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• 1. Introduction 

Damping of the energy of the relative motion - the degree 

of the inelasticity of the collision process - determines main 

characteristics of the deep inelastic collisions of heavy ions/11, 

angular and mass distributions of the reaction products/21. So, 

the elucidation of the energy damping mechanism allows the under

standing of the hole reaction course. 

Dissipation of the kinetic energy'characterizes the reaction 

time, since in the reactions the energy of the relative motion 

always partly converts into the inner excitation energy, and the 

process of establishment of equilibrium is not finished during 

the heavy-ion deep inelastic collision. This fact gives us a possi

bility of useing the value of the kinetic energy loss as a measure 

information about the· of the reaction time, that fa to get 

development of the collision process in time. 

The scale of the kinetic energy loss (100-300) Mev/3/ tells 

us that the excited nuclear states due to the large value of the 

excitation energy can in principle be of the complicated structure. 

But since the time of the energy loss is short (~1o-22 sec)/4/, 

some coherent mechanism of the energy damping may exist. It means 

that the doorway states in the reaction can be of the collective 

type. It follows from the large value of the energy loss that 

first of all it is necessary to take into account high frequency 
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modes. Among them the most important are the multipole vibrations 

of the nuclear matter density (giant resonances)/5, 6/. 

In the present paper we shall try to explain the effect of 

the kinetic energy dissipation in the deep inelastic collisions 

of heavy ions based on the assumption about the preferential exci-

tation of giant resonances. 

2. Eguations of motion 

From the variety of dynamical variables describing the pro

cess of heavy-ion collisions, we single out the coordinates of -the relative distance R and the amplitudes o(nfm , characte-

rizing nuclear density vibrations/7/. The Hamiltonian of such a 

system can be written as a sum of three terms: 

H = TKin i- Ho (o( , o{) + V<R,o() ( 1 ) 

where TKII'l is the kinetic energy, H 0 (o{ o() is the sum of the 
I 

inner Hamiltonians of the interacting nuclei. From many excited 

nuclear states, we conserved in H0 only multipole vibrations of 

the nuclear matter density. The last term in (1) is the potential 

energy of the colliding nuclei. It depends through the amplitudes 

o{nfnt on the inner nuclear states. This term contains average nuc

leus-nucleus interaction potential lf(R) independent of r:Xnfwt and 

the coupling term of the relative motion with the density vibra

tions Hint (R,o(): 

.. I ~ 
VtR,o() =- 1[,R) + Ht,t (R,o<). 

In order to get \I(R,cl) we can use the folding procedure together 

with the expression for the densities oci,rJ..) and P.. c;,ci.) of 
.11 .z 

the colliding nuclei/81. This procedure is quite satisfactory 

for the description of the peripheral reactions and gives us the 

following expression for \I(R,ol): 

4 

.. ( l .. ~ ..... 
V(R,cl) zy/3

2f J z.,~l'l.,ol)~l(K.,.'l,-r~).P._t~.~). (2) 

l'or tbe mMilHr delllli ty .P (i ,d.) tbe followi~ expaneion can be 

usedn/: 

pei,cJ.) = Po <.i) + J.,lo)L. ~(K"t2) ~:(i-1)o(nt.r~, 
"''" where ~lt) ia the nuclear ground state density, and K11 t are 

the wave numbere, characterizing eigenmodes of nuclear density 

vibrations. 

The nuclear part of the term in (2) independent of o( 

can be given/8 / in the proximity form/9/. Thia potential will be 

used in the present paper. The analogous result for 1T(R) is 

obtained in the energy density formalism/101. 
Linear in ci. terms in (2) describe the coupling of the 

relative motion with the density vibrations. Assuming that the 

density fluctuations are relatively small, we neglect in the pre-

sent work the quadratic in d.. terma. 

