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nonKonaeB A.n., B>KeUHOHKO E., 3y6apeB A.ll. E.t. - ll9Hl 
BapHaUHOHHbiH rrpHHUHn Ws•1Hrepa B KBBHTOB<rMexaHHqecKoil 

aanaqe rpex ren 

B pa6ore Hcc.<enyercs. npHMeHef!ne BapHaUHOHHoro rrpHHUHna illBHH

repa (BOW) K 3aaa•IaM aTOMHoli ( e- II -pacceHf!Ha), M8CJOaTOMHOil 

( p (dl') -paCCeRf!He) I! H.:IepHOi\ <jllf31!Kil (pacCeHHHe OI!OHOB f!B .JeiiTpOHaX). 

1-iayqaeTCH CXOllHMOCTb B8pH8UHOHH0-HTepaUHOHHOrO ~feTOllB illBHHrepa 

(81-iMW). 00K83BHO, 'ITO 113 CXODHMOCTII BYJMill ewe He C.oe::tyer CXO.JI!>,fOCTb 

HMeHHO K TO'IHOMY pemef!n!O. HaiineHhi npHMepbi, Korna peanH3yercs. rnK851 

08TOllOrH'!eCKBR C!!TYilU1!51. 1\\eTOll CHilbHOH CB513H KBHBHOB r~epe<jlopMynnpOB8H 

H8 OCHOBe 80ill, 'ITO l!03BOllHnO npOBeCTI! a<jl<jleKTI!BHOe CyMMI!pOBBHI!e l!O 

BCeM 38KphlThlM ~aHanaM, Oony'!eHHhle yp8BHeHH51 HCOOllb3Y!OTC51 llll51 

peweHHR 3ana'I e H 11 " d ynpyroro pacce51HHR. ,\1onH¢•rul!posaHHaH CB513b 

ls H 2p -COCTORHI!Il llll51 38ll8'111 e+H -pacceRHII51 naer pe3yllbTSTb!, 6nn3-

KHe K TO'!HbrM. PaccMarpnB8eTcR 381!8'18 "d -p8cce<~HHR c llBYX'IaCTH'!Hbi~lll 
B38HMOileiiCTBHRMH B BIHie np51MOYl'OllbHbiX 51M. >1CClle/lyeTC51 38B<!CHMOCTb 

OT llllHH 17 N -pacceRHH51 H a¢<jleKT<!BHbiX panHycos. noK838HO, 'ITO BKnan 

38Kpb!Tb1X K8H8llOB B nnHf!Y 17- d -pacce51HII51 COCT8Bll51eT 30%. 

Pa6ora BbtnOnHeHa B lla6oparopHH reoperH'IecKoii <jl!!3<IKH OH H>l. 
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The Schwinger Variational Principle is applied to problems 
of atomic ( e+ H scattering) and mesoa.tomic ( p( d11) scattering) 
physics. The convergence of the Variational Iteration l\1ethod of 
Schwinger is investigated. The method of Strong Coupling of 
channels is reformulated on the basis of the Schwinger Variational 
Principle. The obtained equations are applied in the calculations 
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1. INTRODUCTION 

Varioational calculations have two essential points: the choice 
of the trial function and the way of improving it systematically. 
Clearly, the best of all variational principles is that one which 
is least-dependent on the form of the trial function. As compared 
to the variational principles of Kobo, Hulten and Ritz, just the 
Schwinger variational principle (S. V .P. ), possesses this pro
perty! 11. 

This paper is devoted to the systematic improvement of the 
trial function in the framework of the Schwinger Variational 
Principle. The developed methods are applied to the atomic prob
lems (positron-hydrogen and p ( ct 11) -meson-deuterium scat
tering) and to the nuclear ones (pion-deuteron scattering). 

In section 1 the problem of the convergence of the Schwinger 
variational iteration principle is investigated. It has been shown 
that in some cases there occurs the pathological convergence. 
It means that the iterational procedure is convergent, but not to 
the exact solution. Such a situation has been observed in positron
hydrogen (e+H) and proton-deuteron 11 -mesoatom (p(d 11 ) scat
tering. In section 2 the method of the strong coupling of channels 
is reformulated on the bases of the (S.V.P.). For the wave func
tion the approximate one-dimensional integral equations have 
been derived. These equations have been applied to calculate 
the low energy parameters for e+H , p( d 11) and 17 d scattering. 

