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Kinetic Energy Dissipation in Heavy-lon
Collisions

Kinetic energy dissipation mechanism is considered in deep
ineldastic heavy —ion collisions, It is shown that the significant part
of the kinetic energy loss can be explained by the excitation of
the nuclear matter multipole vibrations,

The main contribution to the energy dissipation is given by
time dependent heavy-ion interaction potential renormalized due to
the nuclear excitations, rather than by the velocity proportional
frictional forces,

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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1. Introduction

Damping of the energy of the relative motion - the degree
of the inelasticity of the collision process -~ determines main
characteristics of the deep inelastic collisions of heavy ions/1/,
angular and mass distributions of the reaction products/z/. So,
the elucidation of the energy damping mechanism allows the under-
standing of the hole reaction course.

Dissipation of the kinetic energy’ characterizes the reaction
time, since in the reactions the energy of the relative motion
always partly converts into the inner excitation energy, and the
process of establisﬁment of equilibrium is not finished during
the heavy-ion deep inelastic collision., This fact gives us a possi-
bi1lity of useing the value of the kinetic energy loss as a measure
of the reaction time, that is to get information about the:
development of the collision process in time,

The scale of the kinetic energy loss (100-300) MeV’3/ tells
us that the excited nuclear states due to the large value of the
excitation energy can in principle be of the complicated structure,
But since the time of the energy loss is short (~10™22 sec)/4/,
some coherent mechanism of the energy damping may exist. It means
that the doorway states in the reaction can be of the collective
type. It follows from the large value of the energy loss that
first of all it is necessary to take into account high frequency



modes, Among them the most important are the multipole vibrations
of the nuclear matter density (giant resonances)/5’6/.

In the present paper we shall try to explain the effect of
the kinetic energy dissipation in the deep inelastic collisions
of heavy ions based on the assumption about the preferential exci-

tation of giant resonances.

2. Equations of motion

From the variety of dynamical variables describing the pro-
cess of heavy-ion collisions, we single out the coordinates of
the relative distance -li and the amplitudes O(nem , characte-
rizing nuclear density vibrations/7/. The Hamiltonian of such a

system can be written as a sum of three terms:

H=Tg, + Hy &,) + V(R )
where Txin is the kinetic energy, H, (o‘('d) is the sum of the
inner Hamiltonians of the interacting nuclei, From many excited
nuclear states, we conserved in ifa only multipole vibrations of
the nuclear matter density. The last term in (1) is the potential
energy of the colliding nuclei, It depends through the amplitudes
c:(n‘)”,l on the inner nuclear states, This term contains average nuc-
leus-nucleus interaction potential U (R) independent of C(np”, and
the coupling term of the relative motion with the density vibra-

(R o) s

tions ¢nt

VR, d) = VIR + H, (R,).
In order to get \/(R d) we can use the folding procedure together
with the expression for the densities ﬁ(?. o) and _P z , o) of
the colliding nuclei/s/. This procedure is quite satisfactory
for the description of the peripheral reactionas and gives us the

following expression for V(l-i.,o():

V(i,d) ajdlz, dlz‘ ﬁ(?,,d) v, (Ef—'!:—?’) ji(.‘z: o) (2)

Por the nuclear density _P(’f,d) the following expansion can be
d/7/:

» : " o
PEAY = AT + }:(o)}; dy Kt 1) X 0 (34) Aytm
ném

where fl(f) ie the nuclear ground state density, and K,g are

use

the wave numbers, characterizing eigenmodes of nuclear density
vibrations,

The nuclear part of the term in (2) independent of
can be givon/s/ in the proximity form/9/. This potential will be
used in the present paper. The analogous result for II(R) is
obtained in the energy density formalism/1o/.

Linear in o terms in (2) describe the coupling of the
relative motion with the density vibrations, Assuming that the
density fluctuations are relatively small, we neglect in the pre-

sent work the quadratic in ol terms.