As a result we get for Hint (it,ci.) : 1 ) 

Hint = Ll i,tm (R) eX rafm 
n "' 

If the nucleon-nucleon potential ie given by the expression 

/11/: 

where 

... ... () 
1f t 'l-1 - Z.) = T· 

1l ~ Ll'l 

/.. is the constant 
Vt 

( rJ P. (O) )-f ~ (. i - t ) 
fiEF I 4 I 

of the effective interaction of nucleons 

in nucleus and ciPoto.Vde is the derivative of the density with 
F ,.., 

respect to the Fermi energy, then K takes the form 
l'llm 

,.., (fl ... oiP.l) -4 
~ n.fm lR} = P., to) ( d:Fo ) lin A(.1) F..tt (R) Yem (RIR). 

In the last expression the form factor Fnt includes the para-

meters characterizing the size of the interacting nuclei, and Ali) 

is the number of nucleons in the target nucleus. 

1) In «rafwt we omit the indices referring them to one of the 
colliding nucleus and suppose ~"t contains the terms pertaining to 
both interacting nuclei. 
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The expression for Hint can be obtained also in the another 

more phenomenological way. To this end let us use the fact that 

the parameters of the potential lf(R) such as nuclear radii R
1
,z. 

are in principle the dynamical variables depending on o( 

Rt,z l{), 'I) = R1,2(1 +,zt,. {K,t R1,2. f'' J; (Knt R~ 2 ) d.tttm ~:</,f)) .0 ) 
Substituting (3) in the expression for V(R) , expanding it in 

powers of ol11 twt. and taking into account only the first order terms 

in d.. , we get: 
,., ... 

Hint = ~ (,fllll (R) ollttm 
1 11<101 

'; { ... - R 'd1J .I _., * ... 
onlm R)- 1,~ ~ L de (Knt R1,L HKnt R~z) ~m (RIR). 

112 nfll't · .. 
Let us get the equations of motion for R and ci,e..., : 

ttf! =[H,R]=-g_v 
M Itt 

- ~z l =[H,[H,R]] = ~ {v 1J(R) +I: vi, tR> · dnt~PJ) 
M nim 11 

"' • 
And for olnr"' 

(4) 

where 

1 z. 
z•• Ll. z • t,w,., . rJ,Po(o)"' R 

-I; olnltn = ~ l.l)nto(ntm +~ f..td..,,,. 1' 1.1 PtoJN. dE K,rz,..( ) • 
R ua 0 nt F 

.( f 2 
.!'tnt = J ~2 d't dt lKnt 'l.) 

0 

(5) 

In deducing equation (5), the harmonic approximation for 

the density vibrations bas been used. Moreover, the damping !.;1 ~ntm 
bas been included into this equation to describe effectively the 

coupling of the density vibrations with the other nuclear degrees 

of freedom not included in the Hamiltonian. The equation analo

gous to (5) but for the variable describing longitudinal nuclear 

deformation in fission has been analyzed in 1121. 

Solving (5) with respect to oC,.e.,. and substituting the re

sult into {4), we get: 

6 

.. 

Mit +Vlf(R): ..&. r. vi CR) t.w,e clP.,to)/dEF 
li n em ntwt ·H· oz. .r 

'" "· (0) "'" e 
t 

X Jexp (-1 T;.t U-t'J) SilK .Q11t (t-t') ·i,;"" (i~ (t ')) 

0 

W"'t --X 
.n.,, 

(6) 

rJt' I 

where t =0 is the moment when nuclear forces begin to act, and 

1 z. .1. l .n,, = w,, - ~ "nt • 
The presence of the integral term in (6) means that the cha-

racter of the relative motion at the moment t is determined by 

the whole preceding motion along the trajectory. 

