
c :JY?Jcc. 

-98 
H.Iwe. H.J.Wiehicke 

ON THE COllLOMB POTENTIAL 

BETWEEN HEAVY IONS 



H.Iwe. H.j.Wiehi<'ke* 

0~ THE corL0:\1R POTE,TL\L 

RETWEEN HEAVY H)'S 

.···~ 
., ""'''PI 

E~ - 11967 

* Permanent aclclress: Zentralinstitut fur Kernforschung 

Rossenclorf, DDR 



J.1se X., BK6HJCe X • .fl. E4- IJtJ67 
Q JCynOHOBCKOM UOTeHUnane M8lKlly TS!iKellL>IMH KOH8MK 

B paMJCax o6ht'IHoro npK6l1KlKeHHR ynapa nony'leHa npocrasr anannrK­
'Iecxasr ljK>pMyna ansr JCynoaoecJCoro noreHunana B3aKMOl!eiicreasr TRlKen .. rx 
ROHOB, ICOTOpbte paCCM8TpHB8!0TCSI K8K l!Ba OllHOpOl!HO 3apsr>KeHHb!X Ul8pHK8, 
3ro n03eonsrer caenaTb HeKOTopbre oueHKH 6e3 'IHCneHHbiX pacqeroe, 
fioJCaaaHo pa3nH'IHe B yrnoBbiX pacnpeneneHnsrx ynpyroro paccesransr, 
paCC'IHT8HHbiX c npennolKeHHbiM KynoaoncKnM noreHUHanoM H noreaunanoM, 
Dony'leRHbiM B npH6nnlKeHnn TO'Ie'lnoro aapsraa. PaccMorpeH psrna npnMc­
pos. 

p at50T8 BblllOnHeRa B Jlat5opa TOpHR Teope TH'I8CKOH cjlR3HKH QJ.1.f!l1. 

Coo6meHae 061>eaaHeHHoro HHCTHTyra smepHbtX accneaoaaHaii. lly6Ha 1978 

Iwe H., Wiebicke H.J. E4- 11967 
On the Coulomb Potential Between Heavy Ions 

Within the framework of the usual sudden approximation 
a short analytical formula is derived for the Coulomb potential 
between heavy ions which are regarded as two ryomogeneously 
charged spheres. The simplicity of the formula allows discussion 
of the potential without numerical calculations and suggests some 
approximations and estimations. The effects on the elastic scat­
tering angular distributions for this form of the Coulomb potential 
as opposed to the one resulting from the point charge approxima­
tion, are demonstrated and discussed for a series of examples. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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1. INTRODUCTION 

In any heavy-ion reaction the Coulomb interaction 
between the target nucleus and the colliding ion plays 
an essential role. Nearly all Coulomb subroutines in 
computer codes calculating nuclear reactions are based 
on the approximation where the impinging ion is assumed 
to be a point charge. This treatment does not adequately 
reflect the true state of affairs except for very light 
ions. In the region where the nuclei begin to penetrate 
each other, their finite dimensions cannot be neglected 
since the surface region is the most important one for 
heavy-ion reactions. Therefore, a more realistic treat­
ment of the Coulomb potential has been performed to 
manifest effects due to the deviations from the point charge 
depending on the combination target-projycti~e. Recent­
ly some papers dealing with this problem I-

6
· have been 

published. The formulae presented in refs/ 3-6/, how­
ever, possess a complicated structure and can hardly be 
used for practical calculations. 

The aim of our study is to provide a very simple 
analytical formula for the potential between two homo­
geneously charged spheres. This is done in Sec. 2 after 
making general considerations concerning the Coulomb 
potential in the framework of the optical model for heavy 
ions and the validity of the sudden approximation used. 
The structure of the new formula is investigated in 
detail. Its simplicity, in contrast with formulae of other 
authors, allows discussion of the potential without nume­
rical calculations and suggests simple approximations 
and estimations. 
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In Sec. 3 we compare the present Coulomb potential 
both with the normal Coulomb expression obtained from 
the point charge approximation and with those calculated 
on the basis of more realistic charge distributions as 
reported in refs. I 4• s/. We also try to appraise the 
worth of the approximation using sharp cutoff charge 
distribution. 

In Sec. 4 the effects on the elastic scattering angular 
distribution for this form of the improved Coulomb po­
tential as opposed to the one resulting from the point 
charge approximation, are demonstrated and discussed 
for a series of examples. The deviations found on the 
contrary to the papers /:l, 4/, are discussed in detail. 

