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Bnoenn A.H., Cro.SJnoo lJ., lJan 3yli KxbiOHr E-1 · 12012 
$parMenrannH rny6oKone~awnx 
e naoronax onoea 

llblpO•IHbiX COCTOHHHii 

B Heaaennx <~KcnepnMDHrax no (d,t) -peaKUHS!M na Kaoronax onoea 
eo ecex nayqaewnxcH S!llpax 6binH o6napy>KeHbi peaonancno-noao6nh•e 
crpyKrypbl npn <~neprKSJX ooa6y>~<aennSJ 5-7 M<~B, CBH3aHHbie c soa6y>~<aeHneM 

rny60KHX llblpO'IHbiX COCTOHHHli lg 912 , 2p 112 , 2p 312. 8 o6nacrn m!Ka 

HC'IepnbJBaercSJ 15-25% nonnoli cnnbi cocroSJHHH 1g 912 . B pa6ore reopern­
'IeCKH paCC'IHT8H8 ljlparMei!TilUHH rny60KHX llblpO'IHbiX COCTOHIIHI1 B H30TO­
naX onoaa 11 nposeaeno cpasneiine c 3KCnepnMenroM 11 apyrnMH reoperH­

'IeCKHMH paC'!eTSMH, p 8C'IeT BbiiTOJ!HeH B paMKSX KB83H'IIlCTH'IHO-<pOHOHIIOH 
MO!leJIH S!!lpa, rae ljlparMeHT8UiiS! llblpO'IHbiX COCTOSIIIHli HBJISJeTCSI pe3ynb­

T8TOM IBSHMO!leiiCTBHSI C KOne6arenbHbiMH H 6onee CJIO>I<HbiMH HeKOJJJ!eK­
THBHblMH COCTOSIHIISIMii. nony'IeHO, 'ITO B 06JiaCTH lli'IK8 COCpeaOTO'IeHO 
45% CHJ!bl COCTOSIHHS! lg 9; 2 , 'ITO JIY'IWe COrnacyeTCSI C 3KCnepHMeUTOM, 
'IeM y npyrnx asropos. rnasnyJO POJ!b B ljlparMeHTilUHH rny60KHX llbpO'IHbiX 
COCTOSIHHli Hrpaer B38HM0110HCTBKe C KBaapynOJ!bHblMH H OKTYllOJ!bHbiMK 
KOJ!e6aHK SIMI! • 

Pa6ora Bb!UOJ!Hena B na6oparopnw reopeTH'IeCKOll ¢l113HKK OH.HH. 

Coo6wenne 06bennnennoro HHCTI!Tyra SJilepnbiX nccnenoeannli • .ily5na 1978 

Vdavin A.I., Stoyanov Ch., Chan Zuy Khuong E-1- 12012 
Fragmentation of the Deep-Lying Hole States 
in the Tin Isotopes 

The fragmentation of the deep-lying hole neutron states 
1g 912 , 2p 112 and 2p 312 in the odd tin isotopes is calculated 
in a quasiparticle-phonon formalism. It is shown that 45o/o of 
the total state strength is exhausted around maximum of the 
strength function of the state lg 912 . The main role in the fragmen­
tation of hole states is attributed to the interaction with the 
quadrupole and octupole vibrations which determines the gross 
structure of the strength function. The interaction with other 
phonons spreads the strength of the one-quasiparticle state 
without changing essentially the behaviour of the strength function. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JIN~--
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The aim of the present paper is to study the fragmen­
tation of the deep-lying neutron hole states in the odd 
tin isotopes within the semimicroscopic quasiparticle­
phonon nuclear model /1.21 . 

The detection of the resonance-like structures in the 
pick-up cross sections in different nuclei explains in­
terest in this problem.The first observation of this type 
have been made while studying the (p,d) -reaction at 
E P = 52.55 MeV on the Mo isotopes 137. The most ex­
tensive and detailed experimental data are on the (d,t) -
reaction at several dozen of MeV on the Sn isotopes /4,5/. 

Here at an excitation energy of 5-7 MeV a peak with width 
of about 2 MeV has been observed in different isotopes. 
A DWBA analysis of the angular distributions and the 
forward-peaked character of the angular distributions 
allow one to assert that the peak is due to the excitation 
of the deep-lying neutron hole states lg 9 ; 2 and 2p. By. 
the estimates of different authors from 15% to 25% of 
the total strength of the state lg912 is in the region of 
peak. The fact that a considerable part of the total 
strength of the deep-lying hole state is in the energy 
region with width lesser than the excitation energy is 
the most unexpected result of these experiments. 