In principle equation (6) can exactly be solved numerically, 

but for the comparison with the phenomenological models it is 
~ ... 

usefull to expand the quantity Y (Rli'l) under the integral in (6)in 

powers of ( t -t') 
~m 

~. lRH'>) = 
~ ~ ~~~ ~ I 

~ t (Rlt))- R Vb'-
1 

(Rtt>) · (t-t) + nw- n,... Itt"' 
In fact it will be the expansion in powers of the velocity ~It) ... 
and of higher derivatives of Rli) • Such an expansion bas sense 

if the velocity of the relative motion is small in comparison with 

the characteristic velocities of inner motion or the widths rne 
are large so that f f is changed (slightly) during the time"' l.. • 

n m ~~ 

As a result the integra-differential equation (6) becomes 

differential equation. The first term in the right-hand side of 

(6) independent of time derivatives of RIO -<51J(R,t) is the re

normalization of the potential 1r • It is necessary to stress that 

this term is generated by the excitation of nuclei and depends on 

time. The second term is proportional to it (t) and can be inter-

preted as a frictional force. The subsequent term proportional to 

~(t) is the renormalization of the reduced mass and so on. In 

the present work we consider only the first two terms. In such an 
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approximation equation (6) can be rewritten in the following way1 
.... ,.., :t l:l 
'V l(,.t,.. lH) . ~ W,./ J /l,(O) 

11 

1i W11 t 'tli,.P.2(o)J/,.i dEF 
Mit + V lfliO = r. 

.. tm 

•(4-Up{-f f.ttt) (co-s D.,.t.t + tf Si.~t.O,.tt )) 
nt 

-:r _? __ vf', lR) · (ii-v)i. lR) ltW,.e dl.lDJx 
"'"" - w1 

" "' "'"' ltl P..'lo> ·
1 

r.l€ ,., • ill • ""e F 

ll ( ~~ - e ~ p \- f r;., t) ( v;., + wlfl.l t} cos .n."t t 
wt r.z 

- {~- t r;., t) ~ "' sw. n"1 t - .-!!L s&.,. n 1t )) . 
,., ~.a. .. , " 

The dependence of the additional potential ~lf and the form

factor of the frictional force on time is a consequence of the 

memory of the system about the history of the collision process. 

Disregard of this effect is equivalent to changing of the low 

limit of integration in (6) from t • 0 to t .. - otJ , as in 

linear response theory/131. In this case the additional potential 

olf and the form factor of friction force are independent of time 

and take asymptotic values. 

The results of calculations of the potential C51f ( R, 1:) 

~lHR,!) = 'L li,.e"'lR>Iz dP.IO) 
nt ... 'tli,.P1lo)Jl., rJE (1- exp{-ft;,,t)" 

o ltc ' 
(7) 

x (cos .!1.111t + r;..t 1 ~.n,1 • su.n,1t)) 
are shown in fig. 1 for the reaction A'l+TI 1141. It is seen that 

~V takes an asymptotic value at i "' 10-
22 sec. 

According to the estimates made in the phenomenological ana

lysis of the deep inelastic collisions of heavy ions, this time 

is of the same order as the kinetic energy loss time. Consequently, 

8 
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sUIt) 

6 

5 

t. 

3 

2 

1 

0 
10-l 

T! 10-22 sec 1 

10-f 100 10. 

Fig. 1. Dependence on time of the additional potential ~1f(R,f) • 

(arbitrary units). 

to investigate the kinetic energy damping mechanism it is neces

sary to conserve the time dependence of cSlf • So, we cannot 

include S 1f into the static potential 11 • The time dependence 

of C5lf is a source of the dissipation of the relative motion 

energy. The ideology of the linear response corresponds more to 

the relatively slow processes such as fission/151. 

3. Dissipation of the kinetic energy 

Let us start from the consideration of frictional forces which 

are traditionally included in the phenomenological models. The 

coefficient of radial friction calculated by us is significantly 
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smaller (by 50- 100 times) than it is required for the explana

tion of the experimental results only by the frictional forces. 

