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HraaTOBH'I B.K. 

HeJtoTopble s«!Jcc>eKTbi B Jlll<j>paltUIIR aeiiTpoaoe aa 

MOBOKpHCTannax B npa6na~eHRH OllHOMepHoro 

nepROilR'IeCKoro noTeauaana 

E4 · 11937 

BJleanbHbiX 

npaBeJleHbl HOBble Bblpa~eHRII Jlnll aMnnHTYil OTpa)f(eHHSI II npOXO~Jle

HBSI HeiiTPOHOB npH paCCeSIHIIH HB OllHOMepHOM nepiiOJlll'leCKOM noTeHUIIane. 

PaccMaTPHBaeTCSI eaaiiMOJleilcTelle aeilTpona c IIJleanbHhiM KpRcTannoM 

B Cny'lae nays. noK83biBaeTCSI, 'ITO npa y'leTe rpaBHTaUHOHHOro nonSI II npH 

orpaHR'IeHHH nanaiDwero ny'IKa aa BXOilHOil noaepxHOCTH wenbiD ero 

HHTeHCifBHOCTb Ha BbiXOJlHOH noaepXHOCTH MO~HO BapbllpOBSTb C llOMOWbiD 1 ,_. 

HeOJlHOpOilHOrO MarHIITHOrO nonSI, eCnH naJlaiDWIIe HeilTpOHbl nongp1130BaHbl, 

a paCCeHBaiDWHH !rpiiCTann - He MBrHHTeH. noK83biBaeTCSI TSKJKe, 'ITO 

ecna aeATpOH naAaeT aa noaepxHOCTb KpacTanna noa yrnoM nonaoro 

OTpaJKeHR!I1 TO npa apaWeHHH KpHCTanna BOKpyr HOpManH K BXOilHOH noaepX-

HOCTH MOlKHO npH onpeJleneHHblX ycnOBHSIX Ha6niDJlaTb yMeHbWeHHe ltHTeH-

CHBHOCTH OTpaJKeHHOrO ny'IK8o 

Pa6oTa BbinOnHeHa B na6opaTOpRR Hei!TpOHHOil <j>H3HKH 011fll1. 

Coo6weaae 061>enaHennoro HHCTKTyTa !lllepHbiX accnenosanaii. lly6aa 1978 

Ignatovich V.K. E4 · ll937 
Some Effects in Neutron Diffraction on Ideal 
Monocrystals in the One-Dimensional Periodic Potential 
Approximation 

New expressions for the amplitudes of reflection and propaga 
tion of neutrons scattered un a one-dimensional periodical poten
tial are reported. We consider an interaction of the neutron with 
an ideal crystal in Laue case. It is shown that taking into 
account the gravitational field and placing a collimating slit in 
front of the incident surface the intensity of the beam on the exit 
surface can be varied by means of a nonhomogeneous magnetic 
field under condition that the incident neutrons are polarized and 
the scattering crystal is nonmagnetic. It is shown also that under 
certain conditions one may observe a decrease of the intensity 
of reflected beam with rotation of the crystal about a normal to 
incident surface, if the neutron angle of incidence on the crystal 
surface is an angle of total reflection. 

The investigation has been performed at the Laboratory 
of Neutron Physics, JINR. 
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A one-dimensional periodic potential is used as a mo
del for many problems in solid state physics and op~cs. 
Its solution is reduced to a solu lion of the Matheu I 1- 2 or 
Hill equations and is represented by functions satisfying 
the Bloch theorem/ 41, known as Floque theorem in mathe
matics. But in practice it is solved either in the two
wave ayproximation or with the help of recursion rela
tions/6 . In the latter case a periodic potential is consi
dered to be a multilayer system and the amplitudes of 
reflection r and transmission t of one layer are sup
posed to be known. In that way the r{t9ection amplitude 
from a half- infinite multilayer system 6 and the reflec
tion and transmission amplitude for finite number of 
layers/7 -10/have been found. Nevertheless, the solutions 
are unknown to most physicists working with periodic 
potentials due to their rather complicated forms. In the 
present paper these expressions will be represented in 
a form that appears to the author to be most simple. This 
form offers the possibility of predicting some effects in 
crystal diffraction which have not been pointed out in 
neutron physics till now. One of them can be easily pre
dicted within the dynamical diffraction Ewald theory, 
while the other cannot be clearly seen. The reflection 
amplitude R of n similar layers of arbitrary form is 
expressed wit~ the help of the recursion relation 

R ~ [r+<t 2-r 2)·R 1]/(1-r·R 1) 
n n- n- ' 

where R
0

_ 1 is the reflection amplitude of (n-1) layers. 
Here we suppose that every layer is symmetric about the 
centre. If it is not so, then the amplitudes of reflection 
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from the left and the right, r ±. are not equal to each 
+ other, but they can be represented as r- = r-exp ( ±i11), where 

the phase 11 is equal to zero for symmetrical potentials. 
The same relation with the same phase holds for the ref
lection amplitudes R ~ 1111 • The transmission amplitudes 

+ + t - and T n (for n layers) are always equal and may be 
denoted t and 'I 11 • respectively. 

