u~~ 1 ( R) satisfy eqs. (37) with label 
v replaced by" and the factor v occuring with the oM ~ 
term by 17 · (- l)J -y, . As soon as the wave function acquired 
the quantum number rr , the A becomes unnecessary and ' can 
be omitted. Indeed, we have 

17 = 17 17 : 

r R 17 = 77 · 17 ... ... 
R r 

~nd sinfe the wave function is an eigenfunction both of 
11 and rr ... with eigenvalues rr and A, respectively, it will 
be also ~n eigenfunction of ;; ..., with eigenvalue rr = " · A. 
I ~ h' . Rh fh R' n our case "ii means t e 1 nterc ange o t e two a -part 1 c-
les (bosons) and therefore we can have only "R=1 and rr = A. 

Thus we have demonstrated that careful treatment ·of eq. 
(7) can provide the necessary quantum numbers for the 

+ rhe factor 1/ v2is irrelevant, since the equations 
for the u:,;Ai are homogeneous. 
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three-body wave function'l'. There is, however, another, 
more heuristic way of deriving the set of equations (38) 
and (40).Suppose that by some means we could find out that 
from the two-center functions ~MAi a set of functions JMJ77 -+ -+ 
FMi (p ; R) can be constructed: 

JMJ77 2J + 1 J J-Y, J (4) 
F (P" R) = v ------- (~ D ~ 17(- 1) ~ A D ) ·M>O 1 

Mi ' g 17 MA1 - MJ- M - M i -M~ ' 

with the following properties: 

~ 2 JMJ77 _ JMJ77 . ~ JMJ77 _ JMJ 11 . ~ JMJ17 _ JMJ 11 

J FMi - J(J + l)FMi , JzFMi - MJFMi ' 17 FMi . 17 FMi 

( 42) ~ JMJrr JMJ11 JMJ11* J'Mj11' , 
ht FM . = f . (R)FM . ; fFM . FM' · ' dpdilR = a ,a M, a , aMM'a .. .. 

• C . I M171 I I I J J MJ J 1717 II 

Noting that these functions form a complete set in the 
space (p, DR) we can expand the three-body wave function 
in terms of these F - s: 

JMJ11 _, _, J11 JMJrr • _, 
'I'M (p, R) = 2 uM . (R) FM . (p; R) . 

I M>Q I I (43) 
j 

In (43) there is naturally no summation over the conser
ved quantum numbers J . M.T · "· The equations for the u ·177 (R) 
are obtained in the us ual way from the condition : MJ 

JM.T11 _, _, JMJr. • . . 
(FM . (p ; R)* 0< - E) 111 (p.R)dpdl1 - 0. 

I R (44) 

When the expansion (43) is substituted into eq. (44), aft e r 
performing all the integration s we obtain exa c tl y th e 
system of equations (37). Although thi s second de rivation 
seems to be simpler, the fir~t one provides some insight 
into the problem: how the properti e s of th e two-cent e r 
functions lead inevitably to the basis functions (41) and 
to the expansion (43). 

IV. ADIABATIC ONE-LEVEL APPROXIMATION 

After having derived the general system of equations 
(37) for the functions u~~(R) we can ask the question: 
what is the ''minimal extension'' of the BOA which preserves 
the necessary quantum numbers? Since every term in the 
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expansion ( 40) possesses the desired quantum numbers, it is 
sufficient to omit the coupling from the system (37): the 
summation over i' and the terms with M±1. There is a 
further simplification fqr this case: the coefficient of 
the first derivative B~77 (R) vanishes, since for i = i' 
from eqs. (18), (19), (24) ·~ (25) and (27) using the proper-
ties of the A~~·and < ,BiMI O I,B'i'M'>P of eqs. (21) and 
(22) we can derive 

M11 1 d M11 
B . . (R) = -- -·-- N .. (R) = Q. 

