


E4

H.lwe. H.J.Wiebicke*

ON THE COULOMB POTENTIAL
BETWEEN HEAVY TONS

053 LT e yY

T gl

T 2 T I A A

* Permanent address: Zentralinstitut fir Kernforschung

Rossendorf, DDR

- 11967



Ube X., Bubuke X.fl. E4 - 11967
O KyNOHOBCKOM MNOTeHUHAle MeXAy THAe/LIMH HOHAaMH

B pamkax o6biuroro npubaukenns yAapa nojaydeHa npocTas adHaliTH-
qeckas ¢opMysa a7 Ky/lOHOBCKOTO NMOTEHLana B3AHMONEHCTBUS TSIKETLIX
HOHOB, KOTOpble paCCMATPHUBAIOTCH KaK ABa OJHOPOAHO 3apKeHHBIX mapuka,
3T0 no3BoONseT caeNlaTh HEKOTOPHIE OLEHKH 63 YHCIeHHBIX pacyeros,
Moxasano pasnnune B yrmoseix pacnpenenenusx ynpyroro paccesus,
PACCYHTAHHLIX C NPeaJIoXEeHHBIM KYMTOHOBCKMM MOTEHHNHAJIOM H MOTEeHUHANOM,

HOMYueHUbLIM B MPHGIHAXEHHR TOYENHOro 3apana. PaccmoTpen psna npume—
poB. )

Pa6ora Buoimonnena B Jla6opaTopur Teope Tuueckof buauxy OUSIU.

Coobmenue O6bennHesHOr0 HHCTHTYTA SNEpHBLIX HCCACAOBAHAIL. Oy6ua 1978

Iwe H., Wiebicke H.J. E4 - 11967
On the Coulomb Potential Between Heavy Ions

Within the framework of the usual sudden approximation

a short analytical formula is derived for the Couwlomb potential
between heavy ions which are regarded as two homogeneously
charged spheres. The simplicity of the formula allows discussion
of the potential without numerical calculations and suggests some
approximations and estimations. The effects on the elastic scat-
tering angular distributions for this form of the Coulomb potential
as opposed to the one resulting from the point charge approxima-
tion, are demonstrated and discussed for a series of examples.

The investig:ation has been performed at the Laboratory
of Theoretical Physics, JINR,
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1. INTRODUCTION

In any heavy-ion reaction the Coulomb interaction
between the target nucleus and the colliding ion plays
an essential role. Nearly all Coulomb subroutines in
computer codes calculating nuclear reactions are based
on the approximation where the impinging ion is assumed
to be a point charge. This treatment does not adequately
reflect the true state of affairs except for very light
ions. In the region where the nuclei begin to penetrate
each other, their finite dimensions cannot be neglected
since the surface region is the most important one for
heavy-ion reactions. Therefore, a more realistic treat-
ment of the Coulomb potential has been performed to
manifest effects due to the deviations from the point charge
depending on the combination target-proj lc_tﬁi}e. Recent-
ly some papers dealing with this problem /‘/ ?ave been
published. The formulae presented in refs. 3-6 how-
ever,possess a complicated structure and can hardly be
used for practical calculations.

The aim of our study is to provide a very simple
analytical formula for the potential between two homo-
geneously charged spheres. This is done in Sec. 2 after
making general considerations concerning the Coulomb
potential in the framework of the optical model for heavy
ions and the validity of the sudden approximation used.
The structure of the new formula is investigated in
detail. Its simplicity, in contrast with formulae of other

- authors, allows discussion of the potential without nume-

rical calculations and suggests simple approximations
and estimations.



In Sec. 3 we compare the present Coulomb potential
both with the normal Coulomb expression obtained from
the point charge approximation and with those calculated
on the basis of more realistic charge distributions as
reported in refs./4 5 We also try to appraise the
worth of the approximation using sharp cutoff charge
distribution.

In Sec. 4 the effects on the elastic scattering angular
distribution for this form of the improved Coulomb po-
tential as opposed to the one resulting from the point
charge approximation, are demonstrated and discussed
for a series of examples. The deviations found on the
contrary to the papers /3. 4/, are discussed in detail.

