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Hexotroprie 3dbekTrl B addpakuHn HefATPOHOB Ha HOeANbLHLIX
MOHOKpHCTANNax B NPHGIMNKEHHH ONHOMEPHOro
nepHOARYECKOro MoTeHuHana

Mpapenens! HOBble BHIPAXEHHS AN AMIVIHTYA OTPAXEHHS H Mpoxokie-
HES HeATPOHOB NpPH pacCCesHHM HA OOHOMEPHOM MEepHONHYEeCKOM MOTeHUHnanle.
PaccMarpupaerca B3adMOReliCTBHe HefiTPOHA C HAEANBHHIM KDHCTANIOM
p cnyuae Jlays, [lokasbiBaercs, 4TO NpH ydYeTe rpaBHTAUXOHHOrO noig u MNpH
OrpaHHYEHHH NALAIOUErOo NMy4YKa Ha BXOAHOW MOBEPXHOCTH Wesbio ero
HHTEHCHBHOCTb HAa BHIXOAHOH NMOBEPXHOCTH MOXHO BapbHPOBATH C NOMOIUIBLIO
HEONHOPORHOT'0 MATHUTHOrO MO/A, eClH Nafjalolie HEATPOHbl MONAPH3OBAHLI,
a paccempaiowuit kpucramn — He maruureH. [loka3biBaercs raxkxe, 9TO
ecnH HellTpPOH MajaeT Ha NMOBEPXHOCTb KpHUCTal/la noa yraoM NOJHOTO
oTpaxeHNd, TO NMPH BpalleHUH KPUCTAMIa BOKPYr HOpMalu K BXOAHOH NMOBepx-
HOCTH MOXKHO NpH ONpele/eHHbIX yCIOBHSX HabMoAaTh YMEHbIIEHHE MHTeH-
CHBHOCTH OTpaXeHHOro NnydKa.

Pabora BrnonsHesa B JlaGoparopnu HeiirporHoft ¢usnkn OUAHU,

Coofuenue O6bennHeHHOro MHCTHTYTa dnepHbIX uccienoBaHui. [y6ua 1978

Ignatovich V.K. E4 - 11937

Some Effects in Neutron Diffraction on Ideal
Monocrystals in  the One-Dimensional Periodic Potential
Approximation

New expressions for the amplitudes of reflection and propaga-
tion of neutrons scattered on a one-dimensional periodical poten-
tial are reported. We consider an interaction of the neutron with
an ideal crystal in Laue case. It is shown that taking into
account the gravitational field and placing a collimating slit in
front of the incident surface the intensity of the beam on the exit
surface can be varied by means of a nonhomogeneous magnetic
field under condition that the incident neutrons are polarized and
the scattering crystal is nonmagnetic. It is shown also that under
certain corditions one may observe a decrease of the intensity
of reflected beam with rotation of the crystal about a normal to
incident surface, if the neutron angle of incidence on the crystal
surface is an angle of total reflection,

The investigation has been performed at the Laboratory
of Neutron Physics, JINR,
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A one-dimensional periodic potential is used as a mo-
del for many problems in solid state physics and optics.
Its solution is reduced to a solution of the Matheu’ !~/ or
Hill equations and is represented by functions satisfying
the Bloch theorem’?%/, known as Floque theorem in mathe-
matics. But in practice it is solved either in the two-
wave a})proximation or with the help of recursion rela-
tions/© . In the latter case a periodic potential is consi-
dered to be a multilayer system and the amplitudes of
reflection r and transmission t of one layer are sup-
posed to be known. In that way the reflection amplitude
from a half-infinite multilayer system 6/ and the reflec-
tion and transmission amplitude for finite number of
layers/7'“’/have been found. Nevertheless, the solutions
are unknown to most physicists working with period{c
potentials due to their rather complicated forms. In the
present paper these expressions will be represented in
a form that appears to the author to be most simple. This
form offers the possibility of predicting some effects in
crystal diffraction which have not been pointed out in
neutron physics till now. One of them can be easily pre-
dicted within the dynamical diffraction Ewald theory,
while the other cannot be clearly seen. The reflection
amplitude R of n similar layers of arbitrary form is
expressed with the help of the recursion relation

R, = [r+ (t2- rD R, 1/(1=r-R__).,

where R _, 1is the reflection amplitude of (n~1) layers.
Here we suppose that every layer is symmetric about the
centre. If it is not so, then the amplitudes of reflection
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from the left and the right, rt, are not equal to each
other, but they can be representedas r~ = r-exp ( *in), where
the phase 7 is equal to zero for symmetrical potentials.
The same relation w;rth the same phase holds for the ref-
lection amplitudes R7,/*Y/. The transmission amplitudes
t* and T; (for n layers)are always equal and may be
denoted ¢ and T, .respectively.