As a result we get for H["{(I?,c(): n

Lo b d
Hint —nz(—m 8,,[,,, (R) oA pnom
If the nucleon-nucleon potential is given by the expression

1/,

v (-7 dP(o) -1 > >

12 1 1) = ( ) 3(?, -1 ),

where #Vl is the constant of the effective Interaction of nucleons

i
in nucleus and dﬁw)/de is the derivative of the density with

F

~
respect to the Fermi energy, then a;l takes the form
m

¥Ry = dfw Y*
In the last expression the form factor Fh[ includea the para-

meters characterizing the size of the interacting nuclei, and A“)

is the number of nucleons in the target nucleus.
) In olném we omit the indices referring them to one of the

colliding nucleus and suppose H,,; contains the terms pertaining to
both interacting nuclei,



The expression for I4 nt C€8n be obtained also in the another
more phenomenological way, To this end let us use the fact that
the parameters of the potential U (R) such as nuclear radii Rya

Ll

are in principle the dynamical variables depending on o« :

R, Jy)= + -1
W) =Ry (14 2 (Knt ReaY 'y (Kat Ry2) g, Yo (49)) )
Substituting (3) in the expression for U'(R) , expanding it in
powers of c(,p"‘ and taking into account only the first order terms
in of , we get: -

Hint =n%m a;llm(k) A tm ,

¥ B=r 2V
SRV = Ry S5 5§, KneR L)(K.,eku) Yom (R/R)

12 nlm
Let us get the equations of motion for R and c(,g,n H

/ E= Hﬁ = -
i [H,R] . VR‘
(4)

5 2,
-HR=[HHRI=E(FUw + 3 F5, &) o).
And for dppm ném

1 2
27 . de)”
- = (4) -——-——-——-
t d"’ t nlm t "'dn(m Z‘, Pw)l\/,,e de KHBM

where /( J‘ 22 d?_ Je (Kyp Z)

In deducing equatlon (5), the harmonic approximation for

(R) )

the density vibrations has been used. Moreover, the dampingl;ed"tm
has been included into this equation to describe effectively the
coupling of the density vibrations with the other nuclear degrees
of freedom not included in the Hamiltonian, The equation analo-
gous to (5) but for the variable describing longitudinal nuclear
deformation in fission has been analyzed in /12/.

Solving (5) with respect to oA pe,, and substituting the re-
sult into (4), we get:

v - == > hw,p dg(o)/dé,.— Whne
ME+FU@) =25 ¥y (R)_-n - =
v k ném Nném 4",‘... Poz(o) Af,,e ‘Q'nl

, (6)
 Jexp(- # hett-t) sim Lp - -8, (Rw)) dt’,

where ¢ =0 is the moment when nuclear forces begin to act, and
2 2 2
nnt’:wnt-?/ll;fe *

The presence of the integral term in (6) means that the cha-
racter of the relative motion at the moment # 1is determined by
the whole preceding motion along the trajectory.

In principle equation (6) can exactly be solved numerically,
but for the comparison with the phenomenological models it is
usefull to expand the quantity ¥ (ELtU) under the integral in (6)in

ném
powers of (¢-1')
5. (R ¥ (Rw) - (¢-¢'
= (4= +
S RN = 8, )+
In fact it will be the expansion in powers of the velocity th)

._,~

(Rw) - RV,

and of higher derivatives of R {{) ., Such an expansion has sense

if the velocity of the relative motion is small in comparison with

the characteristic velocities of inner motion or the widths I,

are large so that 8;(”1 is changed (slightly) during the time~-€k .

