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HoBuiff MeToa BuIYHCIEHUS COBCTBEHHLIX COCTOAHHI CHCTeMbBbl,
cocTodmed U3 Kopa U ABYX BalleHTHHIX HYKJIOHOB

Mpennoxen meToa ANA BbIYHCNEHHS COGCTBeHHBIX GYHKUMH H COBCTBEH-
HBIX 3HadYeHHNH CHCTEMBbI, COCTOsed M3 KOpa U ABYX BAalCHTHBIX HYKJIOHOB.
MeToa cocToHT B 3aMeHe TOYHOrO HOTeHuuajla B ypaBHeHuu Jlunmmana=-
Uisuarepa npubiuXeHHbBIM MOTeHUHANOM, NPeACTaBASIOWUM COBOI CyMMy
cenapabenbHbiXx 4neHoB, [Na NpuG/MXEHHOrO NMOTEHLHala ypaBHeHHe
Jlunnmauna-llpuurepa pewaercs TouHo. B kauecrBe 6a3uca aAnd pasoxeHud
BhIGMpaOTCa (YyHKUMH TapMOHH4ECKOro ocuw/mdTopa., Bonuopas dywmnus,
nonyyeHHass B A@HHOM MeTole, HMeeT NpaBu/IbHYIO “TpexuaCTH4HY” acuMIi-
TOTHKY # NpubNuKeHHYIO”ABYyX4aCTHUYHY0”,YuCleHHble pacyeThl NPOBOAUITHUCH
ang snpa 180, Cpensee mone BeGUpanoCh ByAC-CAKCOHOBCKON'O THMNa, OCTa-
TO4YHble B3anMoOOeHCTBUS - B Buae noreHudana lOkasnl, [TpoBeneHHoe cpaBHe~
HH@ C pe3yinTaram#, MOJNydYeHHbIMH OGBIYHOA NpoUeAypO# AUaroHalIW3alMH,
noka3ano, YTO BONHOBas QYyHKUHS OAHHOTO METOOda MMeeT 3HAYHTENLHO Nyuyllee
acCHMNTOTHYECKOe NopeaeHHe,
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A New Method for Calculation of Eigenstates for
a System of a Core and Two Valence Nucleons

A method for calculation of eigenvalues and eigenstates for
a system of a core and two valence nucleons is suggested, It
consists in approximating the potential by a sum of separable
terms, for which the Lippman-Schwinger equation is solved exactly.
The wave functions have the exact "three-particle" asymptotic for
and approximate "two-particle" asymptotics. m\
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It is well-known, that the nuclear transfer reactions
take place in the surface region of nuclei. A more exact
determination of the region must depend on the reaction
in question, in subbarrier proton stripping, e.g., the re-
gion between one and four or five nuclear radii gives the
main contribution. The density of nucleons is small
for such distances, and it is therefore not surprising,
that in spectroscopic calculations the contributions of
these regions can be neglected, but in calculations of
transfer amplitudes, they are essential.

The asymptotic behaviour of the form factors for one
particle transfer can in general be derived from simple
consideration s % .But an expression for the asymptotics
of two-nucleon transfer form factors has not yet been
derived; in the natural three-body wave function approxi-
mation Mercuriev /2/ recently has obtained its asymp-
totic form and it turns out to be a rather complicated
function of the coordinates.

A number of methods have been suggested for the cal-
culations of these two nucleon transfer form factors, but
it is obvious that only two of them/3»4/, which use ex-
pansions on a complete set of functions, can, by carrying
the expansion sufficiently far, approximate the asympto-
tic part of the form factor sufficiently well. In one of
these methods, the basis states are of harmonic oscilla-
tor type /3/ in the other they are the Sturm-Liouville
functions /4/, It should be noted, that although the method
of ref.”% in principle must lead to the correct result,
in realistic calculations it implies the diagonalization of
matrices of extremely high rank (larger than 1000), i.e.,
the convergence of the expansion is slow. With the
Sturm-Liouville expansion method, the series converge
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faster, but each of the basis functions and the corres-
ponding coefficients of coordinate transformation must be
calculated numerically. In this respect the expansion on
harmonic oscillator functions has some advantages, since
the functions themselves and many integrals and trans-
formation coefficients can be expressed analytically.
The aim of the present work is to improve the rapidity
of the convergence working with the harmonic oscillator
basis. A method for this was suggested in the work /5/

Let us look at the simplest case of two identical
particles interacting with each other and with an inert
core. The fundamental assumption is, that the interaction
between the particles is so weak, that a bound state of
two particles without the core does not exist. The inert
core is considered to be infinitely heavy, so the Hamil-
tonian is that of two interacting particles in a potential
well. The nearest physical analogue is the system of
two identical particles outside a doubly closed shell.

