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®parMeHTanusa ray6okoaexalinx ABIPOUHBIX COCTOAHMH
B H3oTOnax ofoBa

B menaBumx osxcnepumenrax no (d,t) -peakumsm Ha M3oTONMaX 0JOBA
BO BCeX H3yYaBWHXCH aapax 6uim o6HapyXeHbl pPe3OHAHCHO-I100O06HBIE
CTPYKTYpbl NPH 3Heprusix po36yxneuus 5-7 MsB, cesaannbie ¢ Bo3byxaeHuem
rIy60KHX ALIPOYHBIX COCTOSHHI 1g9/2 , 2p1/2 , 2p3,2. B o6nacru mmka
HcuepnuBaerca 15-25% nonuoit cuapl cocrognusa 1gg,,- B pabore reoperu-
Hecxy paccunraHa ¢parMeHTaUMA I'TyGOKMX ABIPOYHBIX COCTOSNHA B H30TO—
Max ofloba u NpPOBeNEHO CpPaBHEHHE C SKCMEepUMEHTOM M APYTHMH TeopeTH~
YeCKxuMH pacuyeramu. Pacuder Bomosnsen B pamkax KBa3d4ac THYHO~(POHOHHOI
Monenu sadpa, rae GpparMeHTaUHS ALIPOYHBIX COCTOSHHH SBAsleTCS pe3yib=-
TaTOM ManMOAeHCTBAS C XonebaTe/lbHBIMH H $0/I€€ CIIOXKHBIMU HEKOJMIeK—
THBHbIMH cocToaHuamu, [Monyyeno, 4uro B o6lacTu nnka COCpenoTo4YeHo
45% cHim cocTOsHUA 189/2, u4To nyuwe cormacyercs c 3KCNEePHMeHTOM,
HeM y agpyrux abropos. [naenyio posms B dparmenraunn ri1y6OKHX AbPOYHBIX

COCTOsHMIl MrpaeT B3AaHMOOCHCTBHE C KBAAPYNOALHBLIMH H OKTYIIOJib HbI MH
KOme6aHu aMH,

Pa6ora seimonuena B Jla6oparopuir reopernuecxoii ¢u3uky OMAH,
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Fragmentation of the Deep-Lying Hole States
in the Tin Isotopes

The fragmentation of the deep-lying hole neutron states
1899 + 2py/p and 2py,p in the odd tin isotopes is calculated
in a quasiparticle-phonon formalism, It is shown that 45% of
the total state strength is exhausted around maximum of the
strength function of the state 1g9,p. The main role in the fragmen-
tation of hole states is attributed to the interaction with the
quadrupole and octupole vibrations which determines the gross
structure of the strength function, The interaction with other
phonons spreads the strength of the one-quasiparticle state
without changing essentially the behaviour of the strength function.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR,

Communicatian of the Joint Institute for Nuclear Reseorch. Duybna 1978
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The aim of the present paper is to study the.fragmen—
tation of the deep-lying neutron hole §tates in thg odd
tin isotopes within the semimicroscopic guasiparticle-
phonon nuclear model /1. ' '

The detection of the resonance-like str}xcture§ in ?he
pick-up cross sections in different nuclgl explalps in-
terest in this problem.The first observation of thl'S type
have been made while studying the , 3(9,d) -reaction at
E,- 52.55 MeV on the Mo isotopes’®/. The most ex-
tel;lsive and detailed experimental data are on the (d/,t4) 5/—
reaction at several dozen of MeV on the Sn 1sotopes For
Here at an excitation energy of 5-7 MeV a peak W.lth width
of about 2 MeV has been observed in differgnt isotopes.
A DWBA analysis of the angular distributhns .and‘ the
forward-peaked character of the angular dlstrlb_uuQns
allow one to assert that the peak is due to the excitation
of the deep-lying neutron hole states 1gg,o and 2p. By
the estimates of different authors from'15% to 2.5% of
the total strength of the state 1gg/, is in the region of
peak. The fact that a considerable ].)art. of the total
strength of the deep-lying hole state is in the energy
region with width lesser than the exc1fatlon energy is
the most unexpected result of these experlmepts.

From the theoretical point of view it is clear that
the fragmentation of single-particle states is due to the
interaction of the single-particle motion with other types
of nuclear motion and, first of all, with the colleche
vibrations. This is obvious already from the low-lying
excitations. With increasing excitation energy the frag-
mentation becomes stronger and the state structure more
complex. But the quantitative estimates can be obtained
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only within a certain nuclear model. The fragmentation
of the negtron states 1g4., and 2p 72 0 2Pg/s in the
111-123 gy jsotopes has been calculatedtn paper ‘6/Ho-
wever, the calculated spreading of the state 1gg/oturned
out to be weaker than in the experiment. About 759% of
the total state strength is around the distribution ma-
ximum as compared to 25% of the experimentally de-
tected.

