

сообщения объвдииеиного ииститута пдерных исслвдованй аубна

C341r
B-11
E4-12318
T.D.Babutsidze, M.Sh.Chachkhunashvili, T.LKopaleishvili, I.Z.Machabeli

QUARK-CLUSTER MODEL OF NUCLEI
AND NUCLEON FORCES
I. Two-Body Forces

E4-12318

T.D.Babutsidze, M.Sh.Chachkhunashvili, T.I.Kopaleishvili, I.Z.Machabeli

QUARK-CLUSTER MODEL OF NUCLEI
AND NUCLEON FORCES
I. Two-Body Forces

Кварк-кластерная модель ядра и ядерные сильі.

1. Двухчастичные силы

Кварковая модель ядра, где ядро представляется как система бесцветнвіх трехкварковых кластеров-нуклонов, обобщается на случай, когда учитываются, также возбужденные нуклонные и разные Δ-изобарные взаимодействия, учитываюшего обмен гло потенииала кварк-кваркового и конфайнмент на больших расстояниях, в рамках рассматриваемой мо был построен потенциал барион-барионного взаимөдействия. Этот потенциал содержит как центральную, гак и спин-спиновую и тензорную части, является сугубо нелокальным, что обусловлено обменным харакгером вэаимодействия и имеет радиус действия порлдка раэмеров бариона

Работа вьполнена в Лаборатории теоретической физики ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1979
Babutsidze T.D. et al.

E4-12318
Quark-Cluster Model of Nuclei and Nucleon Forces. I. Two-Body Force

A quark model suggested in ref. ${ }^{/ 1 /}$, according to which a nucleus is considered as a system of colourless three-quark clusters-nucleons, is generalized for the case when besides the nucleon states the possibility of producting the excited nucleon and different Δ isobar states is taken into account. Beginning with a given local quark-quark interaction potential, including a gluon exchange at small distances and a confinement at large distances, baryon-baryon interaction potential is constructed in the framework of the model under consideration. This potential contains central, spin-spin and tenzor parts and is basically nonlocal, due the exchange character of this interaction, and has an interaction radius of the order of the baryon r.m.s. radius.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Communication of the Joint Instifute for Nuclear Research. Dubna 1979
(С) 1979 Объедвненвый внститут пдерных исследованиА Дубна

Introduction

It has become widely accepted that a nucleon (N)is the threequark composite object in which ony two quarks are in the relative s-state, as to the colour state of this object it belongs to the singlet representation ($\left\{1^{3}\right\}^{c}$) of $S U^{c}(3)$ growp. If now we accept nucleon model of nuclei we come to a rodel of the nucleus which is a 3A-quark system of the colour singlet three-quark object (colourless three-quark clusters - nucleons) in a given instant of time. Such a model can be called the quark-cluster model of nuclei by an analogy with the α-cluster model. Indeed: as in the α-cluster all allowed spin and isospin states are occupied, and as a result the corresponding wave function is completely entisymmetrical (the singlet representetion $\left\{1^{4}\right\}^{\text {cT }}$ of $\mathrm{SU}^{\text {बC }}(4)$ group), in nucleon all the allowed colour states are occupied; further the exchange of nucleons with the same spin-isospin quantum numbers is allowed between any two α-clusters analogously the exchange of quarks with the same colour quantum numbers is allowed between two nucleons. In the framework of the model under consideration there is a possibility of the appearance of the three, four and other manybody forces besides the two-body forces arising as a result of the single-quark exchange between two nucleons in a given instant of time. The model described above was suggested in ref.1/.

This model is easily generalized for the case when besides the nucleon states the possibility of the production of the ot-
her three-quark objects, e.g., Δ-isobars, excited nucleons ${ }^{*}$ *, etc., are taken into account. These new types of three-quark objects are the result of the exchange of quarks with the different spin-isospin and radial-orbital quantum numbers, but with the same colour quantum numbers. It is clear that due to the exchange of quarks between cluster states with a "hidden" colour ${ }^{121}$, i.e., states corresponding to the octet representation $\{21\}^{c}$ of SU^{c} (3) group can appear. We do not consider here this possibility. Therefor we come to the model according to which a nucleus is the 3A-quark system divided into the colourless three-quark clusters (baryons).

Two-Body Nuclear Forces

The similarity of nuclear forces with forces acting between nouble gas atoms, e.g., between Hellum atoms (see, e.g., review article ${ }^{/ 3 /}$) is well know. In this case He-He forces are the result of the averaging over the electrons from closed shells of an electron-electron interaction from different atoms taking into account an exchange effect. Analogously, baryon-baryon interaction potential can be considered as a result of the averaging of the quark-quark ($q q$) interaction potential between the quarks from different closed colour shells (colourless three-quark clusters) having the exchange between the clusters with the aame colour quarks.