So, in this model, the wave functions ¥, of the nuc-
leus A are represented as products

g, 1,r2,§)=t//A_2(§)t//(r1,r2 ).

This means, that we do not include polarizations of
the (A-2) core by the valence nucleons. Therefore, the
problem is reduced to a 3-body problem, but we must
here take the Pauli principle into account, and in this
way our model differs from the usual 3-body problems.

So, we want to solve the Schrodinger equation

[Hy +A(V(r,) + V() +yV () ~Ely =0, )

where V., is the residual interaction and V(r1)+V(r 2) is
the nuclear potential.

In principle, any of the quantities A,y and E can be
considered the eigenvalue of equation (1). If, e.g., the
depth of the potential well, ), and the energy E are
known, y will be the eigenvalue.

Let V be the sum of the potential and the residual
interaction

4

V=A(V(r, ) + V() + ¥V (15 ). (2)

We shall now approximate V by a sum of separable
terms

N N
V =Viep = 3 |p><p|Vip><v], 3)
uv

where |u>=|p; >lp o>, ~and the ket vectors |u, ,>are
defined by their form factors, e.g., in the momentum
space

~ i
<k\n£jm>=Rngj 1LY, &)-x®1 C))

N is the number of terms in the basis. The exactness of
the approximation (3) obviously depends on N; for N -
the approximate potential VJ., becomes identical to V .
For bound states equation (1) can now using VSep be
approximated by

[>=C (B) = >V <vl|g> =

w )

=C (E)y 2 |up>v C
0" w v

1

where G (E) =
0 E-H,
is the Green operator.
Multiplying equation (5) with <g| we obtain a system
of equations for the coefficients C = <v|y>

— ' = - 6

:IZ{BW E@iGO(E)l,oVW ICV 0 (6)
So, the condition for solution of (6)

8.5 =<0 1GEU>V,, | =0 ™

gives us the eigenvalues, e.g., E,, and by use of (6)
the corresponding coefficients C(f} . In this case the
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c) are not eigenvector components of a symmetric
matrix, but nevertheless, the eigenfunctions |y ; >, which
belong to different eigenvalues E; are mutually orthogo-
nal. Actually, we have

’ 1
lp >= S p>vocth
1 EI‘HO#V p.V v
(8
¥ > = 1 -2 |p>V c®
2 E —H #V v v
2 0
Then the overlap <y 1|¢2 > is
X 1 1 . (¢Y) (2)
<Y lg >=3 < . v Ccv. C
1I 2 w #|E1—H0 E_-H I woov ij j €Y
] 20
Using the identity
1 1 1 1
E - H E -H E E(EH_El VB, AED
1 0 2 0 2 1 1 0 2y

and the equation (6) for the coefficients ¢V and C(?), we
obtain Y ]

W g s=——t 3 Dy c®_c®y cWy_g

12 E2_E11j i ij ] i

for E,#E,.For E, =E; we get, of course, <y, [yo>=1.

It is easy to show, that the wave functions (5) can be
chosen antisymmetric in the coordinates of the two
valence nucleons, but still, they should also obey the
Pauli principle with respect to all other nucleons of the
system.

In the ordinary shell model, this is easily achieved.
It is simply assumed, that the nucleons of the closed
and non-closed shell are moving in the same average
field. Then the two-nucleon wave function is expanded
over the wave functions of independent particles, moving
in the average field, excluding such states which are
occupied in the core. This means that in this approxima-
tion, the residual interactions are neglected for the core
particles.
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For double magic nuclei, this approximation may be
sufficiently good, and we shall here make the same
assumption using the method, suggested in /4/,

Let us introduce the effective Hamiltonian

H=H+TZ|i><i|, (10)

i
where the |i> are all such two-nucleon states, where
at least one of the nucleons is in an occupied orbit* .