2. VARIATIONAL ITERATION METHOD 

The Schwinger variational-iteration method (S.V.I.M.) is based 
on the integral equation for the wave function and in contrast to 
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other variational methods puts no constraints on the asymptotics 
of the trial function. In the two- body problem the SVIM for the 
scattering phase-shift can be formulated as follows'~' 

, (N+l) , -(N) I 
1 

(N) 
lvf' /=Gp v,lflr >, 

G-("1)' ' G , . (k)' (k, 1 (k ,IN) v (r,r )= r<r.r )-Jc r Jy r ) ·tgo f' ), 

k-
1 i !' (krJ nf' (kr' ) r •. 

G
1 

(r,r ') = (l) 

k-
1
n p (krJ 1 f" \ kr' l r _ r ', 

,(!'ii k- 1( . IV ,\'<I tJ.!; (I I :o;:- < J Jl . {./ {l 

· I r · r 
·):! L, 1;"~J (V-VG V)l,·,<"l f' I f . 

where ''i~N 1 
is the trial wave function in N -iteration, v is the 

potential operator , ir , n Ji are the Riccati-Bessel functions, 
k - the wave vector of a scattering particle, o~NJ the scat
tering phase shift in iteration ~. 

In paper/:J/ the iteration-separable method (I.S.M.) has been 
proposed. In this method the exact potential operator V is re
placed by the first-rank separable operator 

v (0) v 1-~ (0) ><A. (0) I v '< (1. (0)1 v I·'· (OJ .. , 
s 'I'{' 'I' I' . p p 'I' v (2) 

where the initial trial function ~~ ~ 0 J 

ximate solution of the equation 
is taken to be an appro-

I.P p > ~ I ip > + G p v! ~/ f > . (3) 

Equation (3) with the potential (2) is solved explicitly thus pro
ducing the first approximation of the wave function ¢/ 11 , which 
is then used as a separable one in (2), etc. Inserting into (3) 
the separable potential in N -approximation 

V~NJ=V \¢(rl><¢t)IV i<¢t)IVI¢~NJ > 

we obtain 

I .L ( N " 1 )., - I j' '> G v I .L ( N ) '> c ( N} k) ,...,e ·- r + r ·""r < • 
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(4) 

(5) 

and 

C(N)(k)= <'¢~"'liVIc,)tHJ>/<¢~N)IVI¢t)>. (6) 

Inserting (5) into (6) we express c<N)(k) in terms of the func-
tion of N iteration only: 

c<N~k) ~<ip IVI¢~NJ.,/<¢t)I(V-VGPV):¢iNJ >. (7) 

The ISM gives N -iteration of the scattering phase also in terms 
of the separable potential (4) as follows: 

t " "' ( N) . k- 1 • J. I v ' I ( N) '' c ( N }k) 
"' u p .. - ', f I ~' p / l . (8) 

The ISM (5) and (7) was constructed by assuming the ful
filment of the condition 

< c/J~N) IV I 'Pp(N) > j 0 

at each iteration step. 
All the potentials of fixed sign fulfil this condition. 
Now let us show that if the relation 

<iy iV\(.fp -</>~N) )>= f, 

with f« 1 holds after N -iteration, then 

A = < i e 1 v 1 < .p r - c < N >,;:, ~N > l > = o [ f 2 1 1 

Introducing the function I x > 

\C.Pr -¢/"'> l> =f !x >. 

(9) 

(10) 

(11) 

inserting (7) into (11), and making some transformations, we 
obtain 

A=f2<xl(w-w;N> llx>. 