From the theoretical point of view it is clear that 
the fragmentation of single-particle states is due to the 
interaction of the single-particle motion with other types 
of nuclear motion and, first of all, with the collective 
vibrations. This is obvious already from the low-lying 
excitations. With increasing excitation energy the frag­
mentation becomes stronger and the state structure more 
complex. But the quantitative estimates can be obtained 
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only within a certain nuclear model. The fragmentation 
of the neutron states 1g 9: 2 and 2p 

12 
, 2p312 in, the 

111-123sn isotopes has been calculaterlmpaper 1 6 1.Ho­
wever, the calculated spreading of the state 1g912 turned 
out to be weaker than in the experiment. About 75% of 
the total state strength is around the distribution ma­
ximum as compared to 25% of the experimentally de­
tected. 

The model Hamiltonian of the quasiparticle-phonon 
nuclear model includes besides the average field poten­
tial and pairing interactions the factorized multipole 
and spin-multipole forces which generate in the doubly 
even nuclei the phonon states with different angular 
moments and parities .. The major part of the model 
parameters is determined by the experimental data on 
the low -lying nuclear states. The interaction force of 
the one-quasiparticle and phonon motion in an odd nuc­
leus is not a new parameter and is determined by the 
structure of the single -particle spectrum and strength 
parameters given above (for details, see refs.! 1.21 ). 
In recent years the quasiparticle-phonon model is suc­
cessfully used for the study of nuclear states at inter­
mediate and high excitation energies 18 - 141• In parti­
cular, the s- and p -wave neutron strength functions 
in spherical 112/ and deformed1131 nuclei have been calcu­
lated within this model. The basic initial assumptions 
of this paper coincide with those of refs! 12 • 13 ~ The only 
modification of our paper is inclusion of the isovector 
part of the long-range effective forces to the Hamilto­
nian. This causes the change of the matrix element of 
the quasiparticle-phonon HjlPh interaction. If before 
(see, formula (3) of ref! 12 , or formulae (5) and (6) of 
ref.' 141 ) 

<aJM IIH qph ll£aTm Q :I-Ii 1 JM> = r (JjAi) = 

A ( +) 
2 A+ 1 ~ fJ · VJ · 

= ( ) - J___!_ 2' +1 ...j Y(Ai) 

Y(Ai)=Y (Ai)+Y (Ai), 
n P 

4 

then after the inclusion of the isovector long-range forces 

A (+) 

r (J j Ai)= < ..?k! )lz rJj v Jj • 
2J +1 ...j "!jn (Ai) 

K(A)_j~) Ai() ~ Q..___... Xn w 
2A+1 _ 2 (1) 

'IJ ( Al) "y ( Ai )+ yp (Ai) t_ \f4K(A) A; 
n n ~ K _1 __ X (w) 

1- 2A+ 1 p 

where 

A (±) 2 

Y (Ai)=.1. Q._x~i(w)l =-t_Q._I.n (fj1j2uj1j2 )fj1j~ 
n 2 aw W=WAi 2 Jw jlj2 f~. -w 2 W=WAi 

J ¥2 

In the above formulae the following notation is used: 
f~ is the reduced single-particle matrix element of the 
multipole or spin-multipole operator 

(±) (+) -
uJj = u.Jvj ± u j v .J v .Jj = uJ u j + v Jv j 

the upper sign corresponds to the multipole phonon Q \Li , 
and the lower one to the spin-multipole phonon; u,v 
are the Bogolubov transformation coefficients. K(~) , 

K(~) are the isoscalar and isovector constants of the 
long-range forces of multipolarity A . w Ai ,f j 1j 2 are the 
energies of the one-phonon and two-quasiparticle states. 
The indices n(p) show that the given quantity corresponds 
to neutrons (protons). For· instance, the summation runs 
over the neutron (proton) single-particle spectrum. 