Finally Sec. 5 gives the summary and conclusions.

2. THE COULOMB POTENTIAL

Let us assume that the charge distribution p1 (F)
generating the electrical field U(?) is placed at the
origin of the coordinates. Then the Coulomb potential
Ve(x) between p (}) and another charge distribution p, (?)
is defined as that work that must be done in order to
carry p, against the field U(?) from infinity to a po-
sition x " In this process the energy connected with the
displacement of two rigid charged clouds is

Vo(x) = [drpy (F=%) UG .
p 1)
2

Eq. (1) contains nothing regarding the amount of work
needed to form the distributions or to shift some con-
stituents of them. In the case when one of the clouds,
Py has been deformed, an additional energy due to
the change of the self-energy

VI = [drp (F) U ()
|

must be taken into account. Thus, the last equation pro-
vides dynamical potentials whereas eq. (1) gives electro-
static ones. The first procedure for calculating the po-
tential V_(x) is consistent with the idea of the sudden
approximation in which the charges move so fast that
internal rearrangements of charged constituents can be
disregarded. In any nuclear reaction both potential types
come into effect/7/ where the static or dynamical por-
tion can prevail more or less strongly. It is difficult
to handle the last part because it depends essentially on
the underlying model. In this case the charge densities
should be time dependent, a behaviour which is not very
well known.

We use the Coulomb potential in optical model calcu-
lations. As is well known the important region of reac-
tion is the peripheral one where the two densities
overlap very little and there is good reason to believe that
a simple potential concept could be meaningful. This op-
tical potential determines the wavefunction throughout all
space. It is defined to generate the same wavefunction
beyond the region of interaction between complex nuclei
as the true many-body problem. However there are va-
rious ways of extrapolating into the interior (e.g., sudden
approximation or adiabatic limit) and the associated
wavefunction will have different meanings. This must
be kept in mind when the wavefunctions are used for
elastic scattering or in a DWBA calculation of some
reaction. In the nuclear potential of the usual optical
model, no dynamical effects are taken into account.
Therefore, it is also unnecessary to include those in
the Coulomb potential, i.e., to go beyond the framework
of the sudden approximation.

In this paper the nuclear charge density of both
colliding nuclei is assumed to be a homogeneous sharp
cutoff distribution with spherical symmetry. In Sec. 3
we shall see how well this assumption works.



2.1. Point-Sphere Coulomb (PSC)-Potential

According to eq. (1) the Coulomb potential between
a point charge and a homogeneously charged sphere with
the radius RC (point-sphere Coulomb potential) is

1 2
=(3-x°) <
PSC 9 . <
v, (x) = B{l/x it x . 1
3
B =2Z,Z,e?/R_, x = 1/R_.

Here, the well-known formula has been rewritten by
using the dimensionless coordinate, x, which will later
be useful. The formula consists of two factors: the first
one represents the Coulomb barrier B reached at x=1,
the second one is a polynomial describing the radial
dependence.

Formula (3) originally was derived for the Coulomb
interaction of a light particle, such as a proton, with
a nucleus where the point charge approximation is quite
reasonable. Nevertheless, expression (3) has been often
extended to heavy-ion reaction calculations and the sum
of both Coulomb radii has been taken as the total Coulomb
radius, R_= R+ R,. This implies a point charge inter-
acting with a fictitious nucleus consisting of a target
nucleus whose radius is increased by R, (fig. 1d). This
procedure does not reflect reality and, therefore, it is
not a sensible approximation.

2.2. Sphere-Sphere Coulomb (SSC)-Potential

A more realistic description is obtained taking the
Coulomb potential between two homogeneously charged
rigid spheres, with radii R, and R, (R, > R,)res-

pectively, which can penetrate one another (fig. 1b).
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Fig. 1. Schematic pictures for determining the Coulomb
potential between heavy ions: a) separated ions can be
regarded as charged points, b) penetrating ions, c) the
colliding ion is taken to be a charge point, d) usually
used approximation for heavy ions.