Finally Sec. 5 gives the summary and conclusions. 

2. THE COULOMB POTENTIAL 

Let us assume that the charge distribution pI .<r) 
generating the electrical field lJ ( r) is placed at the 
origin of the coordinates. Then the Coulomb potential 
V ,.( x) between pi (1) and another charge distribution P 

2 
( r ) 

is defined as that work that must be done in order to 
carry p against the field lJ ( r) from infinity to a po­
sition i ~ In this process the energy connected with the 
displacement of two rigid charged clouds is 

V ( x) 
c f dr p2 <r- x> lHr> 

p2 
(1) 

Eq. (1) contains nothing regarding the amount of work 
needed to form the distributions or to shift some con­
stituents of them. In the case when one of the clouds, 
p I , has been deformed, an additional energy due to 
the change of the self-energy 

4 

V' 
c 

f drpl (f) lJ(f) 
PI 

(2) 

must be taken into account. Thus, the last equation pro­
vides dynamical potentials whereas eq. (1) gives electro­
static ones. The first procedure for calculating the po­
tential V c ( x) is consistent with the idea of the sudden 
approximation in which the charges move so fast that 
internal rearrangements of charged constituents can be 
disregarded. In any nuclear reaction both potential types 
come into effect 171 where the static or dynamical por­
tion can prevail more or less strongly. It is difficult 
to handle the last part because it depends essentially on 
the underlying model. In this case the charge densities 
should be time dependent, a behaviour which is not very 
well known. 

We use the Coulomb potential in optical model calcu­
lations. As is well known the important region of reac­
tion is the peripheral one where the two densities 
overlap very little and there is good reason to believe that 
a simple potential concept could be meaningful. This op­
tical potential determines the wavefunction throughout all 
space. It is defined to generate the same wavefunction 
beyond the region of interaction between complex nuclei 
as the true many-body problem. However there are va­
rious ways of extrapolating into the interior (e.g., sudden 
approximation or adiabatic limit) and the associated 
wavefunction will have different meanings. This must 
be kept in mind when the wavefunctions are used for 
elastic scattering or in a DWBA calculation of some 
reaction. In the nuclear potential of the usual optical 
model, no dynamical effects are taken into account. 
Therefore, it is also unnecessary to include those in 
the Coulomb potential., i.e., to go beyond the framework 
of the sudden approximation. 

In this paper the nuclear charge density of both 
colliding nuclei is assumed to be a homogeneous sharp 
cutoff distribution with spherical symmetry. In Sec. 3 
we shall see how well this assumption works. 
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2.1. Point-SPhere Coulomb (PSC)-Potential 

According to eq. (1) the Coulomb potential between 
a point charge and a homogeneously charged sphere with 
the radius R (point-sphere Coulomb potential) is 

e 

V PSC ( x) 
c 

1 
Bl2(3-x2) 

llx 

B = Z 1 Z 2 e 2 /Re, X 

< 
if X 1 

> 
(3) 

r/R 
e 

Here, the well-known formula has been rewritten by 
using the dimensionless coordinate, x , which will later 
be useful. The formula consists of two factors: the first 
one represents the Coulomb barrier B reached at x = 1, 
the second one is a polynomial describing the radial 
dependence. 

Formula (3) originally was derived for the Coulomb 
interaction of a light particle, such as a proton, with 
a nucleus where the point charge approximation is quite 
reasonable. Nevertheless, expression (3) has been often 
extended to heavy-ion reaction calculations and the sum 
of both Coulomb radii has been taken as the total Coulomb 
radius., R c = R 1 t R 2 . This implies a point charge inter­
acting with a fictitious nucleus consisting of a target 
nucleus whose radius is increased by R2 (fig. 1d). This 
procedure does not reflect reality and, therefore, it is 
not a sensible approximation. 

2.2. SPhere-SPhere Coulomb (SSC)-Potential 

A more realistic description is obtained taking the 
Coulomb potential between two homogeneously charged 
rigid spheres, with radii R 

1 
and R 

2 
( R1 :2: R 

2
) res­

pectively, which can penetrate one another (fzg. 1 b). 
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a) _fR~~~. 
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-
b) 

-

·---

Fig. 1. Schematic Pictures for determining the Coulomb 
potential between heavy ions: a) separated ions can be 
regarded as charged points, b) penetrating ions, c) the 
colliding ion is taken to be a charge point, d) usually 
used approximation for heavy ions. 