As in papers /12,13/ the most complicated components 
of the wave function of an odd nucleus are the "quasipar­
ticle plus phonon" components: 

'l'v(JM)=I CJva-+.JM+A7j D~i (Jv)[ a~mQtiLi ]JM l'l'o 

The equations for the energy 11 Jv of the state 1J1 v (JM) 
the expressions for the coefficients c J" and ojAi 
well known /1,2 • 12-13/. The values of 11 , C and D 

(2) 

and 
are 
can 
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easily be found by the numerical methods at modern 
computers even if the dimensions of the single-particle 
basis are large. However, it is clear that the wave 
function (2) cannot pretend to a detailed description of 
the strength distribution of the one-quasiparticle state 
over the nuclear spectrum due to its simplicity and 
only the quantity l C} is correctly described 

vEAE v 

in a certain energy interval. Howe"er, the average quan­
tity C2 on the interval is rather sensitive to the size 
of this interval, especially where the state density of 
the "quasiparticle plus phonon" is not large. The strength 
function of refs/21,221 is more stable to the size of the 
interval and to the model parameters, as though smearing 
the value of CJv for one state over a certain energy 
region with width L\. By definition 

S (rJ) = l C 2 _L ____ A_ ____ _ 
J v Jv 2 rr ( TJ - TJ )2 + L\2/ 4 

Jv 
Only for the sake of simplicity the weighting function is 
taken in the Lorentzian form. Besides a large stability 
to the model parameters and to the size of the averaging 
interval, the strength function has one more advantage, 
i.e., it can be calculated directly without solving these­
cular e~uation and finding the structure of each state 
% (JMY

2 1
. This is valid for more complex than (2) wave 

f1.!nctions of odd nuclei and also for the wave functions 
of doubly even nuclei121. what makes the method of 
strength functions a powerful tool in calculatiing, for 
instance, the widths of the giant resonances and radiative 
strength functions 19 ' 11~ However, in theory there appears 
a new parameter L\ • the choice of which is caused, as 
a rule, by technical reasons. In spherical nuclei for 
A we have used the values from the interval 0.4-2.0 MeV. 
A. possible physical interpretation of L\ will be given 
in what follows. It should be mentioned that in these 
calculations the use of the method of strength functions 
is not necessary. It mainly provides a clear representa­
tion of the results. 

Now let us discuss the parameters of the model 
Hamiltonian. The single-particle energies and wave func-

6 

tions are calculated with the Saxon-Woods potential, 
the parameters of which being chosen on the basis of the 
results of papers! 151 and given in the Table. In calcula­
tions we have used the code REDMEL which realizes 
the numerical method of solving the Schrodinger equa-
tion suggested in paper 1161• The code REDMEL allows 
one to calculate correctly the position and wave func­
tions of the quasibound states with a relatively small 
width. The Table gives also the pairing interaction con­
stants G N and G z which have been determined by the 
experimental values of pairing energies 1171. The con­
stants of the dipole forces are chosen according to the 
position of the giant dipole resonance in the even Sn 
isotopes 1181 and from the condition that w 11 = 0, what 
allows one to exclude with good accuracy the influence 
of the spurious state which is caused by the breaking of 
the translational in variance 1 191. The constants of the 
quadrupole and octupole interactions are chosen so as 
to fit the theoretical values of the 2! and 3 ~ level 
energies to the experimental ones. Theoretical energies 
have been calculated taking into account the admixtures 
of the two-phonon components to their structure 1201-The 
RP A values of the 2 ·~ and 31 level energies in the even 
tin isotopes at these values of the constants are by 
200-300 keV larger than the experimental ones. The 
values of KJA) with A> 3 are taken less by a factor of 
1.5 than it follows from the estimates of monograph122~ 
At these values of the constants the low-lying collective 
states with A > 3 do not appear. The isovector constants 
K \A) have been calculated by using the relation 

KiA)=-K~A) x0.2(2A+3). (3) 

The relation (3) is a renormalized version of the esti­
mates given by O.Bohr and B.Mottelson 122~ The renor­
malization has been performed so that the ratio of the 
constants of the quadrupole forces K ~2 ) /K &2) could 
provide a correct position of the isovector quadrupole 
resonance. The value of this ratio from ref. /221 is too 
large. For the spin-multipole constants we have used 
the formula/10,23/ 
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K(.\) =- 417 28 . MeV . K(.\)_ 0 
1 <rA·1}! fm 2.\-2 o - · 

It should be noted that the above values of the con­
stants have already been used for the calculation of the 
radiative strength functions and the E1 and M1 -reso­
nances in spherical doubly even nuclei, a satisfactory 
agreement with experiment being obtained 191.The strength 
functions have been calculated at !1,., 0.5 MeV. 