It contradicts the usual assumptions. Thus it is necessary 

to investigate the contribution to the energy damping of the addi

tional potential ~1f • Usually, this effect was not taken into 

account 113/ because of neglect of ~lf time dependence2 >. 
Neglecting in (6 1 ) the frictional forces and integrating this 

equation from t=D (the moment when nuclear forces begin to act) 

up to t='£ittt, where ~Itt is the collision time, we get the 

following expression for the excitation energy of the interacting 

nuclie E'\7:) (i.e.,for the kinetic energy loss): 
'( 

E "\n = f ~l{(R,t) dt. (8) 
0 

In this work we will not perform detailed trajectory calculations, 

but confine ourselves to qualitative estimates. To this end in the 

right-hand side of (8) we change the relative distance between 

the colliding nuclei R 1 by the average distance <.R "> • Taking 

into account (7), we get froffi (8): 
~ a. 

*G" ... _ ltnl'm l{R>)I 
E u ) ~ v l<R"> I 'I) - I. -~·I ll~ , 

"t""' .., in .r0 lO) "'nt 

r.4P,lo) x 

dEF 

1t (~- exp(:- t r;., t) (cos .n,.t t + ~ Sill .n. t t )) 
:t.n,.t " 

As is seen from fig. 1 the dependence of 511 on <c has a threshold 

character and SlT takes an asymptotic value at T z 10-22 sec. 

This value of~lr determines the maximum value of the kinetic 

energy loss, which can be explained using the investigated mecha-

nism. 

2 ) It is necessary to mention the paper/6/ devoted mainly to 
the nuclear Cherankov effect! in which the threshold depend~nce 
of S1f on time was po nted out. 

10 

The experimental information about the dependence of the 

kinetic energy loss on the interaction time can be obtained ana-

lyzing correlations between the energy loss and the number of 

transferred nucleons or the angle of emission. 

Such an analysis requires additional assumptions about the 

reaction mechanism, thus introducing new uncertainties of the 

results. In/16/ the correlations between the kinetic energy losses 

and the widths of charge distributions of the reaction products 
2 

6~ have been analyzed. 

Considering nucleon transfer as a diffusion process and desc

ribing this process by the Fokker-Planck equation, we get a linear 

relation between b~ and the interaction time r (if diffusion 

coefficient D~ is a constant): 

6'~ ,. ;, D~ f' 
So, by measuring the dependence of the kinetic energy loss 

on the width of charge distribution, it is possible to obtain a 

dependence of the energy lose on the interaction time. An experi
it 

mental dependence of E (.'r') on c;; is qualitatively the same as 

in fig. 1. 

In order to estimate quantitatively the scale of the energy 

loss which can be explained by the investigated mechanism, we 

calculate the excitation energy of Ti - E * ( 7' z 1 o-22sec) 

in the reaction A~+TK (Eea& =388 MeV)/14/ as a function of 

AI{=- R
1
+R

2
-R • The results are shown in fig. 2. When AR =2,5-3,0fm 

that corresponds to the maximum value of ~R in the classical 

trajectory calculations based on equation (6 1 ), the energy losses 

are of an order of (70 - 100) MeV. The maximum energy losses found 

in this reaction experimentally are (120-140) MeV. But they inc

lude nuclear deformation (what is important for the exit channel 

II 



E.(MeV l 
1L.O l 232 

Th 

120[ t-1 o-22 sec 

100 

80 

60 

L.O 

20 

OV I I llR!fml 
0 I 1 ..-

1 2 3 L. 

Fig, 2. Dependence ofHt excitation energy E*( £"z 10-22 sec) 

in the reaction A7. +TA ( EeaB : )88 MeV) on l1R=R_,+~-R· 

potential), A~ excitation energy and the rotational energy losses 

due to the dissipation of the relative angular momentum. 

The coefficient of tangential friction appeared to be large 

enough in our calculations and close to the value used in pheno

menological modele, If the relative angular momentum f is of the 

order e~ 90 the rotational energy losses due to tangential fric-

tion are .- JO MeV. 