For n ~"" the recursion relation becomes an equation 
for R = Roo' which is reduced to algebraic second-order 
equation of the type: x 2- 2px-+ 1 = 0. The solution of this 
equation can be represented as 

R = (vra+ -y-a_ )/(y'a:-:1-y a_=-), a±~ (r ± 1) 
2

- t 
2
. (1) 

The other solution is equal to 1/R. The expression (1) is 
very similar to that for the Fresnel coefficient for the 
reflection of light. In order to determine R 11 for finite 

n it is useful to represent R 11 as ratio p 11 /q n and 
rewrite the recursion relation as a matrix equation for the 
two-dimensional vector ~ = (P , q ). The solution/12/ of 
this matrix equation is 

11 11 11 

R
11 

= R[1- exp(2iqL)]/[1- R2 exp(2iqL)], (2) 

where L,= nC , e is the period of the system, and q is the 
Bloch quasimomentum, which satisfies the equation /13/ 

t 2 - r 2+ 1= 2t cos q£' in accordance with the Floquet-Bloch 
theory, and which can also be represented in a form simi
lar to the Fresnel coefficient 

exp(iqO=(yb+-yb_)/(yb++yb_); b+=(t±1)2 -r 2. 
(3) 

The expression for R11 is similar to that for the reflec
tion amplitude for a rectangular barrier potential. The 
same can be said about the transmission amplitude 

T 
11 

= exp(iqC )( 1-- R 
2
)/[ 1- R 

2
exp (2iqe)]. (4) 

The preceding results are applicable to the propagation 
of arbitrary scalar waves in periodic media. 
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Now let us consider an ideal one-dimensional crystal 
and a neutron interacting with it. The potential may be 
taken as 

V( Z) ~ 2p 2 0 ( Z- n f) 
ll 

where 2p 4, N b , N. is the density of atoms in a crys-s s 
tal plane, and b is the coherent neutron scattering am-
plitude for one atom. Then, in the above expression we 
must put 

a+ook+p-tg¢, a_=k-pctg¢, 

(5) 
b , co k ctg ¢> + p, b " k . tg¢ - p, 

where 0 -k P /2 and k is the z -component of the incident 
neutron wave vector. The equation for q has a well 
known form 

cos(qr) cos(kf'). (p/k)sin(k~). 

It follows from this equation that the total or Bragg ref
lection takes place when k2 < u 

0 
or k 2< k 2< k 2+ 2u 

0 
, 

II n 
where k II - .. n/f' , u 0 -- 4rrN0 h and N 0 is the number of 
atoms in a unit volume. 

It is important to note that the wave function inside 
the crystal may be written in the form 

0 ~ 2 exp (iqz )0 (k. z)ti ( z.: In), 
II II ' n (6) 

where fJ is the function equal to unity inside the in
terval In -- (zn _e/2, z II+ f'/2), zn = (n + l/2)f, and zero 
outside it, and 

t/J
11

(k, z) exp[ik(z- z
11

)J + R(k)exp[-ik(z- z
11

)]. (7) 

Of course the expression (6) may be represented in the 
Bloch form: exp(iqz)f(z), where f(z) is the periodic 
function with period P, but for us it will be more conve
nient to handle it as in (6). 

Now let us discuss the physical effects mentioned at 
the beginning of this paper. Let us consider neutron 
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diffraction by an ideal crystal in the Laue case. The in
teraction of the neutron with the crystal is described by 
the potential 

00 

v(~ = 2p0(0 < Z< H) ~ o(X- (n + 1/2)£). 
n=-oo 

where H is the crystal thickness. The incident neutron 
may be described by the plane wave exp (i k i') with k x 

approximately equal to k 1 o: rr!e. It is well known that 
inside the crystal there appear two waves which we rep
resent in the form 

Aj I, exp(ikx· X
0

)t/1
0

(q
1
.x, x)O(xd

0
)exp(iq. z); j = 1,2, (8) 

n=-oo JZ 

where A i are the constants that are determined by the 
boundary conditions, I = (x - P /2. x _,_ r /2),x =n£ ·'· (q. ,x) n n n n • 'f'n JX 

is given by (7), q jz .. ~ v k 2-q; and q . satisfies the 
JX 

equation · J 

coskP ~cos(q. ?)+(p/q. )sin(q. e). 
X JX JX JX 

(9) 

The solutions of this equation lie outside the total reflec
tion interval (k ~, k~1 + 2u 0 ) for all k i as is shown 
in jig. 1. When k2,. approaches k~1 then q2x tends to the 
boundaries of this interval from the left dnd right, res
pectively. The coefficients A .i are determined from the 
boundary conditions at Z=O. The boundary conditions at 
z = H determine the amplitudes of the transmitted and 
diffracted transmitted waves to be equal to 

A 
1 
exp (iq

1
zH) + A 2exp (iq 2z · H), 

(10) 

A 
1
R 

1
exp (iq1zH) + A 2R 2exp (iq 2J-I). 