For n -~ the recursion relation becomes an equation
for R=R_, Which is reduced to algebraic second-order
equation of the type: x2-2px+ 1=0. The solution of this
equation can be represented as

R=(Ja, -Va)/ya, r/a ) atz(ril)z—tz. 1y

The other solution is equal to 1/R. The expression (1) is
very similar to that for the Fresnel coefficient for the
reflection of light. In order to determine R, for finite
n it is useful to represent R, as ratio p,/q, and
rewrite the recursion relation as a matrix equation for the
two-dimensional vector & =(p ,q.)- The solution/12/ of
this matrix equation is

R, = RI1-exp(2idl))/[1 - R®exp (2idL)]. @)
where L-nf , ¢ is the period of the system, and q is the
Bloch quasimomentum, which satisfies the equation 13/
t2-r2+1=-2tcosgf in accordance with the Floquet-Bloch

theory, and which can also be represented ina form simi-
lar to the Fresnel coefficient

expliad) = (Vb -~ yb /b + yb )i b=(txp2 —r 2 &)
The expression for R, is similar to that for the reflec-
tion amplitude for a rectangular barrier potential. The
same can be said about the transmission amplitude
T = exp(ial) (1 - R*)/[1~ R%exp (21a0)]. 4)

The preceding results are applicable to the propagation
of arbitrary scalar waves in periodic media.
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Now let us consider an ideal one-dimensional crystal
and a neutron interacting with it. The potential may be
taken as

v(z)- 2p2d(z~nl)
1

1
where 2p - 4aN_b ,‘NS is the density of atoms in a crys-
ta} plane, and b is the coherent neutron scattering am-
plitude for one atom. Then, in the above expression we
must put

a - k + p-tgd, a_=k-~pectgo,

(%)
b§ = kotge + p, bA‘ = K- igh - p,

where ¢ =kf/2 and k is the z-component of the incident
neutron wave vector. The equation for g has a well
known form

cos(ql) - cos(k?) + (p/k) sin(k?).

It fqllows from this equation that the total or Bragg ref-
lection takes place when k% <u, or k2<k2 k2.2,
where k - mn/f, u,-- 47Nybh  and Ny 1s the nu}nberoof
atoms in a unit volume.

It is important to note that the wave function inside
the crystal may be written in the form

o= r@1.3_ exp(iqzn )¢:n (k, z20(z<1,), (6)

where ¢ is the function equal to unity inside the in-
terv?.l I, = (z, -0/2, 2, +0/2, z, = (@ + 2, and zero
outside it, and

ok, 2) - explik(z- 2 )] + R(K)exp[-ik(z - z )]. (7)

Of course the expression (6) may be represented in the
Bloch form: exp(iqz)t(z), where f(z) is the periodic
function with period f, but for us it will be more conve-
nient to handle it as in (6).

Now let us discuss the physical effects mentioned at
the beginning of this paper. Let us consider neutron
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diffraction by an ideal crystal in the Laue case. The in-
teraction of the neutron with the crystal is described by
the potential

V(D = 2p8(0 < 2<H) = 5(x-(n+1/90),

N =00
where H is the crystal thickness. The incident neutron
may be described by the plane wave exp GED) with k ¢
approximately equal to k; = 2/t. It is well known that
inside the crystal there appear two waves which we rep-
resent in the form

A, 3 exp(ik - x))y (q;, , DO(xd )ex(ig;, 2; j=1.2 (8

= —o0

where A; are the constants that are determined by the
boundary conditions, I - (x -0/2 x - P/2),xn=n{7,¢,n(qjx,x)
is given by (7),q,, - V“;i;g: and q satisfies the
equation ' ‘ ’

coskx? - cos(q jx?, ) + (p/qjx) sin (g ix 7). 9)

The solutions of this equation lie outside the total reflec-
tion interval (k2,k® 4 2uj) for all k? as is shown
in fig. 1. When k% approaches k% then q2ix tends to the
boundaries of this interval from the left and right, res-
pectively. The coefficients A; are determined from the
boundary conditions at z=0. The boundary conditions at
z—H determine the amplitudes of the transmitted and

diffracted transmitted waves to be equal to
A 1exp (lquH) + A 2exp (lq 2z * H)’
10)
AR jexp (iqy H) + A R sexp (iq 2}-!).