12 

Thus, the significant part of the kinetic energy losses can 

be explained by the mechanism investigated in this paper, 

In the following paper we shall perform detailed trajectory 

calculations of heavy-ion deep inelastic collisions on the basis 

of equation (6 1 ). 
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1. Introduction 

Damping of the energy of the relative motion - the degree 

of the inelasticity of the collision process - determines main 

characteristics of the deep inelastic collisions of heavy ions/11, 

angular and mass distributions of the reaction producta/21. So, 

the elucidation of the energy damping mechanism allows the under-

standing of the hole reaction course. 

Dissipation of the kinetic energy ' characterizea the reaction 

time , since in the reactions the energy of the relative motion 

always partly converts into the inner excitation energy, and the 

process of establishment of equilibrium ia not finished during 

the heavy-ion deep inelastic collision. This fact gives us a possi

bility of useing the value of the kinetic energy loss as a measure 

of the reaction time, that fa to get information about the · 

development of the collision process in time. 

The scale of the kinetic energy loss (100-300) Mev/3/ tells 

ua that the excited nuclear states due to the large value of the 

excitation energy can in principle be of the complicated structure. 

But since the time of the energy lose is abort (~1o-22 aec)/4/, 

some coherent mechaniam ·of the energy damping may exist. It means 

that the doorway states in the reaction can be of the collective 

type. It follows from the large value of the energy lose that 

first of all it ia necessary to take into account high frequency 
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modes. Among them the most important are the multipole vibrations 

of the nuclear matter density (giant resonances)/5,G/. 

In the present paper we shall try to explain the effect of 

the kinetic energy dissipation in the deep inelastic collisions 

of heavy ions based on the assumption ,about the preferential exci

tation of giant resonances. 

2. Equations of motion 

From the variety of dynamical variables describing the pro

cess of heavy-ion collisions, we single out the "coordinates of 
~ 

the relative distance R and the amplitudes o(nfwt. , characte-

rizing nuclear density vibrations/7/. The Hamiltonian of such a 

system can be written as a sum of three terms: 

H = TKin + H o (a( 1 o{ ) + v<i~,c<) ( 1 ) 

where TKII'\ is the kinetic energy, H 0 tC:C ,o() is the sum of the 

inner Hamiltonians of the interacting nuclei. From many excited 

nuclear states, we conserved in H0 only multipole vibrations of 

the nuclear matter density. The last term in (1) is the potential 

energy of the colliding nuclei. It depends through the amplitudes 

o(11 e~ on the inner nuclear states. This term contains average nuc

leus-nucleus interaction potential VCR) independent of o(nfwr and 

the coupling term of the relative motion with the density vibra-.. 
tiona Hint (R,o(): 

~ I 1 

V{R,o() = 11"\R) + Htnt (R,oO. 
In order to get \I(R,ci.) we can use the folding procedure together 

with the expression for the densities Dti,cJ..) and .P.,ti,oC) of 
Ji 1. 

the colliding nuclei/Sf. This procedure is quite satisfactory 

for the description of the peripheral reactions and gives us the 

following expression for \I(R,ol): 

4 

.l. 

.. ( J .. -;P ... ... .. 
V( R ,at) ... ;d 1

21 a z .. ~ t'l.,ol) '!J;l (K ... "~.- r~).)! l~l ,c<) . (2) 

:Por the maOlMr density ptl,d.) the folloW1J18 expansion can be 

used/1/: 

PC..i,d.) = Po li) + Yolo)£ ~(K..,t2) ~:(~~)o<',.t...,, 
"''" where JP.Lt) ia the nuclear ground state density, and K~t are 

the wave numben, characterizing eigenmodes of nuclear density 

vibrations. 

!be nuclear part of the term in (2) independent of o£ 

can be given/S/ in the proximity form/91. Thia potential will b• 

used in the present paper. The analogous reault for lllR) is 

obtained in the energy density formalism/101. 