As a result the integro-differential equation (6) becomes

differential equation., The first term in the right-hand side of

(6) independent of time derivatives of El{)-—51f(R,£) is the re-

normalization of the potential U . It is necessary to stress that

this term is generated by the excitation of nuclei and depends on

time. The second term is proportional to ;f({) and can be inter-~

preted as a frictional force. The subsequent term proportional to
?(f) is the renormalization of the reduced mass and so on. In

the present work we consider only the first two terms. In such an



approximation equstion (6) can be rewritten in the following way:
- | 2
P T e (B)]* A whe dAh©
MR +TUWR) =L :
rém h Wy "’tin Az(o)//n? d€g

a(1-expC i Ret) (cos R0t *'z%;;es""‘n"‘t)) -

T RNF . () A dR0)
- (3) . R.V _____—L__— e
Fom A3, " e ( )J"'",(R)"’a RloyMye d€;

x(re - exP(‘f’,‘.et)((C‘, + w:'t} cos Rupt -

“U- $het) 25 it - g )
‘Q‘l‘ nt Rﬂ"l “.n"“ *

The dependence of the additional potential 8 and the form-
factor of the frictional force on time is a consequence of the
memory of the system about the history of the collision process.
Disregard of this effect is equivalent to changing of the low
limit of integration in (6) from t=0 +to ¢w»-o00 , a8 in
linear response theory/13/. In this case the additional potential
SU and the form factor of friction force are independent of time
and take asymptotic values, ‘

The results of calculations of the potential S U (R,¢) :

180 tR*
SUWRE) =3 —m—— A

{- EXPL-£lnet) ©

(7)
1 (COS Ryt + [ag /28,0 *Sinfpt)
are shown in fig. 1 for the reaction Aq+T# /14/. It ie seen that
SU takes an asymptotic value at ¢ ~ 10722 gec,
According to the estimates made in the phenomenological ana-
lysis of the deep inelastic collisions of heavy ions, this time

is of the same order as the kinetic energy loas time. Consequently,

(sUI(T)

T{10?sec)

L 1 ILAAIII 1 1 lAlllllh

0 e
102 10™ 10° 10"

Pig. 1. Dependence on time of the additional potential SU(R,t) .

(arbitrary units).

to inveatigate the kinetic energy damping mechanism it is neces-—
sary to conserve the time dependence of §1/ . So, we oannot
include 8V into the static potential U . The time dependence
of U 1is a source of the dissipation of the relative motion
energy. The ideology of the linear response corresponds more to

15/,

the relatively slow processes such as fission

3, Dissipation of the kinetic energy

Let ua start from the consideration of frictional forces which

_are traditionally included in the phenomenological models, The

coefficient of radial friction calculated by us is significantly



smaller (by 50 - 100 times) than it is required for the explana-
tion of the experimental results only by the frictional forces.
It contradicts the usual assumptions, Thus it is necessary
to investigate the contribution to the energy demping of the addi-
tional potential U . Usually, this effect was not taken into
account 13/ because of neglect of SU time dependencez).
Neglecting in (6') the frictional forces and integrating this
equation from #=0 (the moment when nuclear forces begin to act)
up to t==i}nt , Where 71nt is the collision time, we get the
following expression for the excitation energy of the interacting
nuclie E*(T) (i.e.,for the kinetic energy loss):

g
E¥my = [ JURD gy (8)
0

In this work we will not perform detailed trajectory calculations,
but confine ourselves to qualitative estimates, To this end in the
right-hand side of (8) we change the relative distance between

the colliding nuclei R , by the average distance ¢R» . Taking

into account (7), we get from (8):

Fatm RDI* 4R 0)
) =SU R T) = e e,
ENT) V<rR>,T) ,,%... 4 Br0) A,y dEs

% (1= eXPE £ Ret) (cosppt + _xﬁrf—e Sin Q1)) .
n

As is seen from fig, 1 the dependence of S¥ on ¢ has a threshold
character and U takes an asymptotic value at T = 10-22 sec,
This value of §U determines the maximum value of the kinetic

energy loss, which can be explained using the investigated mecha~

nism,

e) It is necessary to mention the paper/6/ devoted mainly to
the nuclear Cherankov effect, in which the threshold dependsnce
of VU on time was polnted out.