Now, the solution of the Schrodinger equation with the
effective Hamiltonian (10) can be written

> = 9> +GE TS |i><i >,

(11)
G(E) = (E-H) '
from which we obtain
<i|x/~/> =2 <i|(1—TG(E))"1 1i><ijlg>. Q12)
i

Therefore, for T - « , <ilg>-0. In practice, when T is
sufficiently large (T3> 104. owh fm~—2), the wave function
|¢> will be orthogonal to the occupied states of the core,
within the requirements of accuracy met elsewhere in
the calculations.

We shall now discuss the asymptotic behaviour of the
wave functions calculated by this method. It is easy to
show (see Appendix) that the »three-particle” asymptotics
(in Merkuriev’s terminology) looks as

exv{-\/%lE\P } R
<r1r2|x/;> ~ u(p » (13)

0 5/2

* The occupied states should be those of the n_ucleqr
Woods-Saxon field, in the present calculation, we identi-
fied the only occupied state with harmonic oscillator 1s
state.
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p—\,/l‘1 +r2, p—-;)—
and coincidences with the: results from ref./z/.Strictly
speaking in Merkuriev’s sense our wave function has no
two-particle asymptotics. Let us consider, however the
overlap integral <Rg (r )ll/;(r Tg)>, where R
one-particle wave functlon in the potentlal V(r ). lZg{)vmusly,
for an exact y its asymptotic form should be

_ o exp |- \/TIE— j1r2}
<Rn?j (r1)|¢(f1,f2)>~ - IR
(14a)

2
For our ¢ it has a rather complicated form, for the
lowest term ., it is calculated in the Appendlx and it
gives

exp{—\/%lm rol
o) > . . (14b
1 2 " 3/2 )
2
For the complete wave function, however, the asymptotic

region can be divided into two intervals

<Rls(r1)ll,/;151S (r

a) R,<r<pRy,
b) BRy<r,

where R; is the radius of the mean field, whereas #
depends on the number of configurations (nfj) taken into
account in the calculation and in a) the function is descri-
bed by (14a) while for b) (14b) holds. It is natural to ex-

pect, and it is confirmed by the calculations, that the in-
terval a) becomes larger, when the number of configura-
tions is enlarged. Accordingly the wave functions of the
method suggested here have the correct three particle
asymptotic form and a form which approximates the two-
particle asymptotic; this is just the advantage of this
method as compared to the usual method of expansion
in oscillator functions.

Below, we shall give a short description of the techni-
ques used in calculation of some of the integrals which
are met in these calculations.

The radial oscillator function is

f+1/2
R, ()=N,r gexp{—-;—)\rz}Ln ar?) | (15)
— f+3/2 /
N, =(\/_g_.in. __(2_”______)1 2,)\=ﬂ):_1_, (16)
" 7 onl (gn+20 +1M h b?

1
where LE:/Z is a Laguerre polynomial In the momentum

representation the wave function Ry (k) has the same
form as (15) except fot a phase (-1)" .i'  and a factor
Ak= in the place of A,

Ee matrix elements of the two-particle Green func-
tion are conveniently calculated in the momentum repre-
sentation, since it is diagonal in this representation. Let
us write the two-particle wave functions as

g8y 0pnplpiysim>=2 <jm,jomp|im>x
17 2
am
my A Ymg?( )
Ry g KPR,y () Yy GYe )

then
M=<n1!21j1,n282]2, Jm]GO(E)ln lﬂljl,n szz,J m”>

=8, ,, 8,4 .6, .86 .8 .8 ,R(nnnniff),
101 Boly 3yiy Jplp 3T mm 12121z

Rinmpning 0f =<k, LEDR n 0 {Ke) |

1
L =5 IR L EOR K )>.
h2k21 szg 111 282 2
2m om (18)
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These integrals are calculated by using the following
relations

[~

1. [expi-axidx,
a
0
) o LN S
— 3 = [ expl-a(|E} + > S Nda,
|E!+E—(k12+k22) 0 " " (19)
2m

which give (for E<O0)