The fragmentation of the hole states 1g9; 2 , 2P 1; 2 and: 
2p3;2 has been calculated for the 111"121Sn isotopes within 
the excitation energies from 0 to 10 MeV. For the 
111-115 Sn isotopes we have used the single particle 
scheme of levels corresponding to the mass number 
A =115, whereas for the 117•121Sn isotopes the calculations 
have been performed with scheme A =121 (see the Table). 

Before the discussion of our results let us consider 
the role of the effective force isovector components for 
the correct description of the state structure ofodd nuclei 
since in doubly even nuclei it is very essential at high 
excitation energies 124/.Figure 1 shows the results of 
calculation of the strength function S 912( Tf) (upper diag­
ram) and of the values of C~ (lower diagram) for the 
states 1g9 /2. in 119Sn. The solid line is the results obtained 
with K\.> = K)3> = 0 and the dashed line is the results 
with K 1

2>== -1.4Kf>2> and K\3) ==-1.8Kf>3> (other forces have 
not been taken into account in this calculation). The dis-· 
tribution of values of ce over different states '~~v 

Table 

The parameters of the Saxon-Woods potential and the 
pairing interactions constants 

A N,Z lo fm v. ~2 c:L -1 6-N,t 
lieV fm fm MeV 

115 N=67 1.28 44.28 0.413 1.613 0.134 

Zo::49 1.24 54.5 0.347 1.587 0.182 

N•71 1.28 43.2 0.413 1.613 0.122 
121 

Z•51 1.24 59.9 0.346 1.587 0.136 
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Fig. 1. Calculation of the fragmentation of the 1 g912 
state in 119 Sn. a) the strength junction S9; 2 (Tf) , b) con- · 

tribution of one-quasiparticle components C~1 2 v to indi­
vidual states 'I' v (9/2 + ). The solid line is the calculation 

with K(2) = K (3) = 0. The dashed line is the calculation 
1 1 

with K(:) = -1.4 K ~2) and K(~) =- 1.8 K ~3 ) • 

changes noticeably. One may say that the state 1g9; 2 is 
more spread when the isovector forces are taken into 
account in the Hamiltonian. The difference between the 
strength functions calculated in both the cases is weaker 
and the quantity f s ( Tf) d Tf changes slighUy at !!..E ... 

!iE 
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- 1 MeV. This is in agreement with the results of the 
analysis performed for the s-wave neutron strength 
functions 1251. 

Now let us discuss the results on the fragm~ntation 
of hole states. The function S 9 ,~J71) in the nuclei 
111,115, 119, 121sn is shown in Fig. 2. The left co-
lumn (Fig. 2a) of the diagram represents the results 
of calculation taking into account the quadrupole and 
octupole phonons only and the right column (Fig. 2b) 
represents the results obtained with the whole phonon 
space. Let us analyse Figure 2b. The maximum of the 
function S912 ( 71 ) is shifted down with respect to the 
position of the one-quasiparticle level lg912 by several 

SC?J Mev·t 

0.6 

0. 

2 

Sr~> 
0.6 

0.2 

2 4 
Sf'tl MeV 

a) 

tt1Sn 

8 ?NtV 

115 Sn oo 

b) 

sr'IJ Mev·t 

2 4 

S(~) Mev·t 

t"*Y 

06 

-- - ~-
2 4 6 8 ? MeV l 2 + 6 8 't11tV 

, 
0.2 02 

Sr?>Hev·' 1215 Sr~JMev·t 

a61 ~., 
02[ 02 

I _..,...__./ ~" 
2 + 6 8 ~Mev 2 • ~ • 

Fig. 2. The strength junction S 9; 2 (71) in the Sn isotopes. 
a) calculation with the quadrujxJte and octujxJle jHwnons 
only; b) the calculation with large jJhonon space; The 
arrow in Fig. a) shows the position of the one-quasipar-
ticle lg912 state. 
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hundred keV but nevertheless it is higher than it was 
established experimentally. Of course, this is due to 
the single particle scheme of levels. In the region of 
0-10 MeV 90% of the total state lg912 strength is 
exhausted, from 43% to 49% being exhausted in different 
isotopes in the interval ~ E = 1 MeV whose center coin­
cides with the maximum of S 912( 7J). The latter value 
decreases with increasing A. In 115Sn 45% of the state 
lg9; 2 strength is exhausted around the peak, whereas 
in the experiment about 25% of the strength is detected 
in the peak. There are 15 states with J 77 = 9/2+ in the 
same interval, 9 of them having c~ > 1% (what can be 
compared with 8 states 9/2+ identified experimentally 
in the region of peak 151 ). It should be noted that the 
full width at the half maximum (FWHM) of the main 
peak in all the nuclei exceeds 500 keV (i.e., the value 
of ~ ) and ranges from 600 to 750 keV. This is due 
to the influence of the phonons of higher momenta (A >3), 
mainly of multipole type (i.e., with 177 =4+,5-,6+). Indeed, 
the curves S912 (71) in Fig. 2a have the same structure 
as in Fig. 2b, but the FWHM of their peaks is of 500 keV 