The present paper is devoted to the construction of bary-on-baryon ($B B$) interaction potential on the basis of the model described above. There are
different two-baryon state vectors for six-quark system in this model
$\left|N_{y_{2}} N_{y_{2}}\right\rangle,\left|\Delta_{y_{2}} \Delta_{y_{2}}\right\rangle,\left|N_{y_{2}}^{*} N_{y_{2}}^{*}\right\rangle\left|\Delta_{y_{2}}^{*} \Delta_{y_{2}}^{*}\right\rangle,\left|N_{y_{2}}^{*} N_{3_{2}}^{*}\right\rangle,\left|N_{1_{2}} \Delta_{\psi_{2}}+\Delta_{y_{2}} N_{y_{2}}\right\rangle$,

$\left|N_{y_{2}} \Delta_{y_{2}}^{*}+\Delta_{\psi_{2}}^{*} N_{\psi_{2}}\right\rangle,\left|N_{1_{2}}^{*} \Delta_{\psi_{2}}+\Delta_{y_{2}} N_{\psi_{2}}^{*}\right\rangle,\left|\Delta_{y_{2}} N_{\psi_{2}}^{*}+N_{\psi_{2}}^{*} \Delta_{y_{2}}\right\rangle,\left|N_{\gamma_{2}}^{*} N_{z_{2}}^{*}+N_{\psi_{2}}^{*} N_{\gamma_{2}}^{*}\right\rangle$, $\left|\Delta_{i_{2}}^{*} N_{\psi_{12}}^{*}+\mathbb{N}_{\psi_{2}}^{*} \Delta_{y_{2}}^{*}\right\rangle,\left|\Delta_{y_{2}}^{*} \mathbb{N}_{i_{2}}^{*}+\mathbb{N}_{\psi_{2}}^{*} \Delta_{y_{1}}^{*}\right\rangle$,
where we designated by $N_{1 / 2}$ and $\Delta_{3 / 2}$ nucleons and Δ-isobars in the ground states with spin-isospin wave functions corresponding to the irreducible representation (IR) $\{3\}$ of $\mathrm{SU}^{6 \tau}$ (4) group and with the s-state space wave function. Nucleons and Δ isobars in the excited states with spin-isospin wave functions, corresponding to the IR $\{21\}$ of $\mathrm{SU}^{* \mathbb{C}}(4)$ group, and with a space wave function, characterized by the non-zero orbital angular momentum are designated by $\mathbb{N}_{4 / 2(3 / 2)}^{*}$ and $\Delta_{1 / 2}^{*}$ In this basis the BB interaotion potential is a many-row matrix. It is convenient to begin with a shortened basis taking only two state vectors $\left(N_{k} N_{y}\right)$ and $\left|\Delta_{y_{2}} \Delta_{4_{2}}\right\rangle$. As for the construction of the full matrix it will discussed below.

The state vector of two identical a- and b-baryons is taken in a form

$$
\begin{equation*}
\left|\hat{\phi}_{a b}\right\rangle=\frac{1}{\sqrt{2}}\left(1-P_{a b}\right)\left|\phi_{a b}\right\rangle \tag{2}
\end{equation*}
$$

where:

$$
\begin{equation*}
\left|\Phi_{a b}\right\rangle=\left|\phi_{a}(12,3)\right\rangle\left|\Phi_{b}(456)\right\rangle\left|R_{a b}\right\rangle, \tag{3}
\end{equation*}
$$

$\left|\phi_{a}\right\rangle,\left|\phi_{b}\right\rangle$ are $a-$ and b-baryon state vectors antisymmetrized over all quark coordinates; $\left|R_{a b}\right\rangle$ is the state vector of their relative motion; $P_{a b}$ is the two baryon permutation operator. It is olear that the interaction energy of the $B B \rightarrow B^{\prime} B^{\prime}$ transition with fixed values of orbital (L), apin (S) and isospin (I) momenta has the form