11 2 dR 11 

Thus we are l e ft with the single equation 

[ 1 d 2 d .Trr J11 

- 2~-R2 d-RR -d-R + vaa (R) + fMAi (R) + CMi(R)-E] uMi (R) = 0, (45) 

where the notation 

, Jrr 1 J(J + 1) - 2M 2 M11 C . (R) ~ - --[ --- - - ------- - D (R) + a 
Ml 2 11 R II M Y, 

was introduced. 

J- y, J Y, 
. ~~ Q . (~ 

II (46) 

In this case, as in the BOA, we have a single differen
tial equation (45) that governs the relative motion of 
the two a-particles, but the effective potential has the 
additional term C~~ (R), reflecting the inclusion of the 
necessary parts of the r.h.s. of eq. (7). J 

Using the notations of eqs. (41) and (43) the CM:(R) 
can be written as 

• J11 1 JM J17 _, ..., * JM J77 _, _, ..., 
C (R) .- ---- ( F (p ·R)/';. ·• F (p ·R) dpdl1 

Mi 2 11 Mi ' R Mi ' R ( 47) 

It i s wo r th mentioning that eq. (45) has no sharply defined 
cent r ifugal term of the type const. R- 2 : this follows 
immediately from eq. (47) if we write the Laplacian/';. R 
as 

1 a 2a 1 ~ 2 /';. .... = --- - --- R --- - --- L 
R R2 aR aR R2 R 

JMJ11 ..., _, 
and note ~that the functions FMi (p; R) are not eigenfunc-
tions of L~ . This feature of eq. (45) reflects the fact 
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that in a three-body wave function the relative orbital 
momentum is not a conserved quantum number. In our calcula
tion of 9 Be based on eqs. (45) and (46) we have made a 
further approximation, which - in our opinion - brings 
it closer in spirit to the BOA: the adiabatic assumption. 
According to this assumption, calculating the D~17( R) the 
matrix elements ~22), which contain differentiation of 
the functions ¢MJ\i(p, R) with respect toR, can be neglected. 
In this approximation we have: 

d(p, R)-.:.- f(p,R)( 1_p 2 + _!.
2
-j '(j '+ 1)) + _Lg (p ,R)(j(j + 1)-j ' (j '+1)-L(L + 1)). 

4 R ~r . 
( 48) 

We do not want to discuss in detal the conditions of the 
validity of this assumption; its effect for the 9Be case 
will be considered later. 

V. APPLICATION AND RESULTS FOR THE 9 Be 

Before applying the formalism of the preceding sections 
to the 9 B~ it has to be refined in one aspect. The term 
vaa(R) · u~17 (R) in eq. (45) was obtained assuming the 
simplest (local and central)a-a interaction; in this 
case the potential depends only on R, and all the mani
pulations related to the variables p, s, nR have no effect 
upon it. The phenomenological a-a potential of Ali and 
Bodmer / tll, which we have used in !9 / is , however, angular
momentum dependent, or, in other words, it has angular 
nonlocal ity. It can be written in the form: 

~AB AB ~ 

Vaa = Vcoul (R) + ~ vL (R)· PL(QR). 
L=0,2,4 

(49) 

whereVcoul,. is the Coulomb interaction of the two a-partic
les and PL(nR) is a projection operator onto a state 
vlith angular momentum L (in variable R).The effect of 
this nonlocality can be evaluated most conveniently using 
eq. (44). Defining the function aL(R) as 

. JMJrr _, ~ JMJrr _, _, _, 
aL(R) = [FMi (p, R1PL (f!R)FMi (p, R)dpdflR (50) 

the a-a interaction term of eq. (45) is obtained as 

[V . I (R) . + ~ VALB(R) aL(R)l uMJrr (R). (51) 
cou L = 0,2,4 I 
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Here again we have an effect of L mixing in the 
three-body wave function, the aL(~ being the R-dependent 
mixing coefficients. It can be easily shown by using again 
eq. (44), that a truly- not only angularly- non-local 
a - a potential would lead to an integrodifferential 
equation instead of eq. (45). In the special case when 
the original a - a potential is non-local but separable, 

the separability will be, unfortunately, lost during the 
integrations in eq. (44), and we obtain again an integro
differential equation with a non-separable kernel. In view 
of this computational difficulty we have not used in 
the present work the forbidden-state a - a potentia 1 151 , 

only the Al i-Bodmer one. The n-a interactions of our 9Be 
three-body model were discussed in detail in ~- ~ here we 
only recall their main features: 

the considered partial waves are: s
12 

,p1."2 · P
3

,
2

: 
- the form factors are of the form: 

p p 
g 1Pj (P) = (p2-~~-~j-)·r.-1- (52) 