W=V-VGpV, W~N)=W\¢~N)><¢(f)IW/<¢~N)IWI¢~NJ>. 

thus proving the relation (11). 
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Though the procedure of constructing the ISM and SVIM 
seems to be of different nature, both the methods provide identi
cal expressions for the scattering phases that can be easily 
seen from exp. (1), (8) and (7). Hence, from the convergence 
of the ISM (5.7) the convergence of the SVIM follows. Though 
the scattering phases at each step of iteration coincide for both 
the methods, the wave functions I¢~N)' and [~,t>,, except 
for l<t>;o>:,,.,~ ~,~o) >,differ by the coefficient 

l~'t> > ~ [c(D>c<o .... c<N-nl-ti¢~N> > 

It can be shown (by analogy with the proof of (11)), that 

(Ntl) (N) 2 
I tg;:; r - tg ;:; p I = o [ I c -tl I . (12) 

if 1 c<N> -11« 1. 

This relation provides an estimate for the results at each 
iteration step. 

One may verify that the series c ( N {k) 

ISM (5,7) should tend to unity: 

lim c<Nl(k)=l. 
N•oc 

for the convergent 

(13) 

The expression (13), in turn, is a necessary condition of the 
convergence of ISM (5,7). If (13) holds, the integral equation for 
the function 

I ¢I' " ~· lim I '~ ( N l> 
N • ~ 

and I ~'r > (3) coincide. Thus, the ISM produces not only the 
convergent scattering phases, as the SVIM, but also the convergent 
wave functions, so that at each iteration step the scattering 
phases are defined by the asymptotics of the wave function. 

If the condition (9) is not fulfilled and for N .. "" the limit 

lim < ¢~N) lVI ¢iN)> = 0, (14) 
N-+oo 

and the relation 

<t/Jy I v I~~ r > J o. 
for the exact wave function (3) take place, then the relation (13) 
cannot be proved, and the ISM may be divergent. 
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Therefore, the convergence of the SVIM under the condition 
(14) does not imply its convergence to the exact scattering 
phase. However, in the case (14), the condition (13) can, in prin
ciple, be fulfilled, and the SVIM will converge to the exact so

lution (provided <.jfp IV I .jJ p > = 0 ). 
Many problems in the atomic and nuclear physics are con

sidered on the basis of the method of strong coupling of channels. 
In this case we are dealing with the many-channel system of 
the Lippman-Schwinger equations 14 ·' 

IF >=1¢
0

>8 
0
+0 V ,jF ,>, a a·, a aa a 

(15) 

where ¢
0 

is the wave function in the initia 1 channel, 0 a is 
the Green function in channel a . 

Repeated indices mean throughout the summation. The ISM 
can be simply generalized to the multi-channel problems both for 
elastic and inelastic scattering. For elastic processes the exact 
potential operator, V aa '• in (15) is replaced by the separable 
potential of first rank 

V s,=Vf"IXt">,·x IV ,l<x~IV~ lx > • a a a J , J y ya " op p 
(16) 

and the problem is solved explicitly. The ISM for multi-channel 
scattering is constructed by analogy with formulae (5, 7 ,8). 

As an illustration of the ISM for multi-channel problem, we 
have considered the elastic scattering of positrons on the hyd
rogen atom and of protons on the deuteron mesoatom: 

e-'+H .. e++H 

p 1- d/1 -> p + d11 

We shall consider the scattering with zero total angular 
momentum of the system. Then, in this case the ISM is constructed 

as follows 

I <N+ll I. I <N> c<N> x >=J0 (kr)>o oo 0 +GoVo 1''X'r> (k 1). n n, 1 r , n[ nt , n n , 

(17) 
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(N) . I (N) >I < (N) I (V -
C (k1)=<JoiV10,nlf1 Xn1E1 Xn2E2 n/2•nl3 

- v G v ) I {N) > ~E2,n4E4 n4E4 n4E4'n3E3 X n3f3 . 

tgs<N> =-k-
1 

<j 1 v e lx<Ne>>c<N>(k ). 
0 1 0 10, n n 1 (18) 

where n, e are quantum numbers specifying the state of the 
hydrogen atom ( n is the principal quantum number, P - orbi
tal momentum), k 0 is the wave vector of a scattered particle 
in channel n . 