$$
\begin{align*}
& \hat{W}_{B^{\prime} B^{\prime}, B B}=-\frac{\left[1-(-1)^{\left.L+s^{\prime}+I^{\prime}\right]}\right.}{\sqrt{2}}\left\langle\phi_{a^{\prime} b^{\prime}}^{L^{\prime} T^{\prime}}\right| \sum_{k=1}^{3} \sum_{i=4}^{6} V_{x i} \sum_{i=1}^{3} \sum_{j=1}^{6} P_{i j}\left|\phi_{a b}^{L s I}\right\rangle \frac{\left[1-(-1)^{1+s+1}\right]}{\sqrt{2}}= \\
& =\frac{\left[1-(-1)^{L^{\prime}+s^{\prime}+I^{\prime}}\right]}{\sqrt{2}} W_{B^{\prime} B^{\prime}, B B} \frac{\left[1-(-1)^{L+s+I}\right]}{\sqrt{2}}, \tag{4}
\end{align*}
$$

where $V_{k l}$ is a qq interaction potential and

$$
\begin{equation*}
P_{i j}=P_{i j}^{r} P_{i j}^{o \tau} P_{i j}^{c} \tag{5}
\end{equation*}
$$

is (i,j) quarks apace, spin-ibospin and colour coordinate permutation operator.

Let us take the state vector $\left|\phi_{a b}^{\text {LSI }}\right\rangle$ as a product of the colour, spin-isospin and space state vectors:

$$
\begin{equation*}
\left|\phi_{a b}^{L 5 I}\right\rangle=\left|\left\{\left\{^{3}\right\}\left\{1^{3}\right\}\right\rangle^{c}\right| s_{a} J_{b}, t_{a} t_{b} ;\langle I\rangle\left|\phi_{a}\right\rangle\left|\phi_{b}\right\rangle\left|R_{a b}^{b}\right\rangle . \tag{6}
\end{equation*}
$$

The local qq-potential, in general, has the form

$$
\begin{equation*}
V_{k e}=\vec{F}_{k} \cdot \vec{F}_{k} f_{k e}\left(\vec{r}_{k e}, \vec{P}_{k e}, \overrightarrow{3}_{k}, \overrightarrow{,}_{k}\right)=\frac{1}{4} \vec{\lambda}_{k} \vec{\lambda}_{l} f_{k e}\left(\vec{r}_{k e}, \vec{k}_{k e}, \vec{\lambda}_{k}, \vec{\partial}_{e}\right), \tag{7}
\end{equation*}
$$

here $\vec{\lambda}\left(\lambda^{\prime}, \lambda^{2}, \ldots, \lambda^{B}\right)$ are Gell-Mann matrioes and f_{kI} is a some scalar function.

Haking use of (4), (6) and (7) we have

where

Introducing the proper Jakob coordinates in the six-quark c.m. frame one has

$$
\begin{aligned}
& =\int d \vec{r} R_{a^{\prime} b^{\prime}}^{i^{*}}(\vec{r})\left\{\int d \vec{R}_{\text {ke }} d \vec{r}_{\text {re }} d \vec{x} d \vec{y} \phi_{a^{\prime}}^{*}\left(\vec{r}_{r} \vec{r}_{3}, \vec{r}_{j} ; \vec{R}_{a^{\prime}}\right) \Phi_{b^{\prime}}^{*}\left(\vec{r}_{4}, \vec{r}_{5}, \vec{r}_{6} ; \vec{R}_{b^{\prime}}\right) .\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { where } \\
& \vec{r}_{k e}=\vec{r}_{k}-\vec{r}_{e}, \vec{R}_{k e}=\frac{1}{2}\left(\vec{r}_{k}+\vec{r}_{e}\right), \vec{x}=\vec{r}_{i}-\vec{r}_{i}^{\prime}, \vec{y}=\vec{r}_{j}-\vec{r}_{j^{\prime}}, \\
& \vec{r}=\vec{R}_{a}-\vec{R}_{b} ; \quad\left(i, i^{\prime} \neq k ; j, j^{\prime} \neq l\right) .
\end{aligned}
$$

Let us use an identity $/ 4 / *$

$$
R_{a b}^{L}\left(P_{i j}^{L} \vec{r}\right)=\left(\frac{\beta^{3}}{\pi}\right)^{3} \int \exp \left[-\beta^{2}\left(P_{i j}^{r} \vec{r}-i \vec{S}\right)^{2}\right] \exp \left[\beta^{2}\left(\vec{r}^{\prime}-i \vec{S}\right)^{2}\right] R_{a b}^{L}\left(r^{\prime}\right) d \vec{S} d \vec{r}^{\prime} ;
$$

which is held for an arbitraty value of parameter β with $\operatorname{Re} \beta^{2}>0$. This parameter has to be taken for convenience. As a result we have
*The authors would like to thank V.S.Skhirtladze who has pointed out on the possibility of using this relation.