Following eq. (1) we found a very simple analytical
formula’ ! for this improved potential,

%b[3—c-—b2x2] x < x)

(4a)
vS€(x = Bt Li-sd?a-wtii- Za =060l it x<x]
* (4b)

1 x> 1

* (4¢c)



a = R /Ry, b=14+ 1/a, c = 3/(5a?),

d= (a+2+1/a) /4, xo= (a-1/ta+1).
For the same problem cumbersome and much r?oAre
complicated expressions have been given in refs.’3° .
However, after some manipulations our formula can be
shown to agree with that first published by Donnelly et
al/%/, and also with those of refs/% 5/, The transparent
structure of formula (4) allows prediction of the effects
of the potential without numerical calculations. This was
achieved by the special choice of the dimensionless va-
riable x=r/R_ = 1/(R| + R,) and by extracting the Coulomb
barrier B-143982,Z,/(R_. in fm) MeV, which takes
on the function of a scaling factor. The radial part
describing the geometry of the problem depends only
upon the ratio of the Coulomb radii a = R; /R,.A tabu-
lation for different values of a is simple since rea-
listic systems possess values within the small interval
1<ag 3, epg. Li on M7 Auta-=3.04) ,(’Li on:l(’O(az:
=1.39) M Ca(a -~ 1.88) (these systems have been stu-
died in/5/) and  '60on: #Si(a = 1.2) ,* Ca(a = 1.36),
12860 (a ~ 1.95), 28pPh(a - 2.35). Thus, the potential is
separated into a geometry function and into a charge
depending factor which is specific. for a given system.

Now let us discuss the radial part in detail. In fig. 2
this function is represented for various values of a and
is compared to the one for the PSC-potential. Outside
the target nucleus (x >1) the well known term 1.x in
(3) and (4c) is obtained as though two point charges
exist (fig. la).

In the overlapping region there is a strong difference
between the SSC- and PSC-potentials which is maximal
for symmetrical ion combinations (a=1). When the pro-
jectile is very much smaller than the target, formula
(4) approaches the expression (3). The closer the contact
of the ions is, the larger the difference becomes, reaching
its maximum at x = 0. Here for a=1 the SSC-potential
lies 60% higher than the PSC-potential (100%). For
a = 2 it is 42.5% higher and for a = 4 it is still 23.59,.

25
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Fig. 2. Com/ﬁarison of the SSC-potential for different
ratios a= Rl, (full lines) with the usual PSC-potential
(dashed line). For illustration the curve 1/x (dot-dashed
line) is continued up to values x <1.All potentials are
reduced on their radial parts by extracting the .Coul.omb
barrier B  Additionally a percentage scale is given.

Expressing the differences in energies one gets, for
example, for 10 on '®0 and !'°0 on 208pPb about
12.5 MeV and 48 MeV, respectively. The effect of this
strong enhanced potential on the scattering is discussed
in section 4.

The radial part of the potential (4b) in the partial
overlap region consists of two terms. The first one shows
the hyperbolic behaviour, 1/x, as does the potential in
the external region. The second term in the quadratic
brackets describes the deviation from 1/x which is zero
at x = 1 and increases very slowly (with fourth order of
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(1 - x)) for decreasing X -values. Since the coefficient
d2 depends weakly on the ratio, a= R;’Ry all target-
projectile combinations possess nearly the same Coulomb
potential shape (1/x) in the surface region.

3. ABOUT THE QUALITY OF THE SSC-POTENTIAL
3.1. Comparison of the SSC- and PSC-Potential

The similarity of the potential VU (x) with the

function 1/x in the surface region"U.Z £ x 11 (see
also fig. 2) allows one to %Qproximate V‘l,‘s“(x) by the
usual Coulomb potential 'V‘_‘ . although with a drasticly

reduced Coulomb radius R, = ~R.