The SVIM gives the expression for the scattering phase which 
coincides with formula (18). The necessary condition for the 
convergence of ISM (17) in the multi-channel problem is the same 
as (13). The ISM cannot be constructed if there holds the condi
tion of the type (14) 

lim <x (N) I v I x (N) > = o . 
nP nf,n·l" n'f' 

N _. "" 
(19) 

In this case one may observe a pathological convergence of the 
SVIM. To check this, we calculated the scattering phases and 
scattering lengths for mentioned processes ( e + H , p ( d 11 ) ), 

taking into account different number of channels. The results 
of this calculation are listed in Table 1. 

To obtain the convergent values for scattering lengths and 
phase shifts, with an accuracy better than 1%, from 3 to 15 ite
rations have been performed. It turns out that for e+H scat
tering the iteration process converges rapidly (3 to 4 iterations 
is enough), and for p ( d J1) scattering the convergence is slow 
(sometimes more than 10 iterations are required). The results 
of the numerical calculations show that the sequence C {N)( k) 

does not always tend to unity (see 2,3,4,9,10 rows in table 1), 
though the convergence is achieved. In these cases the fulfilment 
of the condition (19) has been verified. It turns out that it is 
satisfied with the accuracy of calculation of the scattering phase 
shift or length. So in these cases the pathological convergence 
of the VIMS is observed: the calculated phase shift is not exact. 
In other cases (see 1,5,6,7,8 rows in Table 1) the sequence 
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<fN>(k) tends to unity. At the same time, the condition (19) is not 
satisfied. So, in these cases we hope that calculated effects 
(sc. lengths or phase shifts) converge to the exact one. 

As zero approximations, we took 

lx<~t >=lio >8n,1°P,o (20) 

and the set of wave functions of the hydrogen atom for discrete 
spectrum 

I <o> > = II/I " > · X n p nt (21) 

For the case when the pathological convergence of the SVIM 
takes place, the sequences c<N> and tgobN) tend to the values 
independent of the choice of the initial trial function (20) or (21). 
This indicates that both the initial approximations here are 
far from the exact wave function. 

Note that for the choice of I x<~~ > as close as possible to 
the exact function, the ISM (17) will provide our iteration func
tion I x ~~> > to converge just to I x<~~ > . 

For a small number of closed channels (1 s- 2s) the initial 
approximation is rather close to the exact wave function, there
fore the condition (13) is fulfilled, and the SVIM converges to the 
exact solution. With increasing number of closed channels the 
approximation (20) spoils so that the SVIM provides only the 
pathological convergence for c<Nl . 

Thus, for the scattering when many channels are included, 
the convergence of the SVIM itself does not mean that the exact 
solution is achieved, if the necessary condition of the conver
gence of ISM (13) is not fulfilled. Such a situation is realised 
in the e +H , p(d 11 ) scattering, if many channels are included. 

3. REFORMULATION OF THE METHOD OF STRONG 
COUPLING OF CHANNELS ON THE BASIS OF THESCHWINGER 
VARIATIONAL PRINCIPLE 

Equations of the method of strong coupling of channels (EMSC) 
can be derived in two ways. First, one can look for a solution 
of the equation 

10 

·) 
') 

di 0 +h +V)Jl/I> = E II/I> (22) 

( Ho is the kinetic energy operator of the incident particle, h 
is the target Hamiltonian, V is the potential of interaction of 
the projectile with all target particles) as an expansion over 
the target eigenfunctions I n > 

II/I>= l Fn In>; h ln>=En In>. 
n (23) 

Inserting (23) into (22) and using the orthonormalization of In> , 
we obtain the EMSC. Second, the EMSC can be found by taking 
the trial function in the Kohn-Hulten variational principle in 
form (23) and then varying with respect to Fn . Equations for 
F n can be deduced by using the SVP as well. 

Let us rewrite eq. (22) in the integral form 

( +) 1 (±) lrfJ- >=I¢> +----:::------VII/I >. (24) 
E-H 0 -h±ic 

For eq. (24) the Schwinger Variational functional has the form 

T =- -L[<-1- IV 1!/J(+)>+<l/I(-)lVI-~- >-
ba 2 TT 'f' b a b 'f' a 

(25) 
.:.. < 1/J~-) I (V-v - ~ : V) II/I ( +) >] 

E-H 0-h+ic e 

Substituting in (25) the expansion (23) with N terms for the 
trial functions II/I r-) > and 1!/J<•·>>, and varying with respect to 
F n we get 16

·
1

: 

N -+ N 
l V I F > = V I k > + l W nm I F m > , m= 1 nm m n 1 1 m= 1 

(26) 

Vnm=<niVJm>; Wnm=<niV ~ ~ VIm>. 