2 2 
~1x 'l2x 

I I W#P'/M'i'A I ., 

k2 · k2 k2 +2U x n n o 

Fig . . 1. Relative positions of k 2
x and q

2
jx in Laue diff

raction. 
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These amplitudes oscillate when ll or the total energy 
of the neutron are varied. Suppose that the x -axis is ver
tical in the earth's gravitational field.,and area illumi
nated by the incident neutrons is limited by a slit. 

Let us denote k 2 - k 2 
= 11, then for 11111 « u 0 • we have x n 

k2 _ q 2 = q 2 _ k 2 _ 2u = ylu2 + 112 _ u "'f12/2u • (ll) 
n tx 2x n 0 0 0 0 

The neutrons entering the crystal are accelerated in the 
gravitational field, and those moving downwards and 
having q ix will e-yentually approach the total reflec
tion interval (k;, k ~ + 2u 0). Below some limiting level 
(fig. 2) they cannot propagate due to total (Bragg) ref
lection. The neutrons moving upwards with q2

2x will be 
totally reflected at a certain level A, where q2 x reaches 
the interval of total reflection from the right. The ef
fect described here is analogous to the negative resis
tance in superlattices. Now, since in every direction only 
one wave can propagate beyond levels A,B the pandel
losung effect disappears in the exterior region. It can be 

-k 
tg 

z 

Fig. 2. Propagation of waves inside the crystal, gravita
tion being taken into account. 
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restored by an inhomogeneous magnetic field if polarized 
neutrons are used. If we have a silicon crystal, then 
u 0 corresponds to -100 neV, and if h 2 ~\an isnearly 
10 neV, then (A 2 /2u 0)n 2 /2m - 0.5 neV, and the distance 
AB ~ 1 em, since 1 neV is equivalent to -1 em for the 

neutron in the gravitational field. For compensation it 
is necessary to give a magnetic field with a gradient 
of nearly 170 gaussjcm. The coefficients A 

1
,
2 

in (8) 
are found from the matching of (8) with the incident wave 
on the surface z ~ 0: 

A 1, 2 ~· 1, ( 1 + R ;,2 ), 

where R1, 2 are the reflection amplitudes in the expres
sion (7) for a wave vector equal to q 1 ,2 x. The approxi
mate expressions for them are well known: 

R - + ;' ( . 2 . ;\ 2- A) R - 1 f{ 1,2--_uo -vuo · '\, 2 ' 1 

Now let us consider the other effect: Laue diffraction 
in combination with total reflection. If a neutron falls 
on a crystal with k ~ · u 0 , then it will usually be totally 
reflected. However this is not the case when the crystal 
is oriented in such a way that k 2 is nearly k 2. In this 

x n 
case the reflected intensity is smaller than the inci-
dent intensity, since some of the intensity can propagate 
inside the crystal and some is back diffracted. The am
plitudes of specular reflection p 

1
. back reflection p 

2 
and 

the coefficients A1, 2 are for a crystal semi-infinite in 
z direction as follows: 

P1 = [(k2z + q2z)(k1z- q lz)+ R
2
(k2z+ q1z)(k1z- Q2)J;Q, 

p 2 = 2Rk1z(q 2z- q1)/Q, 

A 1 = 2k1z(k 2z + q2z )/Q, (12) 

A2 =- 2R·ktz<k2z+ q 1z)/Q, 

2 
Q ~ (k2z+ q2z)(k1z + q 1z) + R (k2z + q1z)(k1z + q2z ), 

R = R
1

, 
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where k
1 

~ k , k
2 

v'k2-~--(iz---:_-~---)2-
z z z x n 

and k
11 

~rr;Y. When kx··k 11 , 

R = 1 ; p 
1 

~~ r/ 2 ; ; p 
2 

~ --r/ 2 ; 
then k1z -- k2z-= q 1z · kz 

; A 
1 
~ A 

2
·= 1/2 ; : and 

(k . 0 )/(k . " ) " 12 k 2 
[ = z - lQ2Z • Z + lQ2z ' Q2z = V UQ - Z • 

If the crystal is rotated about the normal to the en
trance surface, one may observe dips in the reflected 
intensity. The same effect takes place if k ~ lies 
inside the zone k~1 ' u0 / k ~ <: k~ + 31.\J ,where k m~ rrm/f and 
f is the distance between the crystalline planes parallel 
to the entrance surface. It is necessary to note, that the 
zone of the Bragg reflection is shifted through u0 due 
to the existence of crystalline planes perpendicular to 
the entrance surface. The dip width measured in terms 
of ~ = k1_ -k ~ is approximately equal to u0 . The above 
considerations may be generalized to the case where· 
the crystalline planes are inclined with respect to the 
entrance surface. The last two effects can be easily 
found with the help of the ordinary Ewald theory of the 
dynamical diffraction if one matches the wave function 
on the interface more carefully than it has been usually 
done. This matching had been done in paper/14/, but the 
effects were not pointed out since the authors were in
terested in the influence of such matching on the pandel
losung fringes only. 

The author appreciates greatly the useful discussions 
with N .E.Belova, V .I.Luschikov and A.Steyerl. 
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