-2-17< 3-x2/xk2) - < (5a)
VPP = BE if  x K
;{ —

(5b)

For estimating proper values « the formulae (4a)
and (5a) describing the complete overlap region are
compared. Note that the « -values do not depend on R,
and R, but only on their ratio a. If a3 the quantity
¢ is negligibly small, and we get

K= 1/b= afarD =Ry AR, + Ry, R xRyt Ry =R, (6)

This means that the usual Coulomb potential V! 5"(x) be-
comes a much better approximation if the almost uni-
versally used sum of radii R.- R, + R, 1is replaced
by the radius of the target nucleus R~ R,. This fact
is illustrated in fig. 1. The charge of the smaller nucleus,
for the most part, is outside the tatget sphere (fig. 1b)
and can be replaced by a point charge (fig. 1c). The
use of the radius R = R, + R, (fig. 1d) cannot be validated
by this argument. For & < 3 the quantity ¢ cannot be
neglected and eq. (4) gives small values of «. For this
reason ~ was varied in order to fit VP(x) to V330 (v,

&
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Fig. 3. Comparison of the approximated Coulomb poten-
tial (5) (dashed lines) using best-fit < values with the
SSC-potential (full lines) for different ratios a=R;’R,.
The potentials are shown without the Coulomb barrier F?

The results are shown in fig. 3 for best-fit « values:
x = 0.67,0.72, 0.81 which correspondto a- 1,2,4, respec-
tively. The reduction factor, ~. of any other system can
be obtained by interpolation between these three values.
Note that the factor ~ - 0.67 corresponds to a substan-
tial change of the radius parameter from .= 1.2 fm
to rge= 0.8 fm.

The approximation considered in this subsection il-
lustrates the difference of the potentials expressed by
a reduction factor ~. As is shown, the use of formula
(5) to calculate the heavy ion Coulomb potential leads to
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unphysical Coulomb radius parameters. The new formula
(4) has no this disadvantage. It needs no further appro-
ximations and can easily be included in any computer
code.

3.2. Potentials Resulting from Realistic
Nuclear Charge Distributions

For the calculations of the SSC-potential (4) a sharp
cutoff distribution has been used. Assuming spherical
symmetry, the most accurate Coulomb potential should
be obtained by using some well-known realistic charge
distributions. For light ions, either the Gaussian or har-
monic well type comes into question and for heavier ions
the Fermi type/% 5. The potentials following from these
charge distributions can be determined only numerically
via eq. (1).

De Vries and Clover/%/ have used Fermi type distri-
butions for the 160 + 208py, system and have pointed out
than beyond x=0.7 vcssc differs from vFemi  py less
than 0.1% andat x=0 by notmore than 7%. Jain et al.”% have
obtained an excellent overall correspondence for 0Ca0c,
using the same charge distributions. For lighter ions
®Li  and 160 they have assumed the Gaussian and
harmonic well radial dependence, respectively, to cal-
culate the potentials of the ion systems such as 16g . 16q
160 4 40Cq, 6L 4+ 160 and 6L 4 40C, which were found
to be in good agreement with the SSC-potential for x > 0.3.
For x <0.3 the authors got strong deviations and the
curves calculated with realistic charge distributions
enhance very rapidly if x - 0. For16g , #0 ¢y at
x = 0.1 the curve reaches a value >200 MeV (fig. 41in
ref.”% ) much more than for %0ca . 40C, in the same
picture. As is shown by the following argument this
strong increase is not understandable. The maximum

‘amount of work in the electrical field of a target nucleus

with a fixed charge distribution must be done if the
colliding ion is regarded as a point charge and is shifted
to the centre,x=0. That must be the upper limit for all
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Fig. 4. Real and imaginary (dash -dotted) part of the
optical potential for the reaction 1B + 16Q :

charge distributions of the lighter ion. This value amounts
to about 80 MeV for *0c; ., ¢, :

On the other hand the region x « 0.3 is not important
in heavy ion elastic scattering potentials because the
absorption prevents a strong penetration of the nuclei’8’ .