For illustration, we put N =1 . Then 
E-H0-h + i ( 

~liFl >=VllJkl> +Wl1/Fl>' 
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1 w 11 = < 1 I v ------:----- v 1 1 > = 

E-H0 -h + ic 

"" 1 
~ v ----------- v 
;_ 1 1v ~ v 1 
- E- E

1
,- H 0 + i c 

(27) 

Here the summation over v includes the integration over conti
nuous spectrum. Thus, though (25) is a single equation, its kernel 
takes into account the virtual transitions into continuous spect-
rum. 

Consider in more detail to what extent (26) is applicable. 
Since the Sehwinger variational principle is equivalent to the 
change of the interaction potential by the operator of finite 
rank il' we should analyse a possibility of making such on ap
proximation for v. For simplicity, let us consider the typical 
three-body problem, elastic scattering of particle 1 on the bound 
state of 2nd and 3rd particles: 

V (~• ~•) V ( ~-· m a ~• I ) V (I _, mo ~ I r, •f' ~ p -----r ·r p+---i:.--r
0

, ,). 
23 12 m ~ m 2 3 3 1 m +m ~ .3 

2 3 2 3 

(28) 

However, it is known that V (r
23

, -p) is not fully continuous opera
tor and, hence, it cannot, in general, be approximated by a finite
dimensional operator. We will show that in some cases it can be 
so approximated. For reactions without rearrangement the wave 
function ~/ Cr23 .p) with respect to the target variables (f

23
) dif

fers from zero only in the limited region ( r 
23

.:; R ), i.e., it is 
a quadratically integrable function of these variables. Therefore 
V(r23 , p) can be replaced by the operator V(i'

23
.p) 0 (R- r

23
) 

which can be approximated byafinite-rankoperator. Consequently, 
the range of applicability of (26) is the region of energies at which 
the channels with rearrangement are closed. 

To calculate the kernels (26), (27), one should sum over 
intermediate states. To this end, we apply to an approximation 
of ret/ 7 1 which consists in the finite-dimensional approxima
tion of h Indeed, if t/J (i:23 .p) versu~ target variables (r 

23
) is 

considered quadratically integrable, h on such functions is 
a fully continuous operator, therefore the spectral decomposition 

h=~ En\n><nl 
n 
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can be truncated with a finite number of terms 

~ (N) N 
h = ~ En ! n > < n 1 , 

n=1 
(29) 

and then summed up. The kernel W 11 with h< 1> is given by the 
formula 

(1) 1 
W =<11V -------VI1> = 11 , E H~ h~(l) . 

- 0 - +lc 

<1IVI1>( ~ l ---~)<1IVI1> + 
E-H0 -E 1 E- H0 

+ < 1 1 v -~ v 11 > . (30) 
E-H0 

Analogous summation can be made for W (N) as well. 
The method presented above has been applied to calculate 

the positron-hydrogen scattering length, a , and s -wave phase 
shift, o0 , for different energies E of incoming positrons. In 
the expansion (29) the (1s,-2p) channels have been taken into 
account. The results of this calculation are given in Table 2. 
For comparison in this table we display the results by Schwartz18!1 

and those obtained, in the framework of the usual method of 
strong coupling of channels (with 1 s -2s-2p states taken into 
account} 191 . 

From comparison with the Schwartz data it is seen that the 
method we proposed, though being rather simple, takes the 
polarization of H atom into account accurately enough, whereas 
the results of the method of strong coupling of channels are 
not acceptable. 