(i.e., is equal to the parameter ~ ). In Fig. 2a more 
than 50% of the state strength is concentrated in the in­
terval ~ E = 1 MeV around maximum of the function 
S 9 ; 2 ( 71 ). From the two cases considered above, one can 
see that the exclusion of phonons with A > 3 results in 
a sharp decrease in the number of states around the peak 
and in the increase of concentration of the lg912 state 
strength in individual states. This is exhibited most 
clearly in 119Sn, where in the interval 6.2-7.2 MeVonly 
3 states instead of 11 remain after the exclusion of 
phonons of higher momenta. These three states, however, 
concentrate 70% of the whole state 1g912 strength where­
as 11 states only 52%; the maximal value of c~ for indi­
vidual states increases from 48% to 59%. Thus, one may 
assert that the interaction with collective quadrupole 
and octupole phonons is the most important in the strength 
distribution of hole states determining the gross struc­
ture of the strength function S J( 71 ). The role of the rest 
phonons is to additionally smear the picture formed by the 
interaction with the quadrupole and octupole vibrations. 
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Fig. 3. The strength junctions of the 2p 112 and 2P312 
states in the Sn isotopes. Calculation with large Phonon 
space. a) S 3, 2 ( 11) ; b) S l/2. (77 ). The arrows in the 
figure show the position OJ the one-quasiparticle levels 
a) 2Pa12 ; b) 2p112 · 

Figure 3 shows the strength functions S 112 ( 11) and 
S 312 (77) describing the fragmentation of 2p hole states. 

One can see that the 2p states are spread stronger 
than the lg912 state. In the excitation energy region 
studied a much lesser part of the strength of these states 
is exhausted than for lg9, 2• what is, first of all, due to 
their larger excitation energy. In the interval of0-10 MeV 

about 80% of the 2p312 state strength is exhausted 
{this value changes slighUy when passing from one 
nucleus to another). At the same time for the 2p 112 state 

the value of /
0 

S 112( 77 ) d 11 decreases rapidly with 
0 

increasing A ~from 70% in 111 sn to 50% in l21sn ). It is 
shown in ref.' 1 that about 11% of the 2p 112 and 2p312 
state strength is exhausted in the interval from 4.8 to 

12 

l 
\ 

t1 

6.1 MeV in 115Sn. Our calculation gives the value of 
about 13% what is in agreement with experiment. 

The above-mentioned results show that the fragmenta­
tion of the lg9, 2 hole state in our calculation is much 
stronger than in paper 161, though it is not yet sufficient 
for a satisfactory description of experiment. Since the 
model used in paper 161 is very close to the quasipar­
ticle-phonon model by its main assumptions and the pa­
rameters of both the models can be direcUy compared, 
it is useful to compare more thoroughly these models 
and to study the reason of deviation of the results. 