Linear in o( terms in (2) describe the coupling of the 

relative motion with the density vibrations. Assuming that the 

density fluctuations are relatively small, we neglect in the pre-

sent work the quadratic in d.. terms. 

fs a result we get for Hint (R,ci.) : 1 ) 

Hilll: = r..t i,,m <R> ol.,.e""-
" "' If the nucleon-nucleon potential is given by the expression 

/11/: 

where 

1f l i - i ) : .f.. ( rJ P, {O) )-f 'S:: I i - ~ ) 
12 1 L l"- ~~ € F g \. 1 L.t I 

/.. is the constant of the effective interaction 
Vl 

of nucleons 

in nucleus and d Poto.Yde is the derivative of the density with 
F ,., 

respect to the Fermi energy, then K takes the form 
ntm 

N (1) ... oiP.L) -~ 
~,f.,..lR.)=_fo(o)(d~Fo) linAli)F,.,t(R) YemUVR). 

In the last expression the form factor F11 t includes the para-

meters characterizing the size of the interacting nuclei, and A(f) 

is the number of nucleons in the target nucleus. 

1) In ~ .. fwt. we omit the indices referring them to one of the 
colliding nucleus and suppose Hi~t contains the terms pertaining to 
both interacting nuclei. 
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The expression for Hint can be obtained also in the another 

more phenomenological way. To this end let us use the fact that 

the parameters of the potential 1flR) such as nuclear radii R
1
,,_ 

are in principle the dynamical variables depending on o( 

Rt,ll-8,11) = R1,2.l1 + L. (K,.t Rfl.f1jt' <~nt R.,z) <Xntm Y,* <I, '1)) .o) 
n~ ' ' ,m 

Substituting (3) in the expression for V(R) , expanding it in 

powers of ol,th'l. and taking into account only the first order terms 

in d... , we get: 

Hil'll: = L, ~'"' (R) o(1Lf.Wl I 

"'"' 
,.., .... d1J · ' -1 * .. 
'ln.t, {R) = R1,t 'dR L de lKnt Rt,LHKnt R~z) ~m (RIR). 

f,Z ntM>t . ... 
Let us get the equations of motion for R and d,.e,.,. : 

it~ =[H,R]=-lCv M p., 

- ~z l =[H,[H,R]] = JL (v 1flR) + E vi. lR> · c<ne,...) 
M ,t,., lt.wt • 

And for olnr"' 

(4) 

where 

1 a. 
2 •• 1 1 z • 1, Wn t · rJ .P, (0) ,... if 

- ~ fintwt = t l.l)nt o("t"' + ~ f",td..,.,,. + z I p1 _/ '"'If !llht ( ) • 
til (OJ/Vnf Cf F R o 

.I 1 l. 
~,., = I ~l d?.. Jt lKnt 1.) .. 

(5) 

In deducing equation (5), the harmonic approximation for 

the density vibrations has been used. Moreover, the damping f,;t~nt.., 

has been included into this equation to describe effectively tbe 

coupling of the density vibrations with the other nuclear degrees 

of freedom not included in the Hamiltonian. The equation analo

gous to (5) but for the variable describing longitudinal nuclear 

deformation in fission has been analyzed in 1121. 

Solving (5) with respect to ~nt~ and substituting the re

sult into (4), we get: 

6 

.. 

M ~ + VVlR) =- ..& L vi CR) t;Wnt clP,<oJfdEF 
li n fm niW! 't{ 0 1 .r "' .r. (o) "', e 

-- /( 
Wnt 
n.,., 

t (6) 

x Jexp (- f r;., U-t'J) SiAc il 11t U-t) -~:m (R lt ')) it' I 

0 

where t =0 is the moment when nuclear forces begin to act, and 

1 - ,_ _.J. l. • .n,, -w,t ~ r;. e 
The presence of the integral term in (6) means that the cha-

racter of the relative motion at the moment t is determined by 

the whole preceding motion along the trajectory. 