n,+no+n (+1n o
rrerme 1/2, 2

R=(-1) [C(nlniﬂ 1)C(nzn'zf’z)] (fl_w_) x
n1+n 2+n'1—+-n2' n1+n1'
v
T D IES R 28Dl 20-284]) 1t x
5 . o2 . 2/E|
X#EO a#(nln 18 1,S)#§=Oa#; (n2n2?2 ,v=15) }Ig1+22+y+3 (?;_),
(20)
Con“f)=n'n"1 (20 +2n+1) 11 (20 +2n "+ 1) 11 / 2 n+n’, (21)
a, (n’0.8) =lutm-Win "+ p=9 I(S=)! x
(20 +20+ DD +25-2u D1} (22)
1 n-1 n—k—1
I (B = - 2 k-1)1(=
2 B Y k=1( )1(-B) +
n—1
+(=8)  exp (B -Ei(-p)1], (23)
-Ei(-B) = [ expi-t}/tdt. (24)
B
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Accordingly, the evaluation of the double integrals (18)
is reduced to the calculation of the algebraic expression
(20)-(23) and the one dimensional integral Ei(-g3).

The matrix elements of the interaction V( rl,rz) are
most easily calculated in the coordinate representation
and in the present work of the programme of ref. /8/ was
used for this aim.

It is obvious from the representation given
above, that the wave functions of the present approach
are immediately obtained in the momentum space (for
the sake of simplicity, we here leave out the summation
over configurations):

<k, k > =G o (E)[<k m1><k2|j2m2>]1m. (25)

2 1Y sum 1 13

Making a double Fourier-transformation and reasoning
in a way analogous to the deduction of formula (20), we

obtain
_ (RIS
/ - Y I I E),
STy [Yl’lj 1(r1) ?2j2(r2) m ™ n,l 1nzfz(r1 Iy )(26)

In ) (rl,rz,E) :[daexp{—]E\a}fnlgl(rla)fn 0 (rza),

11722 0 22
(27)
1 gn+t f+2 ¢ 0 g foa)"
f'}, (ra) = +/ 373 (=) X
! Jromne +Dup¥Eb L e les/e
l+1/2 R 2
xL (—L > () )expt— —— (=) 1. (28)
I—lea) b ﬂ1+fl(ua) b

To normalize the wave functions we must sum a large
number of double integrals, but it can also be done in
a simpler way. The normalization integral is equal to

1"



< >=3 i>v CV C =
Uy 2= Tl g1, 6 ©
ij 0 0 (29)
=2 | ——|m><m]| 1 li>v C V.. C
# _ -H [/ S A

Hm (30)
If the sum over m runs to «~, the equality (30) is exact,
but in practice, the sum must be cut off. Then, by means
of equation (6) we obtain

<l >=2C7, (31)

This relation is an approximate one, the error con-
tained in it depends on the number of configurations N,
and numerical calculations have shown, that for N > 30
this error is <19,. -

A more exact formula for the normalization integral
can be obtained by using the identity

x2 - dx x ’
which gives

Jd < 1
< > == — 2 <
¥l 3E o pl E_T,

i>Vv. _C V. . C. . (32)
wy vo1j J
It is clear from’ (32) that the normalization integral
can be calculated with the same degree of exactness as
the coefficients C,, .

NUMERICAL RESULTS
a) The Single-Particle States

The Revai method described here, namely the sepa-
rable expansion of the potential (MR) was first applied
to a simpler problem: the determination of single -particle

states in a Saxon-Woods well/5/, Maybe it will be useful
to show how it works in this caseas compared to the usual

12
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Fig. 2. Wave function of the 2s state of 170 ( exact,
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diagonalization method (MD). The potential was chosen
to represent the 0 average well: Vo =51.3 MeV, a =
= .6289 fm, R = 3.1246 fm (= 1.24 fm .16 /3 )-

We now compare our results obtained with the two
methods mentioned above as functions of the number
of terms, N, in the expansion with the exact ones, ob-
tained by numerical integration. The results are expec-
ted to depend strongly on the parameter' b. In MD this
is actually so, the optimal values of b are very diffe-
rent for the strongly bound 1s state and the loosely
bound 2s state (1.55 fm and 2.25 fm, respectively). In
MR the optimal b’s are nearly identical (1.35 fm). In
the calculations it is usually wanted, that the approximate
wave functions are orthogonal but this is only the case,
when they are calculated with the same b. We must
therefore choose a common b for the 1s and 2s state
also in MD, and we choose b =1.90 fm. The results
of this calculation are given in Tables 1 and 2.