$$
\begin{equation*}
J_{k c^{2}}^{i \dot{j}}=\int d \overrightarrow{r^{\prime}} d \vec{r}^{\prime} R_{a^{\prime} b^{\prime}}^{L^{\prime} *}\left(\vec{r}^{\prime}\right)\left\langle\vec{r}^{\prime}\right| V_{g^{\prime} B^{\prime} ; B B}^{k \ell ; i j}|\vec{r}\rangle R_{a b}^{L}\left(\overrightarrow{r^{\prime}}\right), \tag{12}
\end{equation*}
$$

where

$$
\begin{align*}
& \left.\left\langle\vec{r}^{\prime}\right| V_{s 0^{\prime}, \infty}^{k t_{i} ; j}|\vec{r}\rangle=\left(\frac{\beta^{2}}{\pi}\right)^{3}\right] d \vec{R}_{k e} d \vec{r}_{k e} d \vec{x} d \vec{y}\left[\phi_{a},\left(\vec{r}, \vec{R}_{k c}, \vec{r}_{k e}, \vec{x}\right) \phi_{b}\left(\vec{r}, \vec{R}_{k e}, \vec{r}_{k e}, \vec{y}\right)\right]^{*} \text {. } \tag{13}
\end{align*}
$$

$$
\begin{aligned}
& \cdot \exp \left[\boldsymbol{\beta}^{\mathbf{2}}(\vec{r}-i \vec{S})^{2}\right]
\end{aligned}
$$

are the elements of the $\mathrm{BB} \rightarrow \mathrm{B}^{\prime} \mathrm{B}^{\prime}$ transition potential. It is easy to see that for a given (kl), e.g., for (kl) a (14) we have three types of the different matrix elements of the potential:

$$
\begin{align*}
v^{14 ; 14} ; v^{14 ; 15} & =v^{14 ; 16}=v^{14 ; 24}=v^{14 ; 34} ; \\
v^{14 ; 25} & =v^{14 ; 26}=v^{14 ; 35}=v^{14 ; 36} ; \tag{13'}
\end{align*}
$$

We should like to emphasize that the effective $B B$ potential we have obtained is basically nonlocal. This is connected with the exchange oharacter of the BB interaction and that we have not used the adiabatio approximation (see below).

The basis function of the IR $\left\{1^{3}\right\}$ of $\operatorname{SU}^{\circ}(3)$ group has been
 Keeping in mind that according to our assumptions colour octet cluster states have to be neglected we omit the states appearing besides the singlet atates ofter the action of the operator $P_{1 j}^{c}$ on the state vector $\left\langle\left\{1^{3}\right\}\left\{1^{3}\right\}\right\rangle^{c}$. As a result we have:
$\left.\ll\left\{1^{3}\right\}\left\{1^{3}\right\}\left|\overrightarrow{F_{i}} \vec{F}_{1} P_{1 j}^{c}\right|\left\{1^{3}\right\}\left\{1^{3}\right\}\right)^{\circ}=\left\{\begin{array}{ccc}1 / 9, & (1, j)=(k, 1) \\ -1 / 18, & 1=k, & j \neq 1 \\ 1 / 36, & (1, j) \neq & (k, 1)\end{array}\right.$
The direct calculations show us, that

${ }^{\text {atabi }}$

3								ה！
$\stackrel{3}{3}_{3}$					이우웅	이ㄱㅜㅏ		$\stackrel{\text { cla }}{\text { a }}$
			웅	\％${ }_{-5}^{1}$			产何	
3^{8}					気気年	웈	枓禹	웡） 1
5							ल゙क	alo
$\left[\begin{array}{c} 3 \\ 0^{3} \end{array}\right.$					\％	尔1尔	彩｜	$\stackrel{1}{2} \mid$
3^{5}			1001\％					可边
3°				牙艮			待事	$\stackrel{1}{5} 100$
\％		$\frac{\sqrt{9}}{5} \sqrt{5}$		$\stackrel{9}{7}$		왹	第边	$\stackrel{1}{2} \mid$
3^{3}							9^{+1}	
cis	E－	뚳ㅇ	19의둘	或或尔	된）	궁ํ	成为	$\stackrel{19}{19}$
\％	ज्राण	둑에	喿第第	울ㄱㅇ	으ㅅㅜㅐ		暘边	$\stackrel{1}{1}$
3^{3}	\cdots	ज10	위주	沶込	9\％	岇尔	ন্নী00	¢
B^{7}	जor	－10	$\stackrel{10}{3} 5$	－ 1	in ${ }^{3}$	न管	아에	\cdots
B^{-7}	± 10	जन	न－\％	永年	－7\％		－ m	가아
2	\rightarrow	or	\rightarrow	r	\rightarrow	σ	\rightarrow	\cdots
$\stackrel{-2}{\square}$	O			$\underline{-}$		O		－

