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Ypasuenue lllpenunrepa-llirepmepa B npsamoit 4 o6paTHOH
- 3apauax paccesiHMd

MMokasaHo, kKak cieayeT 3adaBaTk FpaHUYHble YC/IOBHA AJld ypaBHeHHs
Wpenuurepa-Urepmepa (Ul-11), He npuberas K CTAapTOBLIM MeTOOAaM,
YTO NPUHUHIHAILHO BaXHO AN pelleHHsl COOTBETCTBYlleHd KOHeYHO-
pa3HoCTHOI ofpaTtHoil 3anadyd. AHaNOrH4YHbIi pellenT TOAUTCS u ANd
ApyruX pa3HOCTHBLIX aNNPOKCHMAIHUi BLICUMX NOPSAKOB ANld ypaBHeHHd
lllpenunrepa, a Takxe B METOdEe KOHEYHBIX 3M1eMeHTOB C HeJHHeilHbIMH
cnnaiinamu, [lpennoxeHo ofobleHne R -MaTpHYHOH TEOpHH paccedHHdA
nna ypaBHeHus U=, TNMonyueHsi peKyppeHTHble COOTHOWEHHH, C IOMOILD
KOoTopblx pewaercg O3 nnsa ypasuenus UI-1I,

PaGora sBhinonHesa B JlaGoparopuu Teoperudeckoi ¢uauku OH AU,

Npenpunr O6bennHeHHOro MHCTHTYTA snepHBIX HUccnenopakkh, [ly6ua 1978

Melnikov V,N., Suzko A.A,, Zakhariev B.N. E4 - 12251

Schroedinger-Stermer Equation in Direct
and Inverse Scattering Problems

It is shown how to formulate boundary conditions
for the Scroedinger-Stermer (S-S} equation without using
starting methods, what is of principle significance
for the solution of a relevant finite-difference (f-d)
inverse problem. The same rule is valid for other higher
order f-d approximation for the Schroedinger equation and
for finite element methods with nonlinear splines. A ge-
neralization for R -matrix scattering theory for
S5-5 equation is suggested. The recurrence relations,
which give the solution of inverse problem for S-S
equation are derived.

The investigation has been performed at the
Laboratory of Theoretical Physics, JINR.
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For practical solutions of quantum mecha-
nical problems finite-difference (f-d) ana-
logues of the Schroedinger equation are wi~
dely used. The simplest discretization scheme
is the Euler method in which instead of se-
cond order differential equation

=¥ (r) + V() ¥Y(r) =E¥(r) (1)
just the second order f-d equation

- b (¥(n-1) ~2¥(n) +¥(ne1) }+ V(o) ¥(n) =E¥(n) (2)

is considered. The accuracy of approximation
of (1) by (2) does not exceed -A2 ( A-is a
f-d step).

More perfect is the Stermer scheme/l/,in
which eq. (1) is approximated by 4th order
(or more higher order) f-d equation:

~d (W2 ~¥n-1) -¥ (@41) + ¥ @+2) }+5V(@4) Y (n-1) +
A2 (3)

+2V) ¥(n) +5V(n+1) ¥Y(n+1) =E[ 5¥(n-1) +2%¥(n) +5¥(n+1)].

The accuracy of eq. (3) is~A4.Further we will
consider special questions of using Schroedin-
ger-Stermer (S-S) eq. (3) in direct and in-~
verse problems. It will be shown , how to
formulate additional "boundary" conditions



in order to avoid "unphysical" waves, which
exist in general solutions due to the fact
that the order of eq., (3) is by two units
higher than that of eq. (2) and eq. (1)*

It appears that these new boundary conditions
allow one to determine ¥ in four initial
points (what we need, to begin numerical
solution of eq. (3)) without using starting
methods/ﬂ, The generalized orthonormalization
and completeness conditions for eigenstates
of S-S equation (3) with homogeneous boun-
dary conditions will be given, and the corres-
ponding R-matrix scattering theory will be
formulated.