Table 1

Results for the 1s state. The exact binding energy is
E s = 31.1002 MeV. The non-filled columns mean, that
the values do not change any more with

. MD b=1,55 bm MD b=1,90 fm MR b=1,35 fm
Fygs MoV Eygs eV Eqgy MoV

1 31,0788 _ 31.0476 31.3456
2 31.0791 31,0861 31.1379
3 31,0997 31.0911 31.0955
4 31.0999 31.0968 31,0986
5 31,1000 31.0996 31.1001

6 31.1002 31,1001 31.1002
7 31.1001

8 31,1001

9 31.1001

0 31,1002
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Table 2

Results for the 2s state. The exact binding energy is:
E, =3.2084 MeV

N MD b=2.,25 fm MD b=1.90 fm MR b=1.35 fm
E2s' VeV E28, MeV EZS’ leV

1 .9968 2.1578 -
2 1.4268 2,1759 4.1457
3 2,9681 3.0258 3.4128
4 3.0620 33,0909 3.1632
5 3.1949 3.1301 3.205%
6 3.1949 3.1772 3.2123
7 3.1990 3.1834 3.2073
8 3.2039 3.1968 3.2080
9 3.2040 3.2001 3.2083
10 3.2072 3.2033 3.2083
11 3.2072 3.2052 3.2084
12 3.2082 3.2061

13 3.2082 3.2070

14 3.2083 3.2074

15 3.,2084 3.2078

Figures 1 and 2 show the wave function calculated by
MR and MD for different N-values, and the optimal b -
value. The difference between the two methods is clearly
seen, the Revai method gives more correct wave func-
tions, particularly for the weakly bound state. Further
even when the two methods give equally precise energy
values, the wave functions, calculated with MR are more
exact in the asymptotic region, than those of MD.

b) The 0% State of 80
As a mean field of the oxygen nucleus we shall again

use the Woods-Saxon potential with the parameters given
in Table 3. The spin-orbital term was chosen to be

16

- 1 d r-R\T1 5 3. . i
\Y =V_«x=— —[1+exp( )] (o). The residual interac-

S.0. 0 r dr a

tion we take to be

1 r

v 12)_Vres r—exp{ il }
with V.. =20.5 MeV, p =1.4 fm.

It is obvious, that equation (1) cannot be solved
exactly with such a potential energy. We can, however,
compare the MR and MD solutions with V(r12)=0 with
the corresponding exact solutions. In Tables 4 and 5
this is done for the eigenvalues of the states (2s,2s) 0+
and (1d 5/2,1d 5/2)%* for different values of N and b.
Figure 3 shows the functions R, (1) =<2s[(2s,25)0+> and it
is seen, as expected, that the asymptotic form of the
functions is more correct in MR than in MD.

In the case of V(r, ) #0 the configuration space was
limited to (= 0,,2,, j=1/2,38/2 ,5/2, and energy eigen-
values were calculated for a number of N-values, as
given in Table 6. The logarithm of the wave function
Inyp, Q) for Q=(0,0,2) 1is seen in fig. 4. It obviously
shows the correct %’three-particle” asymptotic form.
The difference between the wave functions calculated with
the MR and MD is growing with p, and for p.14 the MR
function is about 10® times larger than the MD one.

It is seen that the method suggested here gives a con-
vergence in the energy calculation for the ground state
180 which is at least as rapid as that of the MD. But
the MR gives the correct asymptotic form of the wave
functions even for a small number of basis functions,
whereas this is with MD obtained only at the expense
of enlarging the basis space to an extreme degree even

for moderate values of r,, f, or p.

We have here considered the energy E as eigen-
value. This was specially done in order to compare
our method with the standard diagonalization method.
Then we had to calculate many matrix elements <i|Gy(E) |j>
for different E values as long as the determinant (7)