2 2

Qax 9ax
1 | yLiizisA | -
k2- k2, k2 +2u,

Fig. 1. Relative positions of k% and qzjx in Laue diff-
raction.

6

(. 4

These amplitudes oscillate when I or the total energy
of the neutron are varied. Suppose that the x-axis is ver-
tical in the earth’s gravitational field.,and area illumi-
nated by the incident neutrons is limited by a slit.

Let us denote ki—kﬁ = A, then for |[|A|<<u,, we have

2 _q2% -q2 -k2- 2 A2 2
kn qlx qzx kn 2110 —\/u0+A —uozA /2u0. a1

The neutrons entering the crystal are accelerated in the
gravitational field, and those moving downwards and
having q%x will eventually approach the total reflec-
tion interval (x°, k%« 21,). Below some limiting level

(fig. 2) they cannot propagate due to total (Bragg) ref-
lection. The neutrons moving upwards with q22x will be
totally reflected at a certain level A, where q,, reaches
the interval of total reflection from the right. The ef-
fect described here is analogous to the negative resis-
tance in superlattices. Now, since in every direction only
one wave can propagate beyond levels A,B  the pandel-
losung effect disappears in the exterior region. It can be

Fig. 2. Propagation of waves inside the crystal, gravita-
tion being taken into account.



restored by an inhomogeneous magnetic field if polarized
neutrons are used. If we have a silicon crystal, then

corresponds to ~100 neV, and if h*A. 2m is nearly
10 neV, then (A%/2u )h2/2m - 0.5 neV, and the distance
AB ~ 1 cm, since 1 neV is equivalent to -1 cm for the
neutron in the gravitational field. For compensation it
1s necessary to give a magnetic field with a gradient
of nearly 170 gauss/cm. The coefficients A in (8)
are found from the matching of (8) with the 1nc1dent wave
on the surface z-=0:

A = 1°(1+ R1 o ),

where R1 2 are the reflection amplitudes in the expres-
sion (7) for a wave vector equal to Q4 The approxi-
mate expressions for them are well knownA

Ry, tuy/(y uz CAZTA), R, - LR,

' Now let us con51der the other effect: Laue diffraction
in combination with total reflection. If a neutron falls
on a crystal with kg “ U4, then it will usually be totally
t'eflected. However this is not the case when the crystal
is oriented in such a way that k% is nearly k2, In this
case the reflected intensity is émaller than tnhe inci-
dent intensity, since some of the intensity can propagate
inside the crystal and some is back diffracted. The am-
plitudes of specular reflection ,,. back reflection v, and
the coefficients A, , are for a crystal semi- 1nf1n1te in
z direction as follows:

_ 2
p = lky vay )k, -~ ay ) F Rk, +qy kg - q,,)l/Q,

- . — /
2Rklz(q 2z qlz)’ Q

)/" Q

A1=2klz(k22+ 4y, 12)

A2 =T 2R'klz(kfaz+ q lz)/Q'
- 2
Q" (k22+ qZZ)(klZ +q lZ) +R (k2Z + qu)(klZ + q2Z )v

R:Rl,

C . Lo RkZ DK “x v 2o
where k., -k, k2Z ‘v (k X )
and k, -m{. When k,-k,, thenk,, -k,-qy, Kk,
R=1; p;= 12 ; py- ~1/2; 5 A=A 1/2; and

r= (k, -105)/(k ¢ ig)7), a3, =2ugy - k5.

If the crystal is rotated about the normal to the en-
trance surface, one may observe dips in the reflected
intensity. The same effect takes place if k? lies
inside the zone k2 : u, ~k2<kZ+3y where k = m/{ and
7 is the distance between the crystalhne planes parallel
to the entrance surface. It is necessary to note, that the
zone of the Bragg reflection is shifted through u, due
to the existence of crystalline planes perpendicular to
the entrance surface. The dip width measured in terms
of A-k%-k2 is approximately equal to u,.The above
considerations may be generalized to the case where’
the crystalline planes are inclined with respect to the
entrance surface. The last two effects can be easily
found with the help of the ordinary Ewald theory of the
dynamical diffraction if one matches the wave function
on the interface more carefully than it has been usually
done. This matching had been done in paper/14/ but the
effects were not pointed out since the authors were in-
terested in the influence of such matching on the pandel-
losung fringes only.

The author appreciates greatly the useful discussions
with N.E.Belova, V.I.Luschikov and A.Steyerl.
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