We shall show how to reconstruct the po-
tential V(n) in (3) from the scattering data
(spectral parameters) using the recurrence
relations which generalize those for Euler
scheme /3,4/, Thus we get a solution of f-4d
inverse problem model for Stermer scheme.

But in order to get an algorithm of appro-
ximate reconstruction of the potential V(r)
in (1) on the basis of this model, we need
also to find a transformation ruleSSaS&$ ,
where Sg.g are the spectral data for S-S
inverse problem, and Sg are the correspon-
ding values for eq. (1). This problem is not
yet solved (for Euler scheme this is done

in /5 ).

DIRECT PROBLEM, "BOUNDARY" CONDITIONS

For a unique choice of solution for S-S
eq. (3), we need four "boundary" conditions,

* e use the term "boundary" conditions
for f-d equations by analogy with the dif-
ferential equations.
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because eq. (3) is of fourth order (instead
of two conditions for egs. (1) and (2)). Two
conditions of these four will be chosen as
for the Schroedinger eq. (1) or its f-=d.
analog (2). To make it clear what additional
conditions we need, it is instructive to
consider the general solution of eq. (3) in
the region where Vn)=0 (free motion of waves)
and S-S equation has constant coefficients.

A standart form of a particular solution
for such an equation is 2!, Insertion of 2zt
in S-S equation with V=0 gives for z an al-
gebraic equation (of fourth degree):

2 2
z4+z3(5 1)+ 2A2E vz 5A4E_1)+1=0. (4)
This equation has four roots:
_1 _ P _ +i912
sz_ . -am6L2+1mn%12 =e , , (5)
3,4
where
40086, , =1 - -—5A E_\/(I 5A Ey2_oRE 48, (6)

So the general solution of S-S equation
with V=0 is a linear combination of four
waves:

. - . _-0
¥Y(n) =A elaln +'Be_161n+Ce 2t +De aC ] (7)

For small values of energy(A2E<<1)61~AJir,

i.e.,0/A corresponds to the wave number

of initial Schroedinger eq. (l1). Therefore
we shall call e*ii® the "physical™ waves

and e-’ozn with different energy dependence
of the wave number 60, /A the unphysical
ones. The appearance of unphysical waves

is a distinctive property of solution of



S-S equation in comparison with eqs. (1), (2).
It is reasonable therefore to take as the
additional boundary conditions the require-
ments that coefficients C and D in eq. (7)
be zero,.

Let us write down these conditions in
terms of linear combinations of ¥ wvalues
at boundary points. Taking into account eq.
(7) it is easy to see that the terms with
coefficient A disappear in expressions
¥Y(n) z; -¥ (n+1) and q%n+1)zl—W(n+2). And there
are only the terms with Cand D in expres-
sion

¥(n) -¥(n+1) (z,+27") +¥(n+2), (8)
i.e., there are only unphysical waves in ex-
pression (8).So, the requirement that expres-
sion (8) be zero for two different values ofn
is equivalent to the conditions that coeffi-
cients C and D in (7) are zero (because two
homogeneous linear independent combinations
of C and D are zero).

Let us consider now the case of wave
penetration through the bounded region(axr<b),
with nonzero potential. Following the logic
of the preceding discussion we need in ad-
dition to two physical conditions (for
example, a certain, normalization of the
physical wave approaching the interaction
region from the left and the absence of the
physical wave going to the potential zone
from the right) that unphysical waves(eﬂgzn)
disappear from both sides of potential ob-
stacle. In all this means six boundary
conditions, what is more than we can require
for an equation of fourth order.

; :

Fortunately it appears that it is enough
to destroy the unphysical waves from one
side of the interaction region only. Then
the unphysical waves will have very small
amplitudes (~A%, so that they can be neg-
lected) also from the other side. This is
due to uniqueness of solution of eq. (3)
with four boundary conditions and to the spe-
cial construction of eq. (3) that its proper
solution does not deviate from the one of
eq. (1) more than by ~A%*

It is obvious that in particular (limit)
case of zero potential the requirement of
zero amplitude of the wave "% from the
one side leads to its exact disappearance
also from the other side (the same is true
for e+ifpn ). In the general case we have to
demand that the expression (8) becomes zero
at two points n =n, and n=n, from any side
of the potential barrier (no matter together
or separately).