The examples investigated in refs/ 4 5/ are repre-
sentative for all other target-projectile combinations
of light and intermediate nuclei. They show that realis-
tic charge distributions, compared to the sharp cutoff
distribution, bring about small effects in the resulting
potential for core-core separations x>0.3. These small
effects cannot justify the use of computer-time-consuming
realistic charge distributions.

4. EFFECTS OF THE SSC-POTENTIAL
ON ANGULAR DISTRIBUTIONS

For - illustrating the influence of the improved Cou-
lomb potential V3¢ , we have tested the effect of using
V3¢ versus VPSC  on elastic scattering in the frame-
work of the optical model. Decisively, the amount of the
effect depends on the combination of target-projectile
in a twofold way: on the geometry and on the mass re-
gion of the colliding ions used. As was mentioned above
and was found also by Jain et al/%, the largest effect
can be expected for nuclei with the same or nearly the
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same radii R} = Rz(a = 1), 1i.e., for symmetrical sys-
tems. The reason for the dependence on the mass region
lies in the competition between the Coulomb potential
and the nuclear potential. In the following this will be
investigated for three groups:

i) light nuclei: the Coulomb potential contribution of
30% is relatively small compared to the nuclear poten-
tial. Therefore, a choice of the Coulomb constant R, is
not critical.

ii) intermediate nuclei: the Coulomb and nuclear
potential are of the same order of magnitude and can
bring strong interference structures. The Coulomb radius
R, becomes a critical quantity.

iii) heavy nuclei: the Coulomb potential dominates
whereas the nuclear potential appears only as a correc-
tion. » .

The SSC-potential lies higher than the PSC-potential.
The difference grows monotonically towards the internal
region. The effective potential (the sum of all real parts
of the optical potential) is thereby raised. The influence
of the SSC-potential on the effective potential depends on
the potential type taken into account. It becomes larger
if the nuclear potential is of a shallow type and smaller
for a deep type. Whether this difference will come into
effect or not depends on the absorption of the optical
potential. A large absorption hinders the propagation of
waves to the centre. On the other hand a small or {-de-
pending absorption/ 8" allows the waves to come in and
to feel the difference. In dependence on optical parame-
ters, a part of the absorption may be reduced for growing
angular momenta ¢ so that the effective absorption is
diminished to the 1 = 0 limit. This behaviour can bring
about f-staggering whereby some partial waves are fa-
voured and determine the shape of the angular distribu-
tion. This f-staggering is influenced by the change of the
PSC- to the SSC-potential and modifies the angular dis-
tribution in a special way. A new fitting procedure is
necessary to provide another best-fit optical parameter
set. However a search for new parameters lies outside
the scope of this paper.
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Fig. 5. Reflection coefficients and cfggular distributions

of the elastic scattering of B on at Ej 127 MeV
calculated on the basis of the SSC- and PSC-potentials.

4.1. Light Nuclei
Reaction !'B + 160:

For the elastic scattering of '°0 on ''B at E, -
= 27 MeV in ref./%  a best-fit optical parameter set
was found which contains a large Coulomb radius para-
meter of r,. = 1.45 fm compared to that one of the
surface absorption of r, . - 1.1 fm. Fig. 4 shows the
strong difference of the effective potentials incorporating
the PSC- and SSC-potentials which, for example, at
r= 35 fm (x - 0.6) is already 3 MeV. The resulting
reflection coefficients (insert in fig. 5) show for the
PSC-potential a distinctly marked staggering. The SSC-
potential does not change the staggering at large , ho-
wever, the maxima and minima are completely out of
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phase. This behaviour causes that the angular distribu-
tions resulting from the SSC- and PSC-potential oscillate
with shifted phases to each other (fig. 5).

180:

Reaction '°0 «

The optical potential used in ret/' for this elastic
scattering reaction contains an (-dependent volume absorp-
tion. As can be seen in fig. 6 the angular distributions for
this reaction corroborate the above discussion.

vvvvvvvvvvvvvvvvv

& /]
o I
10! — SSC : .
2 ——- PSC
10-2 " ot T
0 30° 60° 90° 120° B0 W0
Bem.
Fig. 6. Angular distribution for the elastic scattering
of 100 on 80 at Ky,, =24 MeV, The optical potential

parameters ave taken from ref.! /10/" "The dashed curve

agrees with that one given in fig. 3 of this reference.