The model Hamiltonian of the quasiparticle-phonon
nuclear model includes besides the average field poten-
tial and pairing interactions the factorized multipole
and spin-multipole forces which generate in the doubly
even nuclei the phonon states with different angular
moments and parities.. The major part of the model
parameters is determined by the experimental data on
the low-lying nuclear states. The interaction force of
the one-quasiparticle and phonon motion in an odd nuc-
leus is not a new parameter and is determined by the
structure of the single -particle spectrum and strength
parameters given above (for details, see refs./1.2/ ),
In recent years the quasiparticle-phonon model is suc-
cessfully used for the study of nuclear states at inter-
mediate and high excitation energies/8-14/. In parti-
cular, the s—- and p-wave neutron strength functions
in spherical’/1?/ and deformed’ 13/ nuclei have been calcu-
lated within this model. The basic initial assumptions
of this paper coincide with those of refs/!2:13/ The only
modification of our paper is inclusion of the isovector
part of the long-range effective forces to the Hamilto-
nian. This causes the change of the matrix element of
the quasiparticle-phonon H ph interaction. If before
(see, formula (3) of ret/ 12" or formulae (5) and (6) of
ref.” %)
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formulae the following notation is used:

?;‘ tmis attl)::avf'educed single-particle matrix element of the
m{ntipole or spin-multipole operator

“gij) R M "(J;) R R TR A +
the upper sign corresponds to the mu.ltipole phonon Q ui
and the lower one to the spin-multipole 'pl.lonon; u(v) -
are the Bogolubov transformation coefficients. «%4
(M are the isoscalar and isovector constants of the
long-range forces of multipolarity A . w); »¢j i, al;:éhe
energies of the one-phonon and two-quas1_part1cle s :
The indices n(p) show that the given quantity corresponds
to neutrons (protons). Forinstance, the summation runs
over the neutron (proton) single-partlclg spectrum. "

As in papers /12.13/ the most complicated c’?mpopen
of the wave function of an odd nucleus are the "quasipar-

ticle plus phonon” components:
Ai + 2
v, (M=t CJva§M+Aziij‘ @v)laf Q3 1oy 1Y (2)

The equations for the energy nj, of the state ‘PV]()JM) and
the expressions for the coefficients C;, and D*' are
well known’1.2.12~13/_ The values of n , C and D can
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easily be found by the numerical methods at modern
computers even if the dimensions of the single-particle
basis are large. However, it is clear that the wave
function (2) cannot pretend to a detailed description of
the strength distribution of the one-quasiparticle state
over the nuclear spectrum due to its simplicity and
only the quantity EGZA C%V is correctly described
vE€AE

in a certain energy interval. However, the average quan-
tity C2 on the interval is rather sensitive to the size
of this interval, especially where the state density of
the “quasiparticle plus phonon” is not large. The strength
function of refs.”21.22/ js more stable to the size of the
interval and to the model parameters, as though smearing
the value of Cj;, for one state over a certain energy
region with width A. By definition

s (=3 c2 L A .
J(I) y Jv o, (T]_T]JV)2+A2/4
Only for the sake of simplicity the weighting function is
taken in the Lorentzian form. Besides a large stability
tc the model parameters and to the size of the averaging
interval, the strength function has one more advantage,
i.e., it can be calculated directly without solving the se-
cular ecluation and finding the structure of each state
% (IMY21. This is valid for more complex than (2) wave
functions of odd nuclei and also for the wave functions
of doubly even nuclei/z/. what makes the method of
strength functions a powerful tool in calculatiing, for
instance, the widths of the giant resonances and radiative
strength functions/g’n{ However, in theory there appears
a new parameter A, the choice of which is caused, as
a rule, by technical reasons. In spherical nuclei for
A we have used the values from the interval 0.4-2.0 MeV.
A possible physical interpretation of A will be given
in what follows. It should be mentioned that in these
calculations the use of the method of strength functions

is not necessary. It mainly provides a clear representa-
tion of the results.