17



Table 3

Parameters for potentials

Vo (¥eV) K (£u) a(fm)  Fg(fm)
53041 .216 l65 1.24
Table 4 or
Results for the (lds/o, 1d5/2 ) state. The exact
energy is E =8.1533 )ﬁ
g (o) 1=3 Bu6 N=10 N=15 N=21
287 MD 5.2159 6.6208 7.4558 7.7914 T.9442
1’»
¥R 7.9329 7.3368 7.9343 8.0159 8.0594
6 ML T7.1642 7.7868 8,0424 8.0743 8.,1268
1.687
7.2192 8.0289 8.1615 8,0915 8,1583
1.987 MD 6.6523  8,0987 8.1037 8.1311 8.1492
MR 6,.9818 8.5417 8.1057 8.1430 8,1581
2,287 ¥D 4.4633  7.3647 7.8817 8.1270 8,1459
MR 8.1153 8,0531 8.2154 8,1536
Table 5
Results for the (2s 2s) 0+ state. The exact energy is
E=6.472 MeV
B (fn) N=5 F=10 N=15 N=21
MD - 2,28569 4.1429 5.0571
1.387
MR 4,008E8 4,5476 5.6957 5.9685
1,687 MD 3.7544 5.1444 5.8586 6,0537
’ MR 4.5114 6.0298 6.4007 6.1766
MD 4,1255 6.1815 6.2264 6,3264
1.987 -
MR 4,2385 7.0822 6.2556 6.3967
D 2.,6883 5.9127 6.1187 6.4226
2,287
MR 3,3238 7.2237 6.2540 6.6056
18

10

10‘3........,\\..&..

1 2 3 ¢+ 5 6 7 8 9 10 11 122 13 fm

Fig. 3. Overla tegral <Ry (r)) |y N rot
(— exact,elfl-%M Rz._r.l_lf’b;i ‘3) (see text).

19



is different from zero within the given precision. At this
point, the MR differs from MD by requiring long cal-
culation time.

If, on the other hand, we want to calculate the cross
sections for direct reaction processes, where E can be
taken from the experiment it is more natural to consider
A (the depth of the mean field) or y (the coupling cons-

tant of the residual interaction) as eigenvalue. Then the -

asymptotic form of the wave function will be correct for

n

1 2 3 ‘ 5 c 7 8 9 10 p

Fig. 4. Wave function sl/(p,0,0,%) of the ground state of
180 (——— MR, - - - MD).

20

Table 6
Results for the 0' ground state (b=1.678 fm)

R=9 §=18 =30 N=45 H=63
MD -9,5268 ~10,0182 -10.2329 -10,2549 -10.,2938
MR -9,3887 -10.1956 -10.3262 ~10.2674 -10.3142

any choice of the oscillator basis space; only the asymp-
totic normalization will depend on this choice. In this
way MR can be said to be used to calculate the vertex
constant which enters into the diagram method of calcu-
lation of nuclear reaction cross sections / 7/,

In this case the matrix elements <i{G,(E)|j> shall
only be calculated one time for the experimental energy
value Ej-= Eex and the eigenvalue of A or , can be
found by usual matrix diagonalization methods. Then
MR will need approximately the same calculation time
as MD, but it still retains the advantages over this
method, which have been mentioned above.

One of the authors (J.B.) wants to express his gra-
titude towards JINR, Dubna, for an invitation to stay at
this institute for the period during which this work was
done, and the Danish Research Counsil for a travel grant.

APPENDIX

The wave function in the coordinate space (p,Q).
According to Eq. (5) the momentum space wave func-
tion can be written as

1 f—
Y <k Lk, jup,;IMC (A1
k21+k§+02#1#2 boeore “1F2( )
where |u p,;JIM> is a product of two single-particle
oscillator states coupled to total angular momentum J,

c is related to the energy eigenvalue: ¢ = - 2mE

he
21

<k1,k2|JM> =



and the coefficients 0#1#2 are the solutions of the li-
near system (6).

The transformation of (A.1) into the coordinate space
can be done conveniently in two steps. First, introducing
the hyperspherical variables (k,Q) instead of the two
vectors (k,,ky) Dby

2 .2 .2
k -kl+k2

. (A.2)
Q=(0 _ ,0 , a=arctg—2),
1 2 kl

- o ; being the three-dimensional solid angle of k;, the
product state |y pu,; IM> can be expressed /8/ as
a superposition of states of a six-dimensional harmonic
oscillator having the same number of oscillator quanta:

Iny €yd,,n505 J53IM>= NEn INn ﬂljl ffzjz;JM><Nn[nInz>EE ,
4 172
N+n=n +4n

12 (A.3)

where the following notation was used:

3Nt 12 0
<KQINnE 0, IM>=[ ———] kKexp{——;:—kix

(N+E+ 2)!

ljl
. 0
LB 22y y [IEM () (a.g)

K=2n +¢ 1+ﬂ2,

2
L§+ is the usual Laguerre-polynomial, and Y (Q) is

a six-dimensional hyperspherical function: i
4 4

i IM 1 2
(sina) x

Yéljlgz 2" (Q) =[ 2-(K+2)n!(n+ﬂ1+22+1)!]1/
o+ £1+3/2) -['(n+(53/2)