Following eq. (1) we found a very simple analytical 
formula/ I/ for this improved potential, 

V sse< ) 
c X 

1 [ 2 2] 
2 b 3-c-b x 

1 2 4 2 B I ';{[l-3d U-x) ll-
15

d <1-x)(5+x)J) 

1 
X 

X S. X
0 

(4a) 

if x < x< 1 o- -

(4b) 

X::: 1 

(4c) 
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a = Rt I R2 , b = 1 + 11 a, c = 31( 5 a 2>, 

d = <a+2+1:1a)14, x0 = (a-1)1(a+1). 

For the same problem cumbersome and muc~ ~ore 
complicated expressions have been given in refs. 1 3-6 . 

However, after some manipulations our fflrmula can be 
shown to agree with that first published by Donnelly et 
al/ 31, and also with those of refs/ 5• 61. The transparent 
structure of formula (4) allows prediction of the effects 
of the potential without numerical calculations. This was 
achieved by the special choice of the dimensionless va­
riable x = r/R,. = r/<R 1 + R 2 > and by extracting the Coulomb 
barrier B ~ 1.439~ Z 1 Z 2 /( R ,. in fm) MeV, which takes 
on the function of a scaling factor. The radial part 
describing the geometry of the problem depends only 
upon the ratio of the Coulomb radii a ~- R1 /R 2 . A tabu­
lation for different values of a is simple since rea­
listic systems possess values within the small interval 
1 ::;, a ~ 3, e.g. 7Li on 197 Au (a~- :t04) , 6Li on:16 O(a == 

= 1.39) , 4° Ca (a = 1.88) (these systems have been stu­
died in/s/) and 16oon: 2Hsi (a~= 1.2) ,·Wca<a =·· 1.36>, 
l2H Sn (a ~ l.95), 20s Pb (a == 2.:3.5). Thus, the potential is 
separated into a geometry function and into a charge 
depending factor which is specific for a given system. 

Now let us discuss the radial part in detail. In fig. 2 
this function is represented for various values of a and 
is compared to the one for the PSC-potential. Outside 
the target nucleus ( x ::: 1 ) the well known term 1./ x in 
(3) and (4c) is obtained as though two point charges 
exist (fig. la). 

In the overlapping region there is a strong difference 
between the SSC- and PSC-potentials which is maximal 
for symmetrical ion combinations <a= 1). When the pro­
jectile is very much smaller than the target, formula 
(4) approaches the expression (3). The closer the contact 
of the ions is, the larger the difference becomes, reaching 
its maximum at X = 0. Here for a= 1 the sse-potential 
lies 60% higher than the PSC-potential (100%). For 
a = 2 it is 42.5% higher and for a = 4 it is still 23.5%. 
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Fig. 2. ComParison of the sse-potential for different 
ratios a== R1 1R2. (full lines) with the usual PSC-potential 
(dashed line). r·or illustration the curve 11x (dot-dashed 
line) is continued up to values x < 1 .All potentials are 
reduced on their radial parts by extracting the Coulomb 
barrier E. Additionally a percentage scale is given. 

Expressing the differences in energies one gets, for 
example, for 16 o on 16 0 and 16 0 on 208 Pb about 
12.5 MeV and 48 MeV, respectively. The effect of this 
strong enhanced potential on the scattering is discussed 
in section 4. 

The radial part of the potential (4b) in the partial 
overlap region consists of two terms. The first one shows 
the hyperbolic behaviour, 1 I x, as does the potential in 
the external region. The second term in the quadratic 
brackets describes the deviation from 1/x which is zero 
at x == 1 and increases very slowly (with fourth order of 
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(1 - x)) for decreasing x -values. Since the coefficient 
d 2 depends weakly on the ratio, a= R 1 I R 2, all target­
projectile combinations possess nearly the same Coulomb 
potential shape (1/x) in the surface region. 