In principle equation (6) can exactly be solved numerically, 

but for the comparison with the phenomenological models it is 
~ .... 

usefull to expand the quantity y (Rl~'J) under the integral in (6)in 

powers of ( t -t') 
nt~ 

"" ...... ,., ......,. ...;.~"' _., I 

r lR !t')) = ~ t (R(t)) - R V ~ t (Rttl) · (t - t) + o111.., n '" n ,.. · · · .,. 
In fact it will be the expansion in powers of the velocity Rlt) 

and of higher derivatives of R U) • Such an expansion has sense 

if the velocity of the relative motion is small in comparison with 

the characteristic velocities of inner motion or the widths rne 
are large so that f f is changed (slightly) during the time- .l... • 

" I'll ~t 
As a result the integra-differential equation (6) becomes 

differential equation. The first term in the right-band side of 

(6) independent of time derivatives of ihn -(SV(R, i) is the re

normalization of the potential 1r • It is necessary to stress that 

this term is generated by the excitation of nuclei and depends on 

time. The second term is proportional to Ftct) and can be inter-

preted as a frictional force. The subsequent term proportional to 

~(t) is the renormalization of the reduced mass and so on. In 

the present work we consider only the first two terms. In such an 

7 



approximation equation (6) can be rewritten in the following way' 
..... ,... 1 l:l ~ - . '"' v lrne ... (~<) _,w,., JPo!o) 

MK+V1TlR)='- . 2 --• 
lllwt ft. W11 t 'tli,.P• (o).J/,.f dEF 

· ·(4-e~p(.-fi;.tt) (cosn.,.tt + (~ s&."n,.tt)) 
• nl 

-1: _?._ vi" (R) • (R· V) i. lR) It w,.e dP.IDJ '1. 

"'lift ~ w!1 "'"' "'"' . 'tlltt P.'lo> Jl,.e tl EF 

• ( ~~ - e ~ p \- f r;.1 t > ( v;., + w:, ~} cos .n.,.t t 
w' r.z - (~- f r;., t) .n."' sw. n,.1 t - .....!!L s&.,. n 1t )) . 

-1 a J:t"' " 
The dependence of the additional potential ~1f and the form-

factor of the frictional force on time is a consequence of the 

memory of the system about the history of the collision process. 

Disregard of this effect is equivalent to changing of the low 

limit of integration in (6) from t • 0 to t .. - oo , as in 

linear response theory/131. In this case the additional potential 

elf and the form factor of friction force are independent of time 

and take asymptotic values. 

The results of calculations of the potential C57f ( R,t) 

Ji t lR)j
1 

dP.IO 
~1ftR,t)=L I~: .II. rJ~ ~ (1-e)l.p(-fr,,t)• <

1
> 

niWt It ilt lO) ~tl ' 0 

•(CDs.n.,.1t + r;.tlln,1 •st.,n,tt)) 
are shown in fig. 1 for the reaction A'l + Tl 1141. It is seen that 

J -22 
~V takes an asymptotic value at ~ - 10 sec. 

According to the estimates made in the phenomenological ana

lysis of the deep inelastic collisions of heavy ions, this time 

is or the same order as the kinetic energy loss time. Consequently, 

su (t) 

6 

5 

I. 

3 

2 

1 

0 
10-1 

t[10-22 secl 

10-f 100 
I I 1111!" 

10. 

Pig. 1. Dependence on time of the additional potential ~1f(R,t). 

(arbitrary units). 

to investigate the kinetic energy damping mechanism it is neces

sary to conserve the time dependence of 5if . So, we cannot 

include cS 1[ into the static potential 1f • The time dependence 

of ~1! is a source of the dissipation of the relative motion 

energy. The ideology of the linear response corresponds more to 

the relatively slow processes such as fission/151. 

3. Dissipation of the kinetic energy 

Let us start from the consideration of frictional forces which 

. are traditionally included in the phenomenological models. The 

coefficient of radial friction calculated by us is significantly 



smaller (by 50- 100 times) than it is required for the explana

tion of the experimental results only by the frictional forces. 