The coefficients $a_{m n}$ for fixed values of（SI）in $N N$ channel defined in the basis（1）are shown in the table．If the shor－ tened basis is used this coefficients must be normalized again． Taking into account the formula（15），BB interaction potential can be written as a matrix

$$
\begin{align*}
& \text { itten as a matrix } \tag{16}\\
& V_{B B}=\left[\begin{array}{l}
a_{41} V_{N N, N N}, a_{24} V_{N N, \tilde{a} \tilde{\Delta}, \ldots} \\
a_{21} V_{\Delta \Delta, \tilde{N} \tilde{N}}, a_{22} V_{\Delta \Delta, \Delta \Delta,} \ldots \\
\cdot \cdots \cdots
\end{array}\right]
\end{align*}
$$

where $\tilde{N}(\tilde{\Delta})$ denotes a cluster with nucieon（ Δ－isobar）space function，but with spin $3 / 2(1 / 2)$ and isospin $3 / 2(1 / 2)$ ．

As one can see from（9）and（13）we need the exact expres－ sion for $f_{k e}\left(\vec{r}_{k e}, \vec{P}_{k e}, \vec{y}_{k}, \vec{y}_{2}\right)$ Auotion for the construction of BB interaotion．Let us use the expression for qq interaction sug－ gested in ref．$/ 5 /$ and generally accepted substitutions

$$
\begin{align*}
& \frac{1}{r_{k l}} \rightarrow f_{k e}\left(r_{k e}\right), \frac{1}{r_{k e}^{3}} \rightarrow \frac{1}{r_{k l}} \frac{\partial}{\partial r_{k e}}\left(\frac{1}{r_{k e}}\right) \rightarrow-\frac{1}{r_{k e}} \frac{\partial}{\partial r_{k e}} f_{k e}\left(r_{k e}\right), \\
& \delta\left(\vec{r}_{k e}\right)=-\frac{1}{4 \pi} \Delta r_{k e}\left(\frac{1}{r_{k c}}\right) \rightarrow-\frac{1}{4 \pi} \Delta r_{k e} f_{k e}\left(r_{k e}\right), \tag{17}
\end{align*}
$$

with the demand of the translational invariance the function $f_{k e}$ is reduced to

$$
\begin{gather*}
f_{k e}\left(\vec{r}_{k e}, \vec{P}_{k e}, \vec{s}_{k}, \vec{s}_{k}\right)=f_{k e}\left(r_{k c}\right)-\frac{1}{2 m^{2}} f_{k e}\left(r_{k e}\right)\left[-\vec{P}_{k c}^{2}+\hat{r}_{k k}\left(\hat{r}_{k e} \cdot \vec{P}_{k e}\right) \vec{P}_{k e}\right]+ \\
+\frac{1}{4 m^{2}}\left[1+\frac{8}{3} \vec{s}_{k} \cdot \vec{s}_{k}\right] \Delta_{r_{k e}} f_{k e}\left(r_{k e}\right)+\frac{1}{2 m^{2}}\left[3 \vec{L}_{k i} \cdot \dot{S}_{k e}+\left\{6\left(\vec{r}_{k i} \cdot \vec{s}_{k}\right)\left(\vec{r}_{k e} \cdot \overrightarrow{s_{e}}-2 \vec{s}_{k} \cdot \vec{s}_{c}\right)\right\}\right] . \tag{18}\\
\cdot \frac{1}{r_{k e}} \frac{\partial}{\partial r_{k e}} f_{k e}\left(r_{k e}\right), \quad \hat{r}=\frac{\vec{r}}{r},
\end{gather*}
$$

where $f_{k e}\left(r_{k e}\right)$ is taken in a formin $6 /$

$$
\begin{equation*}
f_{k e}\left(r_{k e}\right)=\frac{g^{2}}{r_{k l}}\left[1-\left(\frac{r_{k c}}{r_{0}}\right)^{n+1}\right], \quad n \geqslant 1 \tag{19}
\end{equation*}
$$

A Coulomb－like interaction term in（19）at small separations ie associated with massless vector mesons（gluons）exohange and the second term exhibits a＂confinement＂interaotion at large sepa＊ ration．

An inner state space wave function of a baryon is taken in the form

$$
\begin{equation*}
\Phi_{a(b)}=\left[\frac{\alpha_{a(b)}^{2}}{\pi}\right]^{1 / 2}\left(\frac{4}{3}\right)^{2 / \varphi} \exp \left\{-\alpha_{a(a)}^{2} \sum_{i \in a(b)}\left(\vec{r}_{i}-R_{a(b)}\right)^{2}\right\}, \tag{20}
\end{equation*}
$$

where parameter $\alpha_{a}^{2}(b)$ is determined from r.m.s. radius of a baryon $\sqrt{\left\langle\left(\vec{r}_{i}-\vec{R}_{a(0)}\right)^{2}\right\rangle}=\frac{1}{\sqrt{2} \alpha_{a(b)}}=r_{a(b)}$.