Up to now, in order to begin the numerical
calculations according to the Stermer scheme,
the values of wave function in four neighbour
points were determined using another appro-
ximate scheme (i.e., Euler scheme but with
such a small step Ap<«A,that the error does
not exceed A% ).

The suggested way to formulate the boun-
dary conditions allows the use of the unique
Stermer scheme without a cumbersome combina-
tion of different approaches.

*This is true only for the lowest part of
the energy spectrum, where Stermer approxi-
mation is practically used,



In the same way the boundary conditions
can be formulated for other higher order f-d
approximations to Schroedinger eq. (i.e.,
for S-S- equation of 6th order).

ORTHONORMALIZATION OF EIGENFUNCTIONS,

which correspond to S-S equation has its
peculiarity due to the three diagonal matrix
i(Kr=2ﬂgiﬂ =5) which stands in the right-
hand-side of eg. (3).

It is most simple to show the orthogona-
lity of solutions of (3), which satisfy the
homogeneous boundary conditions, without
energy dependence. But in expression (8),
which we use to descroy the unphysical waves,
the energy dependence is introduced through

Z (see (5), (6)). Nevertheless, if in

R -matrix formalism with potential equal to
zero for r> a=A(N-1) we use* "physical™"
condition (which can be used in Euler
scheme /3-5/ ) :

u(0) =0; u(N+1) =0, (9)

and choose in (8) the two values n1=0 and
n2=N-H the energy dependence will disap-
pear in additional boundary conditions:

u(~1) +u(1) =0; u(N) +u(N+2)=0. (10)
There are N solutionsux(m for discrete

(finite) set of eigenstates E=E, (resonance
positions of R -matrix).

* Or for the potentials, for which there is
an analytical solution at r>a.

It is worth noting that together with the
disappearance of z; -dependence in boundary
conditions (10), we lose the indication,
what waves have to be destroyed (physical
or unphysical). So the complete set of eigen-
functions u) consists both of. physical and
unphysical states. Strictly speaking, instead
of an ordinary orthogonality of elgenfunction,
corresponding to different energy state,
there is biorthogonality of the set{tm} and
the functions u;, corresponding to the system
of algebraic equations like (3), (9), (10)
but with a transponed matrix of coefficients.

Taking into account that symmetrization of
this matrix leads to the changes of an order
of ~A?%, which can be neglected, we can use
instead of (3) the equation with symmetrized
matrix:

Y(n-1) +

~ 4 {W(n-2)-W(nil)+¥(ns+2) 145
A2 (11)

V(n) + V(n-1)
2

W(n)=E[ 5¥(n-1)+2¥ () +5¥(nH) ].

+2V(n)¥(n) +5 Yﬁﬁtélijﬂﬂl

The orthonormalization condition is derived
by multiplying by uAAm)eq. (11) for u (n)
with E=E, and eq. for u,-(n) withE=E] by
ux(m, subtracting one of these equations
from the other and summing the result over n
(taking into account egs. (9) and (10)):

N
2 u(m K(n,m)u,.m=35,,/A, (12)
n,m=l

where ||K|| is the above-mentioned three-

diagonalvmatrix, which acts on the function
in the right-hand side of egs. (3)., (11).
The appearance of this weight factor K in



generalized orthonormalization (i2) is one _
of the peculiarities of the_conSidered Ster
mer scheme (in comparison with Euler'
method/$5/ Y. The completeness relatlon.
(orthonormalization over the energy'variable
A ) is derived from eq. (12), multlplying
it by uy (p) summing both sides of equatien .
over A and changing the order of summation:

3 (13)

AE 1 uA(p) uA(n) K(n,m) =5pm /A,

,n= .
Another form of generalized Parceval equation
is:

3 K! (14)

S (m) u, (n)= (n,m) .

b A
A=l :

Now let us use edgs. (L2), (13) for discrete
parametrization of the scattering data.