2
(cosa)

lo+%0 +% i Jg
PR (cos 20l ¥y (@)Y, (wp)l”. (A5)
1 2

n
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The restriction N+n=n,+n, in the sum (A.3) expresses
the conservation of the number of oscillator quanta.
A detailed description of the transformation (A.3) to-
gether with the discussion of the properties of the coef-
ficients <Nnjn;n ,>¢,¢, can be found in /8/,

By using (A.3) the wave function (A.1l) can be written
as

<k, K, |IM>=<kQ|IM> =

~ 3 <kQ|Nng_j ¢_j_;IMC

k2.c2 Nn 171272 Nn21j1£2j2
Uiy
lois (A.6)
with
C . = p3 c .. Nnjn_n_>
Nof 5000, nying n lingloi, re e,

n1+n2=N+n
The double Fourier transformation leading to the coor-
dinate representation of (A.6) can be now easily perfor-
med using_the expansion of the six-dimensional plane
wave expli(k Iyt korg)d in ter;n? of the six-dimen-
sional (hyper) spherical harmonics /?/. We obtain

<r1,r2lJM>=<p,Q]JM> =

¢
=2 F_(pY

Nn NK K
sk ig

where (p,) are the hyperspherical variables (A.2) for
the pair of vectors (r,,r,) and

jngM A7
vrede™ o (A.7)

l+s
Traepeml- HAL | 68)k o

2N! w31 %
Foo(p)=l——1"2n)" — [

NK (N+K+2)! p? 0 kZ+c?
(A.8)
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The asymptotic form of the wave function (A.7) for large
p can be obtained by using the standard methods for
asymptotic estimation of the integral (A.8). This gives

exp {—cpl

F ( ) - a —
NKPT T ONK ,5/2
confirming the form (13).

Let us look at the overlap integral of the one-particle

wave functions of 170 and the wave function of 1%0. For

simplicity we restrict ourselves to the lowest term

(A.9)

¢'1s1s in ¢¥. Then we obtain
_)I Ty 1 mkexp{—kbidk
<R, @), . @ f)ommmf 1 4 x
1s' 1 1s1s " 1" 2 Iy 0 k?+d2 1
<k _sin(k,r_)
g K2le {_kzb o, = (A.10)
0 2
k1+k2+c
2
2 Fo
exp {~xe &~ ———nu
b~/ 2
=A [ dx . A« // +%) { 1 - dymexp {d%(b% ) I
0 3/2 2
(b—-+x) Vo +x
2
x (1-é(dybZex))},
where q2. _ _2PE; E, is the one particle separation
= - 'T2_ H ‘ 1 p p

energy of the state in question in 170. In deriving (A.10)
we have twice used (19). We can use the following repre-
sentation of the function ¢(y):

B =1~ —L_ e®ly7]

for y » . (A.11)
p y
and inserting (A.11) into (A.10) we get
exp {—cr,, }
(l' )|¢’1 IS , 2)>:—-—2—-, for 1'2»00.
r3/2 (A.12)

2

24

REFERENCES

R N SO

. Bang J. et al. Particles and Nuclei, 1974, 5, p.263.

Merkuriev S.P. Sov. Journ. Nucl.Phys., 1974 2017 346.
Feng D.H., Ibarrva R.H., Vallieres M. Phys Lett.,

1973, 46B, p.37.

Feng D.H. et al. Phys.Lett., 1973, 47B, p.477.

Bang J., Gareev F.A., Jamale]ev R.M. Phys.Lett.,

1974, 493 p.239. -

Bang J., Gareev F.A. Nucl.Phys., 1974, A232, p.45.
Bang J. et al. Nucl.Phys., 1976m A264, p.157.

Bang J. et al. Nucl. Phys., to be published.

Rewai J. JINR, E4-9429, Dubna, 1975.

Artamonov S.A., Haritonov Ju.l. Preprint, Leningrad
Nuclear Physics Institute, 1973, 69.

Blokhintsev L.D., Borbely I., Dolinsky E.I. Particles
and Nuclei, 1977, 8, p.1189.

Raynal J. Nucl.Phys., 1976, A259, p.272.

Raynal J., Revai J. Nuovo Cim., 1970, A68, p.612.

Received by Publishing Department
on August 28 1978.

25



