
M-S~ 
I 

0 o b e A M H e H H bl M 
MHCTMTYT 
RAft PHbl X 

MCCnBAOB3HMM 

AYDH3 

!Y jj/ ""¢-1 
E4 - 12251 

f'f.SI :t-}7 
I.N.Melnikov, A.A.Suzko, B.N.Zakhariev 

SCHROEDINGER-STERMER EQUATION 

IN DIRECT AND INVERSE 

SCATTERING PROBLEMS 

1979 



E4 - 12251 

V.N.Melnikov, A.A.Suzko, B.N.Zakhariev 

SCHROEDINGER-STERMER EQUATION 

IN DIRECT AND INVERSE 

SCATTERING PROBLEMS 

Submitted to "H3aecmuJI AH CCCP" jeep. r,/Ju3./ 



MenhHHKOB B.H., Cy3hKO A.A., 3axapbeB E.H. E4 - 12251 

YpaBHeHHe WpenHHrepa-WTepMepa B npHMOil H o6paTHoi\ 

-3anaqax pacceHHHH 

00K838H~ K8K CnenyeT 38A8B8Tb rpBHHqHWB ycnOBHH ATIH ypaBHeHHH 

illpeAHHI"'Bpa-illTepMepa (ill-ill), He npH6era5! K CTapTOBbiM MeTonaM, 

qTQ npHHilHTIH8TibHO BBlKHO ATIH peweHHSI COOTBBTCTBYIOWBH KOHBqHo

pa3HOCTHOH o6paTHoil 3anaqH, AHanorHqHwil peuenT ronHTCH H nng 

npyrHX pa3HOCTHWX annpDKCHM8UHA BWCWHX nopHUKOB ATIH ypaBHBHHSI 

WpenHHrepa, a TaKlKe B MeTone KoHe'-IHbiX '''neMeHTOB c HenHHBHHbiMH 

crrnai\HaMH. OpennolKeHo o6o6weHHe R -MaTpHqHoi\ TeopHH pacceSIHHSI 

DTISI ypaBHeHHSI W-ill. OonyqeHbl peKyppeHTHble COOTHOWBHHH, C ITOMOillbiO 

KOTOpbiX pewaeTCSI 03 ATISI ypaBHeHHSI W-ill, 

P a6oTa BbiiTDnHeHa B fla6opaTopHH TeopeTHqecKoil <j>H3HKH O~l fHl. 

OperrpHHT 06beAHHBHHOf'O HHCTHTYTB HAepHWX HCCTieAOBBHHA, ily6Ha 1979 

Melnikov V.N., Suzko A.A., Zakhariev B.N. E4 - 12251 
Schroedinger-Stermer Equation in Direct 
and Inverse Scattering Problems 

It is shown how to formulate boundary conditions 
for the Scroedinger-Stermer (S-S) equation without using 
starting methods, what is of principle significance 
for the solution of a relevant finite-difference (f-d) 
inverse problem. The same rule is valid for other higher 
order f-d approximation for the Schroedinger equation and 
for finite element methods with nonlinear splines. A ge
neralization for R -matrix scattering theory for 
s-s equation is suggested. The recurrence relations, 
which give the solution of inverse problem for s-s 
equation are derived. 

The investigation has been performed at the 
Laboratory of Theoretical Physics, JINR. 
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For practical solutions of quantum mecha
nical problems finite-difference (f-d) ana
logues of the Schroedinger equation are wi
dely used. The simplest discretization scheme 
is the Euler method in which instead of se
cond order differential equation 

-'I'" (r) + V(r) 'l'(r) = E'l'(r) ( 1) 

just the second order f-d equation 

- j__ !'l'(n-t) -2'1'(n) +'l'(rn-1) l+V(n)'l'(n)=E'I'(n) (2) 
~2 

is considered. The accuracy of approximation 
of (1) by (2) does not exceed -~2 ( ~-is a 
f-d step). 

More perfect is the Stermer scheme/I/, in 
which eq. (1) is approximated by 4th order 
(or more higher order) f-d equation: 

4 . 
- ~ 2 !'1'(n-2)-'l'n-1)-'l'(rn-1)+'1'(rn-2) l+5VQH.)'I'(n-1)+ ( 3 ) 

+2V(n) 'l'(n) +5V(rn-1) 'l'(n+l) =E[ 5'1'(n-1) +2'¥(n) +5'1'(n+l)]. 

