ОБ ЪЕАИНЕННЫЙ ИНСТИТУТ
 ЯAEPHЫX
 ИССАЕАОВАНИЙ
 AYБHA

$N-13$
$53712-78$
'E.Nadjakov. R.Nojarov. G.Miankova. V.Antonova

MODEL OF