Now let us discuss the parameters of the model
Hamiltonian. The single-particle energies and wave func-
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tions are calculated with the Saxon-Woods potential,
the parameters of which being chosen on the basis of the
results of papers’/15/ and given in the Table. In calcula-
tions we have used the code REDMEL vgpich realizes
the numerical method of solving the Schrodinger equa-

tion suggested in paper’'®/. The code REDMEL allows
one to calculate correctly the position and.wave func-
tions of the quasibound states with a relatlvel'y small
width. The Table gives also the pairing inter'flctlon con-
stants Gy and G; which have been determined by the
experimental values of pairing energies/17/, .The con-
stants of the dipole forces are chosen according to the
position of the giant dipole resonance in the even S5n
isotopes 18/ and from the condition that o ;-0, what
allows one to exclude with good accuracy the mﬂgence
of the spurious state which is caused by the breaking of
the translational invariance’/1%/. The constants of the
quadrupole and octupole interactions arf chosen so as
to fit the theoretical values of the 2; and 3, leyel
energies to the experimental ones. Theoretical eqergles
have been calculated taking into account the adn/mé}ures
of the two-phonon components to their structu?e 20/ The
RPA values of the 2’; and 37 level energies in the even
tin isotopes at these values of the constants are by
200-300 keV larger than the experimental ones. The
values of «{*) with A>3 are taken less bya facto/rzg/f
1.5 than it follows from the estimates of monograph e
At these values of the constants the low-lying collective
states with A >3 do not appear. The isovector constants
K({\) have been calculated by using the relation

<M <@ 0.2(2h+ 8). @)

The relation (3) is a renormalized versi/on/of the esti-
mates given by O.Bohr and B.Mottelson 22.Thg renor-
malization has been performed so that the ratio of the
constants of the quadrupole forces «{¥/x{® could
provide a correct position of the isovector quadr.upole
resonance. The value of this ratio from ref.’/22/is too
large. For the spin-multipole constants we have used
the formula/ 10,28/



) _ 28 . _MeV . A

< —_4”<r)t-1>§ tm2hog K0)=0.

It should be noted that the above values of the con-
stants have already been used for the calculation of the
radiative strength functions and the E1 and M1 -reso-
nances in spherical doubly even nuclei, a satisfactory
agreement with experiment being obtained /?/.The strength
functions have been calculated at A- 0.5 MeV.

The fragmentation of the hole states 1gg,,,2P;,, and;
2p3/2 has been calculated for the!!l"1218n isotopes within
the excitation energies from 0 to 10 MeV. For the
111-115 gn isotopes we have used the single particle
scheme of levels corresponding to the mass number
A =115, whereas for the!!7-12!g; isotopes the calculations
have been performed with scheme A-121 (see the Table).

Before the discussion of our results let us consider
the role of the effective force isovector components for
the correct description of the state structure ofodd nuclei
since in doubly even nuclei it is very essential at high
excitation energies/24/.Figure 1 shows the results of
calculation of the strength function Sy,,(n) (upper diag-
ram) and of the values of CZ  (lower diagram) for the
states 1gg,, in!!%n.The solid line is the results obtained
with x(2)=x§%> =0 and the dashed line is the results
with «®= -1.4«{® and (3 --1.8«{® (other forces have
not been taken into account in this calculation). The dis-'
tribution of values of C? over different states y,

Table

The parameters of the Saxon-Woods potential and the
pairing interactions constants

A N,Z o fm ;,‘Q‘V gnz ;;-1 GH:‘;‘
115 N=67 1.28 44.28 0.413 1.613 0.134
Z=49 1.24 54.5 0.347 1.587 0.182
Ne=T1 1.28 43.2 0.413 1.613 0.122
2 Z=51 1.24 59.9 0.346 1.587 0.136
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Fig. 1. Calculation of the fragmentation of the 1gg,,

state in 119 Sn. a) the strength function Sg/2(n) , b) con- -

tribution of one-quasiparticle components 03,2,, to indi-

vidual states Y ,(9/2%). The solid line is the calculation

ii . 7, MeV

with K(f” =K(13> = 0. The dashed line is the calculation
with «®--14«Pand B --18« .

changes noticeably. One may say that the state 189/ is

more spread when the isovector forces are taken into

account in the Hamiltonian. The difference between the

strength functions calculated in both the cases is weaker

and the quantity Af S(n)dqg changes slightly at AE~
E



~1 MeV. This is in agreement with the results of the
analysis performed for the s-wave neutron strength
functions’ 25/.