3. ABOUT THE QUALITY OF THE SSC-POTENTIAL 

3.1. Comparison of the SSC- and. PSC-Potential 

The similarity of the potential V sse ( x) with the 
function 1/x in the surface region,. 0.7::::. x · 1 (see 
also fig. 2) allows one to ~~proximate V ~sc < xl by the 
usual Coulomb potential V ,. · ·. although with a drasticly 
reduced Coulomb radius R ~ = K R,. 

vapp(x) 
c 

..!.. (3 - X 
2 IK 2 ) 

2K 
B I l 

X 

if 

::::. (5a) 
X K 

(5b) 

For estimating proper values K the formulae (4a) 
and (5a) describing the complete overlap region are 
compared. Note that the K -values do not depend on H 1 
and R 2 but only on their ratio a. If a...:: :l the quantity 
c is negligibly small, and we get 

K"" 1/b ~ a/(atUo R1 /(H 1 l H2l, R;.i.:.(RI! R 2 l:c: R1.(6) 

This means that the usual Coulomb potential V ~:sc(x) be­
comes a much better approximation if the almost uni­
versally used sum of radii H ,. c H 1 r R 2 is replaced 
by the radius of the target nucleus H ,. · H 

1 
. This fact 

is illustrated in fig. 1. The charge of the smaller nucleus, 
for the most part, is outside the ta tget sphere (fig. 1 b) 
and can be replaced by a point charge (fig. 1c). The 
use of the radius R e = R1 + R 2 (fig. 1d) cannot be validated 
by this argument. For a ·< :3 the quantity c cannot be 
neglected and eq. (4) gives small values of K, Fq:r: .this 
reason K was varied in order to fit V,?PP < x l to \~sc < x). 
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Fig. 3. Comparison of the approximated Coulomb poten­
tial (5) (dashed lines) using best-fit " oolues with the 
sse-potential (full lines) for different ratios a= Rl 1R . 
The potentials are shown without the Coulomb barrier If. 
The results are shown in fig. 3 for best-fit "- values: 
"- o 0.67, 0. 72, 0.81 which correspond to a-- 1 ,2,4, respec­
tively. The reduction factor, "-· of any other system can 
be obtained by interpolation between these three values. 
Note that the factor "- c.· 0.67 corresponds to a substan­
tial change of the radius parameter from r = 1.2 fm 

Ot• 

to roe= 0.8 fm. 
The approximation considered in this subsection il­

lustrates the difference of the potentials expressed by 
a reduction factor ", As is shown, the use of formula 
(5) to calculate the heavy ion Coulomb potential leads to 
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unphysical Coulomb radius parameters. The new formula 
(4) has no this disadvantage. It needs no further appro­
ximations and can easily be included in any computer 
code. 

3.2. Potentials Resulting from Realistic 
Nuclear Charge Distributions 

For the calculations of the SSC-potential (4) a sharp 
cutoff distribution has been used. Assuming spherical 
symmetry, the most accurate Coulomb potential should 
be obtained by using some well-known realistic charge 
distributions. For light ions, either the Gaussian or har­
monic well type comes into question and for heavier ions 
the Fermi type/4 , 5/. The potentials following from these 
charge distributions can be determined only numerically 
via eq. (1). 

De Vries and Clover/4/ have used Fermi type distri­
butions for the 160 + 208Pb system and have pointed out 
than beyond x = 0. 7 V sse differs from V !t·rmi by less 
than 0.1% and at X=O bycnotmorethan 7%. Jain et al/ 51 have 
obtained an excellent overall correspondence for 4°Ca1-40ca 
using the same charge distributions. For lighter ions 
6 Li and I6o they have assumed the Gaussian and 
harmonic well radial dependence, respectively, to cal­
culate the potentials of the ion systems such as I6o + I6o, 
I6o + 40ca, 6 Li + I6o and 6Li + 40ca which were found 
tO be in good agreement With the SSC-potential for X > 0.3. 
For x < 0.3 the authors got strong deviations and- the 
curves calculated with realistic charge distributions 
enhance very rapidly if x .... 0. For 16 0 + 4° Ca, at 
x = 0.1 the curve reaches a value > 200 MeV (fig. 4 in 
ref. /S/ ), much more than for 40ca + 40ca in the same 
picture. As is shown by the following argument this 
strong increase is not understandable. The maximum 
amount of work in the electrical field of a target nucleus 
with a fixed charge distribution must be done if the 
colliding ion is regarded as a point charge and is shifted 
to the centre, x:oO. That must be the upper limit for all 
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Fig. 4. Real and imaginary (dash -dotted) part of the 
optical potential for the reaction liB + I6o. 

charge distributions of the lighter ion. This value amounts 
to about 80 MeV for 40ca t We a. 