4.2. Intermediate Nuclei
Reaction 28g; | 29g;.

The optical potential for the elastic scattering of
on 28g;/19/31s0 possesses an [-dependent volume
absorption and belongs to the family of deep potentials.
In the region 5< r < R=7.4 fm (0.7<x<l)]large deviations
exist (e.g., b MeV at x = 0.7 ) between the effective po-
tentials resulting from the SSC- and PSC-potentials
(fig. 7). For r< 5 fm the SSC-potential is strongly en-
hanced versus the PSC-potential. The reflection coeffi-
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Fig. 7. Real and 1mag7nary part of the optical potential
for the reaction 28S; + 29,

cients (insert in fig. 8 of the SSC-potential show an
excessive damping of the (- staggering in comparison
with those of the PSC-potential but the positions of the
maxima and minima are unchanged. The differences in
the angular distributions, particularly in the backward
angles, can be seen in fig. 8.

A variation of the Coulomb radii in the SSC-potential
leads to the angular distributions shown in fig. 9. The
curve belonging to r_ .= 1.2 fm lies visibly under that
of r,.= 1.4 fm, and both are completely out of phase
with each other. This behaviour can be understood in
terms of the reflection coefficients (insert in fig. 9). For
r, =14, 1.3, 1.2 fm a monotonic damping of the stag-
germg is found The staggering curve of r__ =1.2 fm
is shifted by one unit to the right relative to the curve
of r = 1.4 fm so that the maxima correspond to the
minima of the other curve.

4.3. Heavy Nuclei
As stated above, the Coulomb potential of nuclei be-

longing to the mass region concerned dominates in the
effective potential. The latter is only repulsive and
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Fig. 8. Reflection coefficients and angulay distributions
of the elastic scattering of 288i on *Si at K, -
- 70 MeV calculated on the basis of the SSC- and PSC-
potential. The d7sI}ed curve agrees with that one given
in fig. 12 of ref. / 19/,

hinders the waves to enter the interior so that the dif-
ference of both potentials cannot be felt by them. There-
fore, no effect can be expected in the angular distribu-
tion of the elastic scattering. For this reason no pictures
are given by us. De Vries and Clover/4/ have chosen
the reaction 160+208py, for their study of the SSC-poten-
tial. In comparison to the PSC-potential they have not
got any deviations and, thus, confirm the above considera-
tions.
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f;g 9. The same as in fig. 8 but for different Coulomb
ii.

5. SUMMARY AND CONCLUSIONS

Within the framework of the sudden approximation
a simple formula for the Coulomb potential of two homo-
geneous charge distributions was found. By introducing
a dimensionless coordinate x=r/(R; + R,) and the ratio
a= R;/Ry,a separation into a charge dependent factor
and a radial function describing the geometry of the
problem was managed. The factor is identical with the
Coulomb barrier B and the radial function depends on
the only parameter a. Thus, this formula is well sui-
table to make simple estimations of the Coulomb poten-
tial. The comparison of the SSC- and PSC-potentials
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shows a strong difference in the radial dependence. It is
equivalent to a considerable alteration of the Coulomb
radius expressed by a reduction f?ctor. Contrary to the
conclusions of the authors of refs/3 % we found realis-
tic examples where the finite dimension of the nuclear
charge distribution has a substantial influence on the
angular distribution of the elastic scattering. These
differences are shown to be the largest for nuclei of the
intermediate mass region. The effect of the SSC-potential
essentially depends on the absorption and is most large
for small absorptions appearing in a shallow potential
or {-depending absorption model. The homogeneous charge
distribution can be regarded as an excellent approxima-
tion to realistic nuclear charge distributions. Therefore
there is no reason to use computer-time-consuming nu-
merical procedures for calculating the potential starting
from special realistic charge distributions. The analyti-
cal shape of the derived formula is so simple that it
can easily be inserted in any computer code.
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