The calculations ehow that static part of $N N \rightarrow N N, \Delta \Delta \rightarrow \Delta \Delta$ and $N N \leftrightarrows \Delta \Delta$ transitions potential in \vec{r}-representation has the form

$$
\begin{aligned}
& \left\langle\vec{r}^{\prime}\right| V_{B^{\prime} B^{\prime}, B B}|\vec{r}\rangle=\frac{g^{2}}{2}\left[\frac{16 \alpha^{13} \alpha^{3}}{3 \pi\left(\alpha^{\prime 2}+\alpha^{2}\right)^{8}}\right]^{3 / 2}\left(\alpha^{\prime} \alpha\right)^{3 / 2} \sqrt{\alpha^{12}+\alpha^{2}} \times \\
& =\exp \left[\frac{9}{8}\left(\alpha^{\prime 2}+\alpha^{2}\right) \vec{r} \vec{r}\right]\left[\left\{\operatorname { e x p } \left[-\left(\frac{3}{16}\left(\alpha^{12}+\frac{27}{16} \alpha^{2}\right) \vec{r}^{12}-\left(\frac{27}{16} \alpha^{12}+\frac{3}{16} \alpha^{2}\right) \vec{r}^{1}\right] \times\right.\right.\right. \\
& \left.\|\left[F^{c}\left(\vec{r}^{\prime}, \vec{r}\right)+\frac{\alpha^{\prime 2}+\alpha^{2}}{4 m^{2}}\left(g+\frac{8}{3} \vec{S}_{a} \vec{S}_{b}\right) \vec{r}^{s s}\left(\vec{r}^{\prime}, \vec{r}\right)+\frac{\alpha^{\prime 2}+\alpha^{2}}{2 m^{2}} F^{t}\left(\vec{r}^{\prime}, \vec{r}^{\prime}\right)\right]\right\}+\left\{\vec{r} \overrightarrow{c^{\prime}} \vec{r}^{\prime}\right\} ;
\end{aligned}
$$

$$
\begin{align*}
& +\frac{\left(\alpha^{\prime 2} 2 \alpha^{2}\right)}{30 \sqrt{\pi}}\left(\vec{r}+\vec{r}^{\prime}\right)^{2} T_{12}\left(\hat{r^{\prime}}+\vec{r}^{\prime}\right)\left[\Phi \left(\frac{5}{2}, \frac{7}{2} ;-\frac{9\left(\alpha^{12}+\alpha^{2}\right)}{16}\left|\overrightarrow{r^{2}}+\vec{r}^{\prime}\right|^{2}+\right.\right. \tag{21}
\end{align*}
$$

$$
\begin{aligned}
& T_{12}(\hat{r})=6\left(\hat{r} \cdot \vec{S}_{a}\right)\left(\vec{r} \cdot \vec{S}_{b}\right)-2 \vec{S}_{a} \cdot \vec{S}_{b} ; \quad(\hbar=c=1),
\end{aligned}
$$

where the upper row in the brackets corresponds to the case n=4 in the formula (19) and the lower one - to the oase $n=2 ; \phi(\alpha, \beta, z)$ is a degenerate hypergeometrical function.

The expresaion (21) allows us to estimate the value of the BB interaotion radius. Aocording to the leading exponent for $N N$ interaotion radius $r_{\text {MN }}$ is obtained $\quad r_{M N} \simeq \frac{1}{\sqrt{\hbar} \alpha}=r_{N} \quad$, i.e., the nuoleon radius. Other factors in (21) will inorease this vam lue. To exhibit the exact behaviour of the effective potential at large distances and at amall separations where the existence of a repulsive core is expected one needs to factorized this potential. At present this problem is being studied.

The matrix elements which are not shown in (16) correspond to the excitation of the baryon radial and orbital degrees of freedom. For their construction suitable wave functions of baryon exoited states have to be taken instead of the ground state wave function (20).

It's easy to generalize the potential (21) in the case when the baryon ground state wave function is taken as a superposition of the functions of the type (20). Such wave functions provide the better description of the baryon form-factors at a wide range of transfer momentum. It is clear that such generalization will increase NN interaction radius $r_{N N}$ and will give the better description of the potential behaviour at large diem tances because of an extention of the two baryon distribution functions ovelap.