The experimental information about the dependence of the
kinetic energy loss on the interaction time can be obtained ana-
lyzing correlations between the energy loss and the number of
transferred nucleons or the angle of emission,

Such an analysis requires additional assumptions about the
reaction mechanism, thus introducing new uncertainties of the
results, In/16/ the correlations between the kinetic energy losses
and the widths of charge distributions of the reaction products
6; have been analyzed.

Considering nucleon transfer as a diffusion process and desc-
ribing this process by the Fokker-Planck equation, we g;t a linear
relation between G; and the interaction time ¢ (if diffusion
coefficient Dy is a constant):

6% = 2D,°7

So, by measuring the dependence of the kinetic energy loss
on the width of charge distribution, it is possible to obtain a
dependence of the energy loss on the interaction time. An experi-
mental dependence of E*(T) on ¢ is qualitatively the same as
in fig. 1.

In order to estimate quantitatively the scale of the energy
loss which can be explained by the investigated mechanism, we
calculate the excitation energy of TR - E* (T= 10_225e0)
in the reaction A,+TA (E¢a6 =388 MeV)/14/ as a function of
AR=R+R,-R - The results are shown in fig. 2. When AR =2,5-3,0fm
that corresponds to the maximum value of AR in the classical
trajectory calculations based on equation (6'), the energy losses
are of an order of (70 - 100) MeV. The maximum energy losses found
in this reaction experimentally are (120~140) MeV, But they inc~

lude nuclear deformation (what is important for the exit channel
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Fig. 2. Dependence ofTh excitation energy E ( €= 10
in the reaction A3 +TR (Eg,g = 388 MeV) on AR=R*R-R.

22 gec)

potential), An excitation energy and the rotational energy losses
due to the dissipation of the relative anguler momentum,

The coefficient of tangential friction appeared to be large
enough in our calculations and close to the value used in pheno-
menological models, If the relative angular momentum é’ is of the
order e: 90 the rotational energy losses due to tangential fric-

tiorn are ~ 30 NeV,

Thus, the significant part of the kinetic energy lcsses can

be explained by the mechanism investigated in this paper.

In the following paper we shall perform detailed trajectory

calculations of heavy-ion deep inelastic collisions on the basis

of equation (61').

1.
2,

3.

4.
5.

11.

12.

13.

References

V.V.Volkov, Particles and Nuclei &, 1040, 1975.
W.U.Schroder, J.R.Birkelund, J.R.Huizenga et al.
Phys.Rev, 16C, 623, 1977.

#,U,Schroder, and J.R.Huizenga. Ann.Rev,.Nucl.Science 27,
465, 1977.

D.H.E,.Gross and H,Kalinowski. Phys.Rep. 45, 198, 1978.
R.A,Broglia, C,H.Dasso and A,Winther, Phys.lett. 53B,
301, 1974.

B.A.Rumjanzev, Preprint INP 77-19, Novosibirsk, 1977.
A.Bohr and B,Mottelson, Nuclear Structure v.2, p. 585,
Moscow, 1977.

D,Brink, Journ, de Phys. v.37, C-5, n° 11, 47, 1976.
J.Blocki et al, LBL-Report, LBL-5014, 1976,

C,Ngo, B,Tamain, M,Beiner, R.J.Lombard et al,

Nucl.Phys., A252, 237, 1975.

A.B,Migdal, Theory of finite fermi-systems and properties
of atomic nuclei, Nauka, Moscow, 1965,

V.Bundkov, V,Permjakov and H,Schulz, Phys.Lett. 59B,
125, 1975.

H.Hofmann and P,Siemens. Nucl.Phys. 4257, 165, 1976,

13



14. A.G.Artukh, G.F.Gridnev, V,L,Mikheev, V.V,Volkov and
J.Wilczynski. Nucl,Phys, A215, 91, 1973.

15. V.M.Kolomijez. Jad.Fys. 28, 367, 1978,

16, J.R.Huizenga, J.R.Birkelund and W.U.Schroder.
Phys.Rev.Lett. 37, 885, 1976,

Received by Publishing Department
on March 2 1979.



