- in p-waves we used single term separable potentials 
(N tj 1): 

- for the sL 2 channe 1 we used two types of i nterac
tion: 

a) attractive one-term potential with form factor (52) 
with projecting out the Pauli-forbidden bound state; this 
means a second separable term in this partial wave with 
form factor 

1 
g (P) . -------------------

201. 2 (P 2 +- Yg )(p2+/3
0
2
12

) 

1 - t - 1 2 and with the strength parameter A
201

"2• oo: -2(ma +- mn ) y
0 

being the binding energy of the forbidaen state; 
b) repulsive one-term potential. 

The interaction parameters are given in the table. The 
results of the two-center calculation are summarized in 
fig. 1, where the dominant fMJ\(R) +- eigenvalues are 

+In our case the additional label i is not needed, the 
pairMJ\ completely specifies · the two-center states taken 
into account. 
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-10 

-20 

-30 

Table 

The parameters of the separable n- a potential. Here~ 
denotes then-a reduced mass and 2~'y 5 is the energy of 
the Pauli-forbidden bound state (for the attractive 
potential) 

s 112 (attractive)s112 (repl.llsive) pl /2 p 3/2 

f3 

2~ '>.. 

1.494fm-1 
(y0 =.835 fm- 1) 

-9.283 fm- 3 

2 3 

· 7 fm -1 1.177 fm - 1 1.499 fm - 1 

3.770 fm- 1 -13.873 fm- 5 -60.708 fm- 5 

--- --- --- --- --- -------

4 5 6 7 8 9 10 R(fm) 

Fig . 1 . Re sults of the two- cent e r calcul a 
t i on. Neutron sing l e-pa rti cle ener g i es 
'MA (R) vs. a -parti c l e s epara tion R. 

£w,(RIMeV Br ok en line : f t;
2

- (R) f or r epulsive n--a i n
teraction in th e sV:! cha nne l ( see t ex t). 
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plotted against R. As it was pointed out in '~~ a signifi
cant difference between the case a) and b) of the s-wave 
interaction was observed only for the MA= V:? - case. 

The calculation of the 9 Be spectrum along the lines 
of eqs. (45), (46) and (48) based on the two-center states 
of fig. 1 starts with the evaluation of the additional 
potentials (46). The results are displayed in figs. 2a,2b,2c 

for the cases M11 = 3/2-, 1/2+ and 1/2- ( sl/2 -attraction), 
respectively. In these figures we have plotted for dif_J

17 fe r e nt J and fix ed M11 the effective potential term VM (R) 
o f eq. (45): 

J11 AB ~ J11 
VM (R)= V 1 (R) +f (R)+ ~ vL (R)aL(R)+ CM (R). 

cou M11 L = 0, 2 , 4 
(53) 

For comparision the Born-Oppenheimer effective potential 
v~8 ( R) + f (R) is also shown (broken line). It has 
to be not~~ that since for the ca se M11 =1/2 + the two
ce nt e r solutions do not exist for R < R

0
=2.05 fm, the 

c urves for this case were cbt~ined by extrapolating from 
R ·R .We us ed the f ollowing procedu r e: having observed 
that

0 
fo r R-> R 0 the coe fficients a L(R) and the additional 

po tentials C~~(R) hav e the property: 

a (R) _, 0 LL(J) L 

1 (j J - ( R) _, ---
,, 2~ 

_I::W_·_l~GJ::_ll 
R2 

for R, R
0 

we assumed: 

f o r R _, Ro 

J - AB 
V \z (R) - V caul (R) ~ VL(J)(R) - _!_ -~@_:_(_~(!l!}l_ 

2~ R 2 

(54) 