The model of paper 161 takes exacUy into account 
the interaction of quasiparticles with the quadrupole and 
octupole vibrations only. However, the strength of this 
interaction is a free parameter independent of either 
the characteristics of the single-particle spectrum or 
the characteristics of the phonons. Such quantities as 
the strength of interaction of quasi.pa.rticles with phonons, 
the phonon energy, the one-quasiparticle state energies 
(including the lg912 state) were independent fitting pa­
rameters. The latter were chosen so as todescribe satis­
factorily the low-lying states in the odd tin isotopes and 
the position of maximum of the lg912 state strength. 
The comparison of the results thus obtained with our 
values shows that the density of the one-quasiparticle 
neutron states in ref. 161 is noticeably smaller than that 
obtained with the Saxon-Woods potential with the para­
meters from the Table; the used quadrupole and octu­
pole phonon energies in ref. 161 are always lower than 
the experimental ones by 50-600 keV (in our RPA cal­
culations, these values are higher than the experimental 
ones by 200-300 keV). The last fact has two consequences. 
First, having taken into account the anharmonic correc­
ti_?ns, our model gives correct values of the 2~ and 
3 1 level. energies in the even tin isotopes, whereas the 
model of ref./6/ gives much lower values of these 
energies. Second, since the decrease of the phonon ener­
gies results in their large collectiveiless, the inter­
action of quasuparticles with phonons in ref. 161 should 
be stronger than in ours. But the things are different. 
Assuming that our superfluid factors v/iJ~ and multi-
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pole single-particle matrix elements and those of pa­
per 161 are the same, the difference in the matrix ele­
ments of the quasiparticle-phonon interaction means the 
difference in the values of B.\(mwv/h).\12 and '!:J~V2(Al) 
(see formula (1) of this paper and (2.2) of ref. 16 1 ). 

In Sn isotopes they vary in the limits: 

mw 2 -112 -2 
B 2 (-~) = 0.03 keV .rm- , '!:J (21)= 0.05 + 0.07 keV .fm 

h n 

ITICi.ln 3/2 ·3 q 1-112 . -3 
B3 (--'~-J =0.0055keV.fm, ::1 (31)=0.008..,.0.007keV.fm . h n 

Thus, our interaction is stronger by a factor of 1.5-2. 
Besides, the quantity B.\ (mw0/h)A12 decreases slowly with 
increasing A as A-.\/6 , while '!:J·n11 2 (.\1) changes irre-
gularly from an isotope to isotope as it depends on the 
specific features of the single-particle scheme, the po­
sition of the neutron chemical potential and the phonon 
energy w .\ 1 . In the light Sn isotopes out interaction is 
stronger and maximum is achieved in llS Sn. 

The interaction with noncollective three- and five­
particle states has been taken into account in paper 161 
by introducing an artificial width of the states by the 
weight Lorentz function *. This allows one to describe 
the state strength distribution by the smooth function which 
is analogous to our strength function. The width of the 
Lorentz curve r(E) is calculated by formula 

r(E) = 2rrp(E)<v2>, (4) 

where p(E) is the density of non-collective states at 
energy E, which has been calculated in combinatorial 
way; <v 2> is the mean square of the matrix element of 
the one·-quasiparticle- non-collective states interaction. 
Thus, the value of r (E) in contrast. with ~ is not 
a parameter and changes with changing excitation energy. 
Hence, the parameter ~ can be interpreted as a cha-

* The same method was used in paper 171 , only the 
weight function was chosen in a Gaussian form. 
14 

racteristic taking effectively into account the interaction 
with the "quasiparticle plus two phonons" states. Let 
us compare r (E) with the parameter ~ . At the energy 
of an order of the one-quasiparticle state lg

912 
energy, 

the va~ue of r(E), calculated by (4) with the data from 
ref. 161 is of 130-180 keV, but in ref/61 this value was 
added by an arbitrary value of 150 keV. Therefore, in 
the calculations the value of r(E):: 300 keV was used. It 
is much lesser than our value of ~ = 500 keV. We think 
the value of r'(E) to be too low for the following rea­
sons. First, the underestimated density of one-quasi­
particle states in an unfilled shell should result in a too 
low value of p (E). Second, in our calculations the inter­
action with phonons .\> 3 results in increasing A by 
150-250 keV, what in the order of magnitude coincides 
with r (E) ( 4), but we did not include the five-quasi­
particle states which has been taken into account in 
r(E). From the aforesaid one may conclude that in 
ref/61 the strength of quasiparticle-phonon interaction 
is underestimated, what causes a weak spreading of the 
hole states. 

The results of our paper show that even a simplest 
version of the quasiparticle-phonon model describes 
qualitatively the fragmentation of the deep hole states. 
An additional spreading may be expected after introducing 
the "quasiparticle plus two phonons" components into 
the wave function. These components should be taken 
into account to describe correctly the radiative strength 
functions in odd nuclei. But the problem becomes more 
complicated. There are as yet only first calculations 
along this line /26/. 

The authors are very grateful to professor V.G.So­
loviev for stimulating interest in this work and to V.V.Vo­
ronov for useful discussions. 