Now let us discuss the results on the fragmentation
of hole states. The function S 9/4n) in the nuclei
111,115, 119, 121g, is shown in Fig. 2. The left co-
lumn (Fig. 2a) of the diagram represents the results
of calculation taking into account the quadrupole and
octupole phonons only and the right column (Fig. 2b)
represents the results obtained with the whole phonon
space. Let us analyse Figure 2b. The maximum of the
function Sg,,(y) is shifted down with respect to the
position of the one-quasiparticle level 1g,,, by several

a) b)
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hE 8 ey

{
2 4 [ 8 n MV
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z 4 6 @ sMey 24 68 ey

Fig. 2. The strength function S g,5(n) in the Sn isotopes.
a) calculation with the quadrupoie and octupole phonons
only; b) the calculation with large phonon space; The
arrow in Fig. .a) shows the position of the one-quasipar-
ticle 1gg,,  state.
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hundred keV but nevertheless it is higher than it was
established experimentally. Of course, this is due to
the single particle scheme of levels. In the region of
0-10 MeV 90% of the total state 1gg,, strength is
exhausted, from 43% to 49% being exhausted in different
isotopes in the interval AE =1 MeV whose center coin-
cides with the maximum of Sg,,(7n). The latter value
decreases with increasing A. In 1158n 459% of the state
1g9,2 strength is exhausted around the peak, whereas
in the experiment about 25% of the strength is detected
in the peak. There are 15 states with J7 -9/2% in the
same interval, 9 of them having C2 > 1% (what can be
compared with 8 states 9/2' identified experimentally
in the region of peak’5/). It should be noted that the
full width at the half maximum (FWHM) of the main
peak in all the nuclei exceeds 500 keV (i.e., the value
of A ) and ranges from 600 to 750 keV. This is due
to the influence of the phonons of higher momenta (A >3),
mainly of multipole type (i.e., with 1".4%576"). Indeed,
the curves S4,,(n) in Fig. 2a have the same structure
as in Fig. 2b, but the FWHM of their peaks is of 500 keV

(i.e., is equal to the parameter A ). In Fig. 2a more
than 50% of the state strength is concentrated in the in-
terval AE =1 MeV around maximum of the function
S8g9/2 (). From the two cases considered above, one can
see that the exclusion of phonons with A >3 results in
a sharp decrease in the number of states around the peak
and in the increase of concentration of the 1g,,, state
strength in individual states. This is exhibited most
clearly in 1198n, where in the interval 6.2-7.2 MeV only
3 states instead of 11 remain after the exclusion of
phonons of higher momenta. These three states, however,
concentrate 70% of the whole state 1g,,, strengthwhere-
as 11 states only 52%; the maximal value of C2 for indi-
vidual states increases from 48% to 59%. Thus, one may
assert that the interaction with collective quadrupole
and octupole phonons is the most important in the strength
distribution of hole state s determining the gross struc-
ture of the strength function S;(5). The role of the rest
phonons is to additionally smear the picture formed by the
interaction with the quadrupole and octupole vibrations.
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Fig. 3. The strength functions of the 2p,s,o and 2pg,
states in the Sn isotopes. Calculation with large phonon
space. a)Sg/o () ; b) 8y/5(y). The arrows in the
figure show the position o} i"he one-quasiparticle levels
a)2pg,, ;b)2w,, .

Figure 3 shows the strength functions S,,,(») and
S3/0(p) describing the fragmentation of 2p hole states.
One can see that the 2p states are spread stronger
than the 1g,,, state. In the excitation energy region
studied a much lesser part of the strength of these states
is exhausted than for 1gy/o. what is, first of all, due to
their larger excitation energy. In the interval 0of0-10 MeV

about 80% of the 2p;/, state strength is exhausted
(this value changes slightly when passing from one
nucleus to another). At the same time for the 2p,,, state

0
the value of 0]1 Sy/e{n)dny

increasing A grom 70% in '!1Sn to 50% in !2igp). It is
shown in ref.”>/ that about 11% of the 2p 172 and 2pg,,
state strength is exhausted in the interval from 4.8 to
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decreases rapidly with

6.1 MeV in 1158y, Our calculation gives the value of
about 13%, what is in agreement with experiment.

The above-mentioned results show that the fragmenta-
tion of the 1gg,, hole state in our calculation is much
stronger than in paper /6/, though it is not yet sufficient
for a satisfactory description of experiment. Since the
model used in paper ’8/ is very close to the quasipar-
ticle-phonon model by its main assumptions and the pa-
rameters of both the models can be directly compared,
it is useful to compare more thoroughly these models
and to study the reason of deviation of the results.