On the other hand the region x ~ o.:~ is not important 
in heavy ion elastic scattering potentials because the 
absorption prevents a strong penetration of the nucle/8/. 

The examples investigated in refs(t., 5/ are repre-
sentative for all other target-projectile combinations 
of light and intermediate nuclei. They show that realis­
tic charge distributions, compared to the sharp cutoff 
distribution, bring about small effects in the resulting 
potential for core-core separations x ', 0.3. These small 
effects cannot justify the use of computer-time-consuming 
realistic charge distributions. 

4. EFFECTS OF THE SSC-POTENTIAL 
ON ANGULAR DISTRIBUTIONS 

For· illustratinf the influence of the improved Cou­
lomb potential v~· c , we have tested the effect of using 
v ;:sc , versus v~sc on elastic scattering in the frame­
work of the optical model. Decisively, the amount of the 
effect depends on the combination of target-projectile 
in a twofold way: on the geometry and on the mass re­
gion of the colliding ions used. As wJs mentioned above 
and was found also by Jain et ai/ 5 , the largest effect 
can be expected for nuclei with the same or nearly the 
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same radii R1 ~ R2 <a ~ 1), i.e., for symmetrical sys­
tems. The reason for the dependence on the mass region 
lies in the competition between the Coulomb potential 
and the nuclear potential. In the following this will be 
investigated for three groups: 

i) light nuclei: the Coulomb potential contribution of 
30% is relatively small compared to the nuclear poten­
tial. Therefore 1 a choice of the Coulomb constant R c is 
not critical. 

ii) intermediate nuclei: the Coulomb and nuclear 
potential are of the same order of magnitude and can 
bring strong interference structures. The Coulomb radius 
R c becomes a critical quantity. 

iii) heavy nuclei: the Coulomb potential dominates 
whereas the nuclear potential appears only as a correc­
tion. 

The SSC-potential lies higher than the PSC-potential. 
The difference grows monotonically towards the internal 
region. The effective potential (the sum of all real parts 
of the optical potential) is thereby raised. The influence 
of the sse-potential on the effective potential depends on 
the potential type taken into account. It becomes larger 
if the nuclear potential is of a shallow type and smaller 
for a deep type. Whether this difference will come into 
effect or not depends on the absorption of the optical 
potential. A large absorption hinders the propagation of 
waves to the centre. On the other hand a small or f-de­
pending absorption/a/ allows the waves to come in and 
to feel the difference. In dependence on optical parame­
ters, a part of the absorption may be reduced for growing 
angular momenta e so that the effective absorption is 
diminished to the l = 0 limit. This behaviour can bring 
a.bout f-staggering whereby some partial waves are fa­
voured and determine the shape of the angular distribu­
tion. This f-staggering is influenced by the change of the 
PSC- to the SSC-potential and modifies the angular dis­
tribution in a special way. A new fitting procedure is 
necessary to provide another best-fit optical parameter 
set. However a search for new parameters lies outside 
the scope of this paper. 
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Fig. 5. Reflection coefficientf and lfmJUlar distributions 
of the elastic scattering of 1 B on 6 0 at EJab''27 MeV 
calculated on the basis of the sse- and PSC-potentials. 

4.1. Light Nuclei 

Reaction 11 H + 160: 

For the elastic scattering of 16 0 on 11 H at E1. b 0 ' 

/ g' d 27 MeV in ref. 1 a best-fit optical parameter set 
was found which contains a large Coulomb radius para­
meter of r 

0
,. ~. 1.45 fm compared to that one of the 

surface absorption of r ns = 1.1 fm. Fig. 4 shows the 
strong difference of the effective potentials incorporating 
the PSC- and sse-potentials which, for example, at 
r = 3.5 fm (X c- O.G) is already 3 MeV. The resulting 
reflection coefficients (insert in fig. 5) show for the 
PSC-potential a distinctly marked staggering. The SSe­
potential does not change the staggering at large , ho­
wever, the maxima and minima are completely out of 
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phase. This behaviour causes that the angular distribu­
tions resulting from the sse- and PSC-potential oscillate 
with shifted phases to each other (fig. 5). 

Reaction 16 0 + 18 0: 

The optical potential used in ref/ Jo/ for this elastic 
scattering reaction contains an e-dependent volume absorp­
tion. As can be seen in fig. 6 the angular distributions for 
this reaction corroborate the above discussion. 