The accuracy of eq. (3) is -~ 4• Further we will 
consider special questions of using Schroedin
ger-Stermer (S-S) eq. (3) in direct and in
verse problems. It will be shown , how to 
formulate additional "boundary" conditions 
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in order to avoid "unphysical" waves, which 
exist in general solutions due to the fact 
that the order of eq. (3) is by two units 
higher than that of eq: ( 2) and eq. ( 1) *. 
It appears that these new boundary conditions 
allow one to determine 'I' in four initial 
points (what we need, to begin numerical 
solution of eq. (3)) without using starting 
methodsh/, The generalized orthonormalization 
and completeness conditions for eigenstates 
of s-s equation (3) with homogeneous boun
dary conditions will be given, and the corres
ponding R-matrix scattering theory will be 
formulated, 

we shall show how to reconstruct the po
tential V(n) in (3) from the scattering data 
(spectral parameters) using the recurrence 
relations which generalize those for Euler 
scheme h.V. Thus we get a solution of f-d 
inverse problem model for Stermer scheme. 

But in order to get an algorithm of appro
ximate reconstruction of the potential V(r) 
in (1) on the basis of this model, we need 
also to find a transformation rule 85 -+Ss-S , 

w her e S s-s a r e the s p e c t r a 1 data for S - S 
inverse problem, and Ss are the correspon
ding values for eq. (1). This problem is not 
yet solved (for Euler scheme this is done 
in /5/ ) . 

DIRECT PROBLEM, "BOUNDARY" CONDITIONS 

For a unique choice of solution for S-S 
eq. (3), we need four "boundary" conditions, 

* We use the term "boundary" conditions 
for f-d equations by analogy with the dif
ferential equations. 

4 

(instead because eq. (3) is of fourth order 
of two conditions for eqs. ( l) and ( 2) ) • Two 
conditions of these four will be chosen as 
for the Schroedinger eq. (1) or its f-d • 
analog (2). To make it clea~ what additional 
conditions we need, it is instructive to 
consider the general solution of eq. ( 3) in 
the region where V~)=O (free motion of waves) 
and s-s equation has constant coefficients. 

A standart form of a particular solution 
for such an equation is 'zn. Insertion of zn 
in s-s equation with V=O gives for z an al
gebraic equation (of fourth degree): 

z4+z3(5~:E -1)+z 2 ~;E +Z( 5~E-1)+1=0. (4) 

This equation has four roots: 

z1,2 =-1 __ = cos01 2+isin0 =e+i01,2 
z

3
,
4 

• 1,2 
( 5) 

where 

2 . 2 
4cos0 =1- 5t1E±V(t- 5t1E) 2 -2~2 E+8. (6) 

1,2 4. 4 

so the general solution of s-s equation 
with V=O is a linear combination of four 
waves: 

i~ n -i~ n i02n -i02n 
'l'(n) =A e +Be +Ce +De ( 7) 

For small values of energy (~2E«1) 01 -~vE, 
i.e.,O/~ corresponds to the wave number 
of initial Schroedinger eq. ( l) • Therefore 
we shall call e ±iOt n the "physical" waves 
and e±iOzn with different energy dependence 
of the wave number 02 /~ the unphysical 
ones. The appearance of unphysical waves 
is a distinctive property of solution of 
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s-s equation in comparison with eqs. (1), (2) 
It is reasonable therefore to take as the 
additional boundary conditions the require
ments that coefficients C and Din eq. (7) 
be zero. 

Let us write down these conditions in 
terms of linear combinations of W values 
at boundary points. Taking into account eq. 
(7) it is easy to see that the terms with 
coefficient A disappear in expressions 
W(n) z1 -W (n+l) and W(n+l) z1 -W(n+2). And there 
are only the terms with C and D in expres
sion 

W(n)- W(n+l) (z
1 
+Z~1 ) +W(n+2), ( 8) 

i.e., there are only unphysical waves in ex
pression (8) .so, the requirement that expres
sion (8) be zero for two different values ofn 
is equivalent to the conditions that coeffi
cients C and D in (7) are zero (because two 
homogeneous linear independent combinations 
of C and D are zero) • 

Let us consider now the case of wave 
penetration through the bounded region(a~r~b), 
with nonzero potential. Following the logic 
of the preceding discussion we need in ad
dition to two physical conditions (for 
example, a certain, normalization of the 
physical wave approaching the interaction 
region from the left and the absence of the 
physical wave going to the potential zone 
from the right) that unphysical waves(e±i82n) 
disappear from both sides of potential ob
stacle. In all this means six boundary 
conditions, what is more than we can require 
for an equation of fourth order. 
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Fortunately it appears that it is enough 
to destroy the unphysical waves from one 
side of the interaction region only. Then 
the unphysical waves will have very small 
amplitudes (~~ 4 , so that they can be neg
lected) also from the other side. This is 
due to uniqueness of solution of eq. (3) 
with four boundary conditions and to the spe
cial construction of eq. ( 3) that its proper 
solution does not deviate from the one of 
eq. (1) more than by ~~4 *. 

It is obvious that in particular (limit) 
case of zero potential the requirement of 
zero amplitude of the wave e4 82 n from the 
one side leads to its exact disappearance 
also from the other side (the same is true 
for e+i82n ) • In the general case we have to 
demand that the expression (8) becomes zero 
at two points n = n 1 and n =n 2 from any side 
of the potential barrier (no matter together 
or separately). 

Up to now, in order to begin the numerical 
calculations according to the Stermer scheme, 
the values of wave function in four neighbour 
points were determined using another appro
ximate scheme (i.e., Euler scheme but with 
such a small step ~E«~.that the error does 
not exceed ~ 4 ) • 

The suggested way to formulate the boun
dary conditions allows the use of the unique 
Stermer scheme without a cumbersome combina
tion of different approaches. 

*This is true only for the lowest part of 
the energy spectrum, where Stermer approxi
mation is practically used. 
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In the same way the boundary conditions 
can be formulated for other higher order f-d 
approximations to Schroedinger eq. (i.e., 
for s-s- equation of 6th order). 

ORTHONORMALIZATION OF EIGENFUNCTIONS, 

which correspond to s-s equation has its 
peculiarity due to the three diagonal matrix 
K(K .. =2·K-. 

1 
=5) which stands in the right-

I\ ' 1, 1± 
hana-side of eq. (3). 

It is most simple to show the orthogona
lity of solutions of (3), which satisfy the 
homogeneous boundary conditions, without 
energy dependence. But in expression (8), 
which we use to descroy the unphysical waves, 
the energy dependence is introduced through 

z (see (5), (6)). Nevertheless, if in 
R -matrix formalism with potential equal to 
zero for r > a =~(N-1) we use* "physical" 
condition (which can be used in Euler 
scheme /3-5/ ) : 

u(O)=O; u(N+!)=O, ( 9) 

and choose in (8) the two values n1 =0 and 
n2 = N + 1 the e n erg y d e p e n de n c e w i ll d i sap
pear in additional boundary conditions: 

u(-1) +u(1) =0; u(N) +u(N+2) =0. (10) 

There are N solutions u,\ (n) for discrete 
( f i n it e ) s e t o f e i g e n s t a t e s E = E,\ ( r e so nan c e 
positions of R -matrix). 

*Or for the potentials, for which there is 
an analytical solution at r~a. 
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It is worth noting that together with the 
disappearance of z1 -dependence in boundary 
conditions (10), we lose the indication, 
what waves have to be destroyed (physical 
or unphysical). So the complete set of eigen
functions U,\ consists both of physical and 
unphysical states. Strictly speaking, instead 
of an ordinary orthogonality of eigenfunction, 
corresponding to different energy state, 
there is biorthogonality of the set I u,\ l and 
the functions ui , corresponding to the system 
of algebraic equations like (3), (9), (10) 

but with a transponed matrix of coefficients. 
Taking into account that symmetrization of 

this matrix leads to the changes of an order 
of -~4, which can be neglected, we can use 
instead of (3) the equation with symmetrized 
matrix: 

4 1 V(n) + V(n-1) -- IV(n-2)-IV(n+1)+1V(n+2) 1+5 IV(n-1)+ 
~2 2 ( ll) 

V(n+l )+ V(n) 
+2V(n) \V(n) +5 IV(n) =E[ 51V(n-1) +2\ll(n) +5W(n+l)]. 

2 

The orthonormalization condition is derived 
by multiplying by u,\,(n) eq. (ll) for u,\ (n) 
with E=E,\ and eq. for u,\·(n) withE= E,\ by 
u,\ (n), subtracting one of these equations 
from the other and summing the result over n 
(taking into account eqs. (9) and (10)): 

N 
l ~(n) K(n,m) u,\,(m)=oM, /~, ( 12) 

n,m=l 

where IIKII is the above-mentioned three
diagonal matrix, which acts on the function 
in the right-hand side of eqs. (3).1 (ll). 
The appearance of this weight factor K in 
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generalized orthonormalization (12) is one 
of the peculiarities of the considered Ster
mer scheme (in comparison with Euler 
methodh-~ ) • The completeness relation 
(orthonormalization over the energy variable 
A ) is derived from eq. (12), multiplying 
it by uA (p) summing both sides of equation 
over A and changing the order of summation: 

N 
I. u, (p) u, (n) K(n,m) =D I!'!.. 

( 13) 

A,n=l 1\ " pm 

Another form of generalized Parceval equation 

is: 
N 
I. l?._ (m) uA (n) =K'"""l (n,m). 

A=1 

(14) 

Now let us use eqs. (12), (13) for discrete 
parametrization of the scattering data. 

R-MATRIX SCATTERING THEORY 

The wave function '1', corresponding to the 
scattering state with asymptotic behaviour: 

'l' =eit\n -S(E)ei01n ( 15) 

can be expanded in the complete set of eigen
functions satisfying eqs. (9)- (11) 

N 
'l'(E,n) =I. AA (E) uA (n). (16) 

A= I 
According to eqs. (12) and (16), the coef-

ficients AA(E) can be written as: 

N 
\(E) =I.!'!. 'l' (E,n) K(n,m) \).. (m). ( 17) 

n,m=l 
Multiplying eq. (11) by uA (n) and eq. for 
uA (n) by 'l'(E,n) subtracting one of these 
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equations from the other and summing over 
n, we get, taking into account the boundary 
conditions (9), (10) for uA and putting that 

'l' ( -1 ) + 'l' (1 ) = 0 : 

A, (E) =...i_
2 

'l'(Nt-1) lu,(N-l)+u,(N)[ Z+z-1-1-5E~)I 
1\ !'!. EA-E 1\ 1\ 1 1 4 

Substituting AA from (18) into (16), we 
get for n= N and n = N-1 

4 N 
'l'(N) /'l'(N+l) =- ~ 

!'!. A=1 

uA (N) 

E -E 
A 

6.2 
+ u , ( N) [ z + z-1 -1 - 5 E - ] I 

1\ 1 1 4 

I UA (N-1) + 

( 18) 

( 19) 

4 N u (N-1) ( 2 0) 
'l' (N-1) /'l'(N+l) =- I. A l u (N-1) + 

!'!. A=l EA -E A 

+ uA (N) [ z 1 +Z11-1-5E ~ 2 ] I . 

The left-hand side of eqs. (19), (20) can 
be determined due to eq. ( 15) if we know 
the scattering matrix. So, the S(E) is para
metrized by the set of 3N values!EA, uA(N), 
u;JN--1) I. If S(E) is known, these parameters can 
be determined from eqs. (19), (20). In parti
cular the zeroes of 'l'(E,N+1) give EA. The func
tions are determined up to the sign, which is 
not significant from the physical point of 
view. So eqs. (19), (20) are the extension 
of the results of the R -matrix theory for 
s-s equation. 

INVERSE PROBLEM 

After the determination of values uA(N) 
uA (N--1) from e q s • ( 1 9 ) and ( 2 0 ) , the s e con d 
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equations in (9) and (10) give us the values 
uA (N+1) and uA (N+2). Starting from these 
known values of eigenfunctions in four 
neighbour points, we can determine uA (n) and 
V(n) ~n the whole interaction region. Let 
V(n.?N) ,.,Q. Then uA (N-2) can be expressed from 
eq. ( ll) through the known values of e igen-

functions: 
V(N) + V(N+ 1) 

UA (N-2) = UA (~1) + UA (N+1) -U,\ (N+2)+ ( 5 UA (N+1) + 
2 

2 
+2V(N) u,\ (N) + 5 v~i + V(N) UA (N-1)] + !S.4 E ( 5uA (N+1) + ( 21) 

+2~ (N) +5 u,\ (N-1)] . 

The expression for V(N-1) is derived after 
multiplication of eq. (ll) with n = N by 
:£ K (N -l,m) uA (m) and summation over A 
fthe orthonormal i za tion conditions ( 13) , ( 14)
completeness relations should be also taken 
into account) : 

V(N-!) =:£ K(N,m) u,\ (m)EAK~l.p)u,\(p)--4- (22) 
A,m, p=l f'12 

The system of eqs. (21), (22) allows one to 
make a first step inside the interaction region 
while solving the inverse scattering problem. 
Repeating analogous operations we find u,\ (n) 
and V(n) at the next points, using the re
currence relations of the type (21), (22), 
successively. 

The authors are grateful to I.V.Amirkhanov, 
J.Bang, E.B.Plekhanov, B.V.Rudjak for discus
sions concerning the subject of this paper-
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APPENDIX 

Infinitely Deep Potential well 

Let V(n) = V0 at O<n<N+1 and 'V(O) =V(N+l) =oo. 
Eq. (ll) with boundary conditions (9), (10) 
has solutions u ,\ (n) =AsinOA n with eA = _}gr_ 

N+l 
The corresponding energy levels E,\ are deter-
mined from the following equation (see eq. (6)) 

,\
17 

51'1 2 EA 51'1 E>.. 2 2 
4oos--= 1 - +V (1- ) -21'1 EA + 8 

N+1 4 4 

For small values >.. and !'1 2E, we get (choosing 
t- sign) 

E = ( 11.\ )-2 + o(/'14). 

,\ 1'1(N+1) 

So the lowest, "physical" energy levels 
in infinitely deep rectangular potential 
well, derived from S-S equation coincide 
(within the accuracy -1'1 4 ) with the corres
ponding values for Schroedinger equation. 
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