The pion-deuteron scattering is the simplest example of the 
problem of pion-nuclear scattering, and it is natural to believe 
that the correct solution of the problem of pion scattering on 
deuterons will provide further information on pion-nucleon forces. 
It is also interesting to analyse a possibility for the quantitative 
description of properties of the rrd system on the basis of two
particle rrN -potentials. Two-particle parameters (scattering 
lengths, etc.) are known experimentally with great uncertainty, 
therefore it is important to establish to what extent the rrd -sys-
tern properties depen on rrN parameters. 
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For the first time, the problem of elastic 11d scattering 
was considered by Brueckner in the model of fixed centers/ 10,~ 
In papers/ 11/ this problem was solved on the basis of the Faddeev 
equations, and nucleon-nucleon and pion-nucleon potentials were 
taken in separable forms. 

We shall analyse the pion-deuteron scattering on the basis 
of eq. (27). The operator h is approximated by (29) with N ~1 . 
All the pair interactions between particles are described by the 
central local potentials of the type of square well 

vo 
vi ""I i 

0 

r:.:. R i 

r >_ Ri 

The parameters of the nucleon-nucleon potential were fitted to 
reproduce the deuteron binding energy ( d = 2.25 MeV and 
triplet NN scattering length of at = 5_378 f, while those for the 
pion-nucleon potential - the pion-nucleon scattering lengths a 1/2 

I 

and a 31 2 and effective radii of 11 N -interaction, r v2 and rJ/2 . 
Table 3 shows the dependence of 11d -scattering lengths 

A 17 d on effective radii of 11N interaction. For comparison 
we present also the results of ref/ lt/ and calculations in the 
static approximation, i.e., in the standard method of strong 
coupling of channels with one equation. The calculation was 
performed with the experimental set of 11N scattering lengths 
a;~2 -0 257f ; a:~; =0 .154f . From Table 3 one may observe 

the very weak dependence of A 11 rt on effective 11 N -radii. 
From comparison of our results with the static approximation, 
here the static approximation is understood as an approximation 

which corresponds to the replacement of the system of eqs. (15) 
by one integral equation with only one open channel, it follows 
that in the region of physical effective 11 N-radii (3rd line) 
the contribution of closed channels exceeds 30% ~ . We think 
this fact is very imff,rtant. As to some difference of our results 
from those of ref. 1 11 , it can be explained by the dependence on 

* Values of effective radii in the 1st and 2nd line have nothing 
in common with the real rrN -situation, and the calculation with 
them has been made to demonstrate the weak sensitivity. 
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Table 4 

al/2 
ITN 

a3/2 
ITN 

A lTd Results of 

(fm} [tm] [tm] ref ./18/ [ f 1 

/13/ -0.242 0.124 0.054 0.050 

/12/ -0.257 0.154 0.095 0.088 

/14/ -0.262 0.145 0.081 0.072 

/15/ -0.244 0.126 0.057 0.052 

/16/ -0.257 0.126 0.052 0.044 

/17 I -0.240 0.130 0.064 

the potential shape (in ref. ' 11 1 
the calculations have been done 

with the use of the separable Yamaguchi-type potential). 
Table 4 gives the dependence of And on different expe

rimental sets of IT N scattering lengths. The strong dependence 
on nN -scattering lengths is observed here, however experimen
tally, A lTd is known with large error AITd ~ (0.074 ~00·~~~~ )f

119
;/ 

and, hence, it is difficult to choose a certain set of a;~ , a~~2. 
The only thing is clear that the experimental data on low-energy 

IT d -scattering can be interpreted within the potential model 
neglecting the contributions from inelastic processes of type 
lT-d. 2N. In ref. 1201 the absorptive part of thescattering 
length has been estimated to equal 0.007 r. The results in Table 4 
indicate independently that the absorptive part of "d scat
tering length is small. 

Thus, the reformulation of the method of strong coupling of 
channels on the basis of the Schwinger variational principle, 
which permits the summation over all states of discrete and 
continuous spectra with definite angular momenta in closed 
channels, provides good results even with the system of several 
(N .• l,;?)coupled equations (26). An approach of this type to the 

16 
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multiparticle problems may turn out to be effective if the closed 
channels are essential in the considered scattering process 
like in the problems of low-energy e' H and r.d elastic scat
tering we have studied. 
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