As it was mentioned above we have not constrained the baryon center mass motion at constructing the potential (21), in particular we have not used an adiabatic approximation - have not fixed a relative distance betwean the oluster during the inte-
raction. The adiabatic approximation in the case of $B B$ interaction is not founded, because a mass of a quark being exchanged oetween baryons must be of the order $1 / 3$ of baryon mass at nonrelativistic treatment of the problem. As a result the quark exchange leads to the substential alternation of the two baryon relative radius-vector \vec{r}. Lvevertheless we consider such approximation which leads to a local potential allowing us to make some qualitative conclusions on a potential behaviour. This approximation had been used in ref. $/ 7 /$ for the construction of short range NN interaction on the basis of the nucleon quark model.

For a construction of a BB interaction potential in the adiabatic approximation some approximation has to be done in the exact expression (10). Namely, $\mathrm{P}_{\mathrm{ij}}^{\mathrm{r}} \underset{\overrightarrow{\mathrm{r}}}{\vec{r}}$ must be replaced by \vec{r} in a wave Iunction $R_{a b}^{L}\left(P_{i}^{F}, \vec{r}\right)$ and ${ }^{1 j} \vec{R}_{a}$ and \vec{R}_{b} must be replaced by $1 / 2 \vec{Z}$ and $-1 / 2 \vec{Z}$, correspondingly (\vec{Z} is a fixed relative radius-vector of baryons) in the wave functions Φ_{a} and Φ_{b}. As a result for elements of the local potential we have

$$
\begin{align*}
& V_{B_{B}^{\prime}, B B}^{k l, i_{j}}(\vec{r})=\left\{\int d \vec{R}_{k e} d \vec{r}_{\text {ce }} d \overrightarrow{r_{e}} d \vec{y} \Phi_{a^{\prime}}^{*}\left(\vec{r}_{t}, \vec{r}_{2}, \vec{r}_{3} ; \frac{1}{2} \vec{z}\right) \Phi_{b^{\prime}}^{*}\left(\vec{r}_{4}, \vec{r}_{s}, \vec{r}_{G}\right)-\frac{1}{2} \vec{z}\right) \times \tag{22}\\
& \times f_{k e, i j}^{s^{\prime} i, s I}\left(\vec{r}_{k e}, \vec{P}_{k g}\right) P_{i j}^{r}\left[\phi_{a}\left(\vec{r}_{1}, \vec{r}_{2} \vec{r}_{3} ; \frac{1}{2} \vec{z}\right) \phi_{b}\left(\vec{r}_{4} \vec{r}_{s}, \vec{r}_{6} ;-\frac{1}{2} \vec{z}\right)\right]_{\mathbf{i}=\vec{r}} \cdot
\end{align*}
$$

By using the expression (20) for the wave function we have obtained

$$
\begin{aligned}
& V_{N N}(\vec{r})=g^{2}\left(\frac{2}{3}\right)^{13 / 2} \frac{\alpha}{\frac{2 \pi}{j \pi}} e^{-\frac{4 \alpha^{2} r^{2}}{3}} \sum_{i=1}^{3} a_{i}\left\{-g \phi\left(\frac{1}{2}, \frac{3}{2} ;-b_{i}^{2} \alpha^{2} r^{2}\right)+\right. \\
& +\left(\begin{array}{l}
\frac{9 \cdot 2}{3\left(\alpha r_{0}\right)^{2}} \\
\frac{9 \sqrt{\pi}}{16\left(\alpha r_{0}\right)^{3}} \phi\left(-1, \frac{1}{2}, \frac{3}{2} ;-b_{i}^{2} \alpha^{2} r^{2}\right) \\
\left.-b_{i}^{2} \alpha^{2} r^{2}\right)
\end{array}\right)+\frac{3}{4}\left(9+\frac{8}{3} \vec{S}_{a} \cdot \vec{S}_{0}\right) \frac{\alpha^{2}}{m^{2}}\left[e^{-f^{2} \alpha^{2} r^{2}}+\binom{\frac{2 \phi\left(\frac{1}{2}, \frac{3}{2} ;-b_{i}^{2} \alpha^{2} r^{2}\right)}{3\left(\alpha r_{0}\right)^{2}}}{\frac{2 \sqrt{\pi}}{\sqrt{6}\left(\alpha r_{0}\right)^{3}}}\right]+ \\
& +\frac{1}{5} T_{12}(\hat{r}) \frac{\alpha^{2}}{m^{2}} \alpha^{2} r^{2} B_{i}^{2}\left[\phi\left(\frac{5}{2}, \frac{7}{2} ;-\varepsilon_{i}^{2} \alpha^{2} r^{2}\right)+\left(\begin{array}{l}
\frac{2}{3(a r 0)^{2}} \phi\left(\frac{3}{2}, \frac{7}{2} j-b_{i}^{2} \alpha^{2} r^{2}\right) \\
\frac{2 \sqrt{2}}{\sqrt{6}\left(\alpha r_{0}\right)^{3}}
\end{array}\left(1, \frac{7}{2} ;-b_{i}^{2} \alpha^{2} r^{2}\right) .\right],\right. \\
& a_{1}=a_{3}=1 ; \quad a_{2}=-2 ; \quad b_{4}^{2}=\frac{1}{6} ; \quad b_{2}^{2}=\frac{25}{24}, \quad b_{3}=\frac{8}{3} .
\end{aligned}
$$