The model of paper /6/ takes exactly into account
the interaction of quasiparticles with the quadrupole and
octupole vibrations only. However, the strength of this
interaction is a free parameter independent of either
the characteristics of the single-particle spectrum or
the characteristics of the phonons. Such quantities as
the strength of interaction of quasiparticles with phonons,
the phonon energy, the one-quasiparticle state energies
(including the 1gq ;o state) were independent fitting pa-
rameters. The latter were chosen so as todescribe satis-
factorily the low-lying states in the odd tin isotopes and
the position of maximum of the 1gy,, state strength.
The comparison of the results thus obtained with our
values shows that the density of the one-quasiparticle
neutron states in ref. /6’ is noticeably smaller than that

obtained with the Saxon-Woods potential with the para-
meters from the Table; the used quadrupole and octu-
pole phonon energies in ref. /6/  are always lower than
the experimental ones by 50-600 keV (in our RPA cal-
culations, these values are higher than the experimental
ones by 200-300 keV). The last fact has two consequences.
First, having taken into account the anharmonic correc-
tions, our model gives correct values of the 2% and
37 level. energies in the even tin isotopes, whereas the
model of ref./6/ gives much lower values of these
energies. Second, since the decrease of the phonon ener-
gies results in their large collectiveness, the inter-
action of quasuparticles with phonons in ref.”8/ should
be stronger than in ours. But the things are different.
Assuming that our superfluid factors v{=) and multi-

jiig
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pole single-particle matrix elements and those of pa-
per’8/ are the same, the difference in the matrix ele-
ments of the quasiparticle-phonon interaction means the
difference in the values of By(maw,/h)»2  and Y7V2(A1)
(see formula (1) of this paper and (2.2) of ref.”6/ ).
In Sn isotopes they vary in the limits:

2

- -1/2 -
B, ("_‘%’_Q )=0.03keV -fm™2 , Y~ “(21)= 0.05 + 0.07 keV - fm

n

wa 372
By (710
Thus, our interaction is stronger by a factor of 1.5-2.
Besides, the quantity B, (mmo/h)’\ 2 decreases slowly with
increasing A as A-Ms , while ¥:1/2(x1) changes irre-
gularly from an isotope to isotope as it depends on the
Specific features of the single-particle scheme, the po-
sition of the neutron chemical potential and the phonon
energy »,,; - In the light Sn isotopes out interaction is
stronger and maximum is achieved in 113 8p.

The interaction with noncollective three- and five-
particle states has been taken into account in paper 76/
by introducing an artificial width of the states by the
weight Lorentz function * This allows one to describe
the state strength distribution by the smooth function which
is analogous to our strength function. The width of the
Lorentz curve I'E) is calculated by formula

I'E) = 2rp(E)<v?e> , 4)

where p(E) is the density of non-collective states at
energy E, which has been calculated in combinatorial
way; <v?>' is the mean square of the matrix element of
the one-quasiparticle- non-collective states interaction.
Thus, the value of I (E) in contrast. with A is not
a parameter and changes with changing excitation energy.
Hence, the parameter A can be interpreted as a cha-

* The same method was used in paper /?/, only the

weight function was chosen in a Gaussian form.
14

-1/ . -
~0.0055 keV i, Y~ ""? (31)-0.008 +0.007 keV.fm 3

racteristic taking effectively into account the interaction
with the ”quasiparticle plus two phonons” states. Let
us compare ['(E) with the parameter A . At the energy
of an order of the one-quasiparticle state 1gg,o energy,
the value of I'(E), calculated by (4) with the data from
ref. /57 is of 130-180 keV, but in ref.”8/ this value was
added by an arbitrary value of 150 keV. Therefore, in
the calculations the value of I'(E)=300 keV was used. It
is much lesser than our value of A -500 keV. We think
the value of I'(E) to be too low for the following rea-
sons. First, the underestimated density of one-quasi-
particle states in an unfilled shell should result in a too
low value of p(E). Second, in our calculations the inter-
action with phonons A>3 results in increasing A by
150-250 keV, what in the order of magnitude coincides
with T'(E) (4), but we did not include the five-quasi-
particle states which has been taken into account in
I'(E). From the aforesaid one may conclude that in
ref.’6/  the strength of quasiparticle-phonon interaction
is underestimated, what causes a weak spreading of the
hole states.

The results of our paper show that even a simplest
version of the quasiparticle-phonon model describes
qualitatively the fragmentation of the deep hole states.
An additional spreading may be expected after introducing
the ”quasiparticle plus two phonons” components into
the wave function. These components should be taken
into account to describe correctly the radiative strength
functions in odd nuclei. But the problem becomes more
complicated. There are as yet only first calculations
along this line 726/,

The authors are very grateful to professor V.G.So-
loviev for stimulating interest in this work andto V.V.Vo-
ronov for useful discussions.
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