REFERENCES 

1. Soloviev V. G. Theory of Complex Nuclei. Oxford, 
Pergamon Press, 1976. 

15 



2. CoAOBbee B.r. 3~, 1976, 9, c.810. 
3. Sakai M., Kubo K.I. Nucl.Phys., 1972, A185, p.217; 

Ishimatsu T. et al. Nucl.Phys., 1972, A185, p.273. 
4. Van der Wert S. Y., et al. Phys. Rev.Lett., 1974, 

33, p. 712; Siemssen R.H. Selected ToPics in Nuc­
lear Structure, v.2. JINR, D-9920, Dubna, 1976, p.106. 

5. Berner-Rosin G. et al. Phys. Lett., 1977, 67B, p.16. 
6. Koeling T., Iachello F. Nucl.Phys., 1978, A295, 

P.45. 
7. Doll P. Nucl.Phys., 1977, A292, p.165. 
8. BooeuH A.H. u op. ::JqA.H, 1976, 7, c.952. 
9. Soloviev V.G., Stoyanov Ch., Vdovin A.I. Nucl.Phys., 

1977, A228, p.376; 
BopoHoe B.B., CoAoebee B.r., CmoJIHoe q_ IIucbMa 
e )J(3Trz,, 1977, 25, c.459. 
Soloviev V.G., Stoyanov Ch., Voronov V. V. JINR, 
E4-11292, Dubna, 1978; Nucl.Phys., 1978, A304,P.503. 

10. BooeuH A.H., CmoJIHoe q_, JOouHH.II. OH.HH, P4-11081, 
,4y6Ha, 1977. 

1J.MaAoe JI.A., CoAoebee B.r . .arz,, 1977, 26, c.729. 
Malov L.A., Nesterenko V.O., Soloviev V.G. J.Phys.G: 
Nucl. Phys., 1977, 3, p.L219; Phys. Lett., 1976, 
B64, P.25. 
Kblp<lee r. u op . .arz,, 1977, 25, c. 951. 
Kiselev M.A., et al. JINR, E4-11121, Dubna, 1978. 

12. Dambasuren D. et al. J.Phys. G: Nucl. Phys., 1976, 
2, p.25. 

13. Malov L.A., Soloviev V.G. Nucl.Phys., 1976, A270, 
p.87. 

14. BooeuH A.H., CoAoebee B.r. TMrz,, 1974, 19, c.275. 
15. qenypHoe B.A . .arz,, 1967, 6, c.955. 

Takeuchi K., Moldauer P.A. Phys. Lett., 1969, 
28B, p.384. 

16. EaHZ E. u op. OH.HH, P4- 9054, ,4y6Ha, 1975. 
17. MaAoe JI.A., CoAoebee B.r., Xpucmoe H . .arz,, 1967, 

6, c.1186; BooeuH A.H.,KoMoeA.JI., MaAoeJI.A. OH.HH, 
P4-5125, ,4y6Ha, 1970. 

18. Berman B.L., Fultz S.C. Rev.Mod.Phys., 1975, 47, 
p.713. 

19. liJ11108 H.H., ra6paK08 C.H., CaAaMOB ,a.H. OH.HH, 
P4-l 0109, ,4y6Ha, 1976. 

20. BooeuH A.H., CJIOJIHOB q_ Hae. AH CCCP, cep. (Jua., 
1974, 38, c.2604. 

21. Bohr A., Mottelson B. "Nucl. Structure", v.1, 
W.A.Benjamin, INC, New York, Amsterdam, 1969. 

16 

22. 

23. 
24. 

25. 

26. 

Bohr A., Mottelson B. "Nuclear Structure", v. 2, 
W.A.Benjamin, INC., New York, Amsterdam, 1974. 
Castel B., Hamamoto I. Phys. Lett., 1976, 65B, p.27. 
Fedotov S.I. et al. Contributions to the Conference 
"Selected Topics in Nuclear Structure", v.1. JINR, 
D-9682, Dubna, 1977, p.120. 
Chan Zuy Khuong, Stoyanov Ch., Vdovin A.I. Pro­
ceedings of International Symposium on the Inter­
actions of Fast Neutrons with Nuclei, Dresden, 1978. 
Soloviev V.G., Stoyanov Ch. Report on the Third 
International Symposium on Neutron Capture Gamma­
Ray SPectroscopy and Related ToPics, BNL, 1978. 
C1IIOJIH06 q_ OH.HH, P4-11694, ,4y6Ha, 1978. 

Received. by Publishing Department 
on November 3 1978. 

17 