R-MATRIX SCATTERING THEORY
The wave function ¥, corresponding to the
scattering state with asymptotic behaviour:

v -l _gmyeih® (15)

can be expanded in the complete set of eigen-
functions satisfying egs. (9)-(11)

Y(E,n) = 3 A (B)u, (). (16)
A=1

According to egs. (12) and (16), the coef-
ficients AAGD can be written as:

g 17)
A (E) =X A¥(E,) K(n,m) v (m). (
n,m=1
Multiplying eq. (11) by u) (n) and eq. for
u, (n) by Y(E,n) subtracting one of these
A
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equations from the other and summing over
n, we get, taking into account the boundary

conditions (9), (l10) for uy and putting that
Y()+v)=o0:

Ay (BE) =4 YD 4y (N1) u, [ 2 +21-5822])  (18)
A 2 A A 1 71
A I&—E 4
Substituting A)

from (18) into (l6), we
get for n=N

and n=N-1

N
W(N) /W(N+1) =T4 s U, (N)

ol E/\—E {UI\(N—l) + (19)
+u, (N) [ Zl+zll_1_5E4_”
N Nt
woNo1) eenany - 2 Y BV e - (20)
A a1 E, -E A

A
-1 A2
+u (N Lz +z7-1-5E-2-1 1 .

The left-hand side of egs. (19), (20) can
be determined due to eq. (15) if we know
the scattering matrix. So, the S(E) is para-
metrized by the set of 3N values{EA ruy, ),
vy(N-1) }.If S(E) is known, these parameters can
be determined from egs. (19), (20). In parti-
cular the zeroes of W(ENH) give E). The func-
tions are determined up to the sign, which is
not significant from the physical point of
view, So egs. (19), (20) are the extension

of the results of the R -matrix theory for
S-S equation.

INVERSE PROBLEM

After the determination of values u),(N)
l&@%ﬂ from eqs. (19) and (20),

[
the second

11



‘equations in (9) and (l10) give us the values
uA(N+1) and uA(N+2),Starting from these
known values of eigenfunctions in four
neighbour points, we can determine u) (m) and
V(n) .in the whole interaction region. Let
V(n >N) =0. Then uy, (N-2) can be expressed from
eq. (l1) through the known values of eigen-
functions:

Vv V(N+1
uA(N-z) =ty (N1) +uy (N1) —uy N+2)+L 5 W) + W u))\(N+1)+
2
+2V(IN) u, (N)+5V—(N—:;li“l(—m uA(N-—l)] +A4E [ 5u, (V1) + (21)

+2u>\(N) +5u, N-1) .

The expression for V(N-1) is derived after
multiplication of eq. (11) with n= N Dby

2 K (N-1,m) uy, (m) and summation over A

Pthe orthonormalization conditions (13), (14)-
completeness relations should be also taken
into account):

VL) =3 K(Nm) u, () E, KOH,p) u, @) - —— (22)
)\,m,p=1 A A A A 2
The system of egs. (21), (22) allows one to
make a first step inside the interaction region
while solving the inverse scattering problem,
Repeating analogous operations we find W\@)

and V(n) at the next points, using the re-
currence relations of the type (21), (22},
successively.

The authors are grateful to I.V.Amirkhanov,
J.Bang, E.B.Plekhanov, B.V.Rudjak for discus-
sions concerning the subject of this paper-
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APPENDIX

Infinitely Deep Potential Well

Let V(n) =V, at 0<n<N+1 and 'V(0) =V(N+1) =,
Eq. (l11) with boundary conditions (9), (10)
has solutions uA(n)=Aﬁn0 n with g - A7 __

A A N1
The corresponding energy levels E, are deter-

mined from the following equation (see egq. (6)):

5A%E) 5A°E)

4oos AT 1 —

2 2
-2A°E, +8 ,
N+1 ) At

o (-

For small values A and A%E,we get (choosing
+sign) :
A g 4
E,= (————)2 + olA).
A(N+1)

So the lowest, "physical” energy levels
in infinitely deep rectangular potential
well, derived from S-S equation coincide
(within the accuracy ~A%) with the corres-
ponding values for Schroedinger equation.
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