for NN interaction. Here upper and lower rows in the brackets have the same meaning as in the formula (21).
ive should like to point out that the qq potential which corresponds to a square confinement does not contribute into the spin-spin part of the Ni interaction. According to ref. $/ 7 /$ in which only this term is taken into account, the main contribution in the NN potential at small distances comes from the spinspin part. The difference between these two results is connected solely with the main assumption we have used, that the interaction between the clusters proceeds via the exchange of quarks with the same colour (see formulae (13') and (14)).

Keeping in maind the importance of the derivation of the NN interaction repulsive core it is interesting to look at the short range behaviour of the potential (23). It is easy to see that up to the first order of r^{2} we have

$$
\begin{align*}
& V_{N N}(r) \underset{r \rightarrow 0}{\sim}\left\{\left[\frac{\alpha^{2} r^{2}}{4}+\binom{\frac{2 \alpha^{2} r^{2}}{3\left(\alpha \cdot 0^{2}\right.}}{\frac{5 \sqrt{2 \pi} \alpha^{2} \alpha^{2}}{4 \sqrt{3}\left(\alpha r_{0}\right)^{3}}}\right]+\frac{3 \alpha^{2}}{4 m^{2}}\left(9+\frac{B}{3} \vec{S}_{a} \cdot \vec{S}_{b}\right)\left[-\frac{3 a^{2} r^{2} r^{2}}{4}+\binom{\frac{\alpha^{2} r^{2}}{6\left(\alpha r_{0}\right)^{2}}}{0}\right]+\right. \\
& +\frac{3 \alpha^{2} r^{2} \alpha^{2}}{20 m^{2}} T_{12}(\hat{r})\left[1+\binom{\frac{\alpha}{3\left(\alpha r_{0}\right)^{2}}}{\frac{\sqrt{2 \pi}}{\sqrt{3}\left(\alpha r_{0}\right)^{3}}}\right] . \tag{24}
\end{align*}
$$

Acoording to the formula (16) the expressions (23) and (24) must be multiplied by a coefficient a_{H} and taking its values from table I we come to the conclusion that for the odd states ($I=0, S=1$ or $I=1, S=0$) the central and tenzor part give the attraction at short distances; as to the spin-spin part it is allways repulsive at $n=2$ in (19), and it is repulsive at $n=1$ only for the value of the linear confinement radius $r_{0}<2 / 3 r_{N}$. For even states ($\mathrm{I}=0, \mathrm{~S}=0$ or $\mathrm{I}=1, \mathrm{~S}=1$) the situation is opposite.

Note that if we estimate the $N N$ interaction radius by the leading exponent in the expression (23) we get that r_{NN} is of order $\sqrt{3 / 2} r_{N}$.

One of the authors(T.I.K) would like to thank V.G.Soloviev, V.K.Luk'ianov and I.Revai for interesting and helpful discussions.

REFERENGES

1. D.Robson. Nucl.Phys. 1308 , (1978), 381.
2. V.A.Matveev and P.Sorba. Freprint FERMILAB-Pub-77/36-THY 1977.
3. I.Loves. Few Body Nuclear Physics. Intern.Centre for Theoretical Physics,Trieste, IAEA-SMR-45,1978.
4. Sunkel W. Wildermuth K. Phys.Lett.,41B, (1972),439.
5. DeRujula et al. Phys.Rev., D12, (1975), 147.
6. E.Eichten et al. Phys.Rev.Lett.,34, (1975), 369.
7. D.A.Iiberman. Phýs.Rev.,D16, (1977), 1542.
```
Received by Publishing Department on March 211979.
```