It contradicts the usual assumptions. Thus it is necessary 

to investigate the contribution to the energy damping of the addi

tional potential ~1f • Usually, thi~ effect was not taken into 

account 113/ because of neglect of ~V time dependence2 >. 
Neglecting in (6 1 ) the frictional forces and integrating this 

equation from t=D (the moment when nuclear forces begin to act) 

up to t "''£in t , where ~Itt is the collision time, we get the 

following expreeeion for the excitation energy of the interacting 

nuclie E'\'t) (i.e. ,for the kinetic energy lose): 
1 

E *l'O = f ~lf(R,t) dt. (8) 
0 

In this work we will not perform detailed trajectory calculations, 

but confine ourselves to qualitative estimates. To this end in the 

right-hand side of (8) we change the relative distance between 

the colliding nuclei R , by the average distance <R '> • Taking 

into account (7), we get from (8): 
,., I~ 

E'\n - ~ Vl<R'>, <r) = L ~Jnt;~t<.R>~ 
nt.,.. in 0 lO) nt 

fJP.,lO) x 

dEF 

1t (~- expt-t r;., t) (cos .nnt t + _I!!L Stll n. 
1 

i )) 
;u2nt " 

As is seen from fig. 1 the dependence of 5V on '1: has a threshold 

character and ~V takes an asymptotic value at T z 10-22 sec. 

This value of~lr determines the maximum value of the kinetic 

energy loss, which can be explained using the investigated mecha

nism. 

~-is-~eceeeary to mention the paper/6/ devoted mainly to 
the nuclear Cherankov effect! in which the threshold depend,nce 
of ~1T on time was po nted out. 
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The experimental information about the dependence of the 

kinetic energy lose on the interaction time can be obtained ana

lyzing correlations between the energy lose and the number of 

transferred nucleons or the angle of emission. 

Such an analysis requires additional assumptions about the 

reaction mechanism, thus introducing new uncertainties of the 

results. In/16/ the correlations between the kinetic energy losses 

and the widths of charge distributions of the reaction products 
~ 

6Z have been analyzed. 

Considering nucleon transfer as a diffusion process and desc

ribing this process by the Fokker-Planck equation, we get a linear 

relation between G~ and the interaction time r (if diffusion 

coefficient Dz is a constant): 

6"~ • J. D~ f' 
So, by measuring the dependence of the kinetic energy loss 

on the width of charge distribution, it is possible to obtain a 

dependence of the energy lose on the interaction time. An experi

mental dependence of Eit<.'t) on c;; is qualitatively the same as 

in fig. 1. 

In order to estimate quantitatively the scale of the energy 

lose which can be explained by the investigated mechanism, we 

calculate the excitation energy of TR. - E * ( 1 :::: 1 o-22eec) 

in the reaction A'!. +T~ ( EeaB =388 Mev/14/ as a function of 

AI{'::. R.
1
+R

2
-R • The results are shown in fig. 2. When AR =2,5-3,0fm 

that corresponds to the maxim~ value of ~R in the classical 

trajectory calculations based on equation (6')• the energy losses 

are of an order of (70 - 100) MeV. The maximum energy losses found 

in this reaction experimentally are (120-140) MeV. But they inc

lude nuclear deformation (what is important for the exit channel 

II 
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Fig. 2. Dependence ofTk excitation energy E* ( <[::: 1 o-22 sec) 

in the reaction A'J. +TA ( EeaB : 3B8 MeV) on ~R=R1+R,_-R· 

potential), A~ excitation energy and the rotational energy losses 

due to the dissipat i on of the relative angular momentum. 

The coefficient of tangential friction appeared to be large 

enough in our calculations and close to the value used in pheno

menological models, If the relative angular momentum f is of the 

order e% 90 the rotational energy losses due to tangential fric

tion are ""' 30 MeV. 
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Thus, the signi ficant part of the kinetic energy losses can 

be explained by the mechanism investigated in this paper. 

In the following paper we shall perform detailed trajectory 

calculations of heavy-ion deep inelastic collisions on the basis 

of equation (6'). 
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