(5 5) 

Th e L(J) va 1 ues are the fo 11 owing: L(V:?) = 0, L(3/ 2) = 
= L(5 2) = 2 . This procedure is by no means 
rigorous; strictly speaking, the one - level approxima -
t ion o f the three-body wave function is not valid in this 
case f o r R · R0 ; in a correct treatment the continuum two
center states should be also included in the expansion 
(6) to account for the possib i lity of the neutron escape 
if the two a - particles are too close. We still expect 
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(c) 

........ 
~ Fig . 2 . The effective potentials v~" (R) obtained from 

the different two-center states (see eq.(53)) . 
(a) Mrr -~ 3.' 2-

(b) 
(c) 

Mrr 1/ 2 
1 

Mrr - 1 2 

fo r the few lowest total angular momentum values J . 
Broken lines: the co rres ponding Born-Oppenheimer effective 
potentials. 

that the error, introduced this way, does not break down 
completely the appl icabi 1 ity of our simple approach, since 
the incorrectly treated region ( R < R

0
) is almost fully 

covered by the strong Pauli repulsion of the two a-partic
l es, which does not allow them to spend too much time 
in this region. 

After having obtained the potentials (53), the eigen
value equation (45) was solved to obtain the spectrum 
of 

9
Ba The results are shown in fig. 3. Like in the 

experimental spectrum, we got only one true bound state 
below the a " a+n threshold, the Jrr 312 - ground state. All 
the other states of the spectrum are above the threshold, 
and thus the corresponding eigenvalues are complex. The 
widths of the lower-lying states are very small (l' " .001MeV) 
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h' 

lt,' 

Fig. 3. Comparison of the calculated and experimental 
. 9 

spectrum of Be. 

so we did ·not plot them. The spectrum is naturally divided 
into "rotational bands" based on the different intrinsic 
states Mrr. The Mrr = V2- band has been calculated with 
both versions of the s-wave potential; the difference is 
quite small. We have also checked the validity of the 
adiabatic assumption (48). It turned out that the inclusion 
of the differentiation with respect toR has a negligible 
effect upon the 9 Be spactrum, except for the case of 
Mrr =1!2+, where the derivatives are pathologically great 
around R

0
, again indicating a certain instability of the 

model in that region. 
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VI. CONCLUSIONS 

The qualitative agreement of our calculated spectrum 
with the experimental one is satisfactory, especially 
in view of the no-adjustable-parameter character of the cal
culation.The negative parity states are slightly underbound, 
while the positive parity band is shifted upwards more consi
derably.At this point we have to face the age-old question 
of nuclear physics : who is responsible for the discrepan
cy, the assumptions of the model and the built in approxi
mations or the input interactions? 

It is known that the phenomenological a-a potential of 
Ali and Bodmer always gives underbinding for bound systems 
containing a -particles 171. This underbinding is explained 
by the failure of the AB-potential to reproduce the 
correct short-distance behaviour of the a-a relative wave 
function (inner oscillations) required by the Pauli prin
ciple. It is argued 1121 that the underb i nd i ng effect 
increases with decreasing average relative distance of 
the a -particles in a certain system. Thus, for 12 C it 
is quite strong( - 5-7 MeV), for 8 Be · it is negligible, 
and therefore for the weakly bound 9 Be we can also expect 
a small effect. Hence, in our opinion, the small underbind
ing of the negative parity states is most likely due 
to this effect . We plan to check this statement by a 
s imilar calculation using an a- a force correctly taking 
into account the Pauli princuple. As far as the positive
parity band is concerned, we are less sure about the 
conceptual correctness of the model; the expansion is 
based in this cas e on a very weakly bound two-center 
state (even ceasing for R<R0 ) and the closeness of the 

neglected continuum states may be responsible for the 
more important disc repancy. 
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