1()0~ 

..g -lo 

10-1~ -sse 
--- PSC 

10-
2 

QO :l)O 6()0 goo 12()0 '6()0 18()0 

Scm. 

Fig. 6. Angular distribution for the elastic scattering 
of 16 0 on 18 0 at Elab =24 Mey. The optical potential 
parameters are taken from ref.' 10/. The dashed curve 
agrees with that one given in fig. 3 of this reference. 

4.2. Intermediate Nuclei 

Reaction 28si + 29 si: 

The optical potential for the elastic scattering of 
21lsi on 28si I 1 O/ also possesses an e- dependent volume 
absorption and belongs to the family of deep potentials. 
In the region 5 < r < R = 7.4 jm <0. 7 < x<U large de via lions 
exist (e.g., 5 MeV at x = 0.7 ) between the effective po­
tentials resulting from the sse- and PSC-potentials 
(fig. 7). For r < 5 jm the SSC-potential is strongly en­
hanced versus the PSC-potential. The reflection coeffi-

16 
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········1.4fm 
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Fig. 7. Real and imaginary part of the optical potential 
for the reaction 28Si + 29 Si . 

cients (insert in jig. 8) of the sse-potential show an 
excessive damping of the f- staggering in comparison 
with those of the PSC-potential but the positions of the 
maxima and minima are unchanged. The differences in 
the angular distributions, particularly in the backward 
angles, can be seen in jig. 8. 

A variation of the Coulomb radii in the sse-potential 
leads to the angular distributions shown in fig. 9. The 
curve belonging to roc == 1.2 jm lies visibly under that 
of r 0 ,. = 1.4 jm, and both are completely out of phase 
with each other. This behaviour can be understood in 
terms of the reflection coefficients (insert in fig. 9). For 
r = 1.4, 1.3, 1.2 fm a monotonic damping of the stag­
ge'hng is found. The staggering curve of roc = 1.2 tm 
is shifted by one unit to the right relative to the curve 
of r = 1.4 fm so that the maxima correspond to the oc 
minima of the other curve. 

4.3. Heavy Nuclei 

As stated above, the Coulomb potential of nuclei be­
longing to the mass region concerned dominates in the 
effective potential. The latter is only repulsive and 
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Fig. 8. Reflection coefficients and angular distributions 
of the elastic scattering of 28 Si on 29 Si at E1,.h = 

-~ 70 MeV calculated on the basis of the sse- and PSC­
potential. The dq.Shf?d curve agrees with that one given 
in fig. 12 of ref. I IO/. 

hinders the waves to enter the interior so that the dif­
ference of both potentials cannot be felt by them. There­
fore, no effect can be expected in the angular distribu­
tion of the elastic scattering. For this reason no pictures 
are given by us. De Vries and Clover 141 have chosen 
the reaction 160+ 208 Pb for their study of the sse-poten­
tial. In comparison to the PSC-potential they have not 
got any deviations and, thus, confirm the above considera­
tions. 
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5. SUMMARY AND CONCLUSIONS 

Within the framework of the sudden approximation 
a simple formula for the Coulomb potential of two homo­
geneous charge distributions was found. By introducing 
a dimensionless coordinate x = r/(R 1 + R 2 > and the ratio 
a= R 1 IR 2 , a separation into a charge dependent factor 
and a radial function describing the geometry of the 
problem was managed. The factor is identical with the 
Coulomb barrier B and the radial function depends on 
the only parameter a. Thus, this formula is well sui­
table to make simple estimations of the Coulomb poten­
tial. The comparison of the SSC- and PSC-potentials 
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shows a strong difference in the radial dependence. It is 
equivalent to a considerable alteration of the Coulomb 
radius expressed by a reduction f'ctor. Contrary to the 
conclusions of the authors of refs. 3• 4/ we found realis­
tic examples where the finite dimension of the nuclear 
charge distribution has a substantial influence on the 
angular distribution of the elastic scattering. These 
differences are shown to be the largest for nuclei of the 
intermediate mass region. The effect of the sse-potential 
essentially depends on the absorption and is most large 
for small absorptions appearing in a shallow potential 
or f-depending absorption model. The homogeneous charge 
distribution can be regarded as an excellent approxima­
tion to realistic nuclear charge distributions. Therefore 
there is no reason to use computer-time-consuming nu­
merical procedures for calculating the potential starting 
from special realistic charge distributions. The analyti­
cal shape of the derived formula is so simple that it 
can easily be inserted in any computer code. 
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