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Bauanne npunuuna [laynm na ceoficTBa ABYXQOHOHHBIX
COCTOAHAH

Mokasano, 4T0 B paMxkaXx KBa3HyaCTHuUAO~DOHOHHOH MOJeNH @apa
MOXHO KOPPEKTHO y4YeCTb NepeCTAHOBOYHbIe COOTHOWEHHS MEXAy KBadH-
JacTuuaMu, obpasymomumi $oHoHbl, HUcCclenopaH ciyuaii yeTHO-4e THHIX
nefopMrpoBaHHEIX snep. [Monywens: Tounbie W npubmuxenubie CexynspHble
%paBHeHHH. lokasaHo, 4TO MoONpaBKH, CBASaHHbIE C y4eTOM MpPHHIHNA

ay/lK BeNHKH /i NBYXDOHOHHBIX KOMIIOHEH -
JIEHHBIX ¥3 OAHHAKOBBIX tououoa. T pommemtix dyiiuf, cocras

PabBora suinonnena B Jla6opaTOpHH TeoOpeTHYECKOH dusuxun OH AU,

Mpenpusr O6benuHEHHOrO HACTHUTYTA SACPHHIX HCCAeAOBAHHML. Oy6ua 1979

Djolos R.V., Molina J.L., Soloviev V.G, E4 - 12250

Influence of the Pauli Principle on the Two-Phonon
States

It is shown that the commutation relations between quasi-
particles forming phonons can correctly be taken into account
within the quasiparticle-phonon nuclear model, The case of the
even—even deformed nuclei is studied. Exact and approximate
secular equations are obtained, The corrections arising due
to the Pauli principle are shown to be large for the two-phonon
components of the wave functions, when the phonons are identical.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR,
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1. Introduction

The generalization of the Hartree-Fock Variational Principle
suggensted by N.N.Bogolubov/1/ (then called the Hartree-~Fock-Bogo-
lubov Variational Princip142'4/)and his method of time-dependent
selfconsistent field/S/ made the basis for the modern microscopic
nuclear theory/6'9/.

These methods resulting in the recent quasiparticle-phonon
nuclear mode1/1o/ allow one to correctly describe the properties of
the one~quasiparticle and one-phonon excited etafes, the distribu-

/12/

tion of one-quaeiparticle/11/ and one-phonon components over
more complex states at intermediate excitation energies and to
calculate the photoabsorption/13/ and one-nucleon transfer reaction
strength functions, The proporties of the highly excited states
have been well described without free parameters since the interac-
tion constants were fixed while analyzing the properties of the
low-lying states,

The consideration of the two-phonon states, the wave functions
of which contain the components with four quasiparticles, should
include the effects of antisymmetrization of the wave functions
with respect to permutation of quasiparticles of different phonons.
Many papers were devoted to the influence of the Pauli principle
on the many-phonon states, Usually the boson representations for
the fermion operators were used/14'15/ and mainly the purely

collective states were considered,



This paper considers the influence of the Pauli principle on
the two-phonon states. Besides purely collective states we shall
discuss all two-phonon states. In the framework of the quasiparticle-
phonon nuclear model we obtain the equations for the excited state
wave functions containing one— and two~phonon components, the

commutation relations being strictly taken into account.

2. The Model Hamiltonian and Commutation Relations

Let ua consider doubly even deformed nuclei. In this case the
+
model Hamiltonian expreesed through the phonon operators Qs ' Q1 s
is
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We use the following notation:§ (43') are the matrix elements of
the operator of the multipole moment ). with projection /* N
2
0(;0— is the quasiparticle creation operator,6(3)=‘5C2+(E(3)-))
, £F(7) is the single-particle energy, C is the
correlation function, is the chemical potential; Z(;yl:
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then H . and f11,’ can be rewritten as follows:
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Note that these results are obtained under the assumption of a small

number of quasiparticles in the ground nucleer state
<Yl BGIY,> =0.

If the ispvector part of the multipole-multipole interaction will
be taken into account, formula (4) and others will be of a more
complex form (see ref."ol).

The phonon operstore satisfy the following oommutation rela-

tions/16/
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Now we calculate the double commutator
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The values of the coefficiente]((’,’,’.’;) specify the degree of
influence of the Pauli principle on the two-phonon states.

3. Exact Equations of the Model

Now we write the excited state wave function of a doubly even
deformed nucleus as a superposition of the omne- and two~-phonon com-

ponents
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Ite normalization condition has the form
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Among the matrix elements of the Hamiltonian connecting the

two~phonon states we shall preserve only those which do not change
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Thus, the commutation relations being exactly taken into account re-

sult in the shift of the two-phononrn poles in the secular equation

9(7») = det” ("‘)L‘ ?")54.'('." u'/‘", ” =0 (20)

and in the interaction ‘/;13‘()P£) . As it follows from (19)
the corrections to the two-phonon state energies, arising due to the
Pauli principle, are specified by the values of the coefficients

3 (4,9.9,34) - It is seen from (13) that H(d d.d3§4)  enter
into the normalization of the wave function. The diagonal coeffi-
cients }{(3‘323,3,) are negative and less than unity in the abaolute

value.

The values of }{(§,4,3;3,) for the low quadrupole with K = 2 and
octupole with K=0 states of 166Er are given in the Table, Similar
results are obtained for 176ge and 228,

Table that the coefficients H(3333) and H(g3'3y)

. It ie seen from the

are nega-—
tive and less than unity in the absolute value, they exceed Eonsi-
derably all the rest coefficients. The fact that the coefficient

]028Q22£2&£23y15 close to (-1) is caused by that the corresponding
one-phonon state Q:zsl'{{/ 7 is similar to the two-quasiparticle one.
Therefore the norm of the two-~phonon state Q223Q 3\'@,) deviates
strongly from the value obtained within the harmonic approximation,
this being indicated by a large value of the coefficient
23,223,223 ,223 ).

Thus, the commutation relations between quasiparticles forming
phonone can correctly be taken into account within the quasgiparticle-~
phonon nuclear model, The influence of the Pauli principle on the
energies of the two-phonon states and radiative strength functions

requires further investigation,
Table

Values of the coefficients
for 166Er

A!M. lzrzcz A;r;l..; )qryiu K(l&. 33 30)
221 221 221 221 -0,617
222 222 222 222 ~-0,849
223 223 223 223 -0,996
301 301 301 301 -0,358
221 301 221 301 -0,151
221 221 221 222 0,094
221 221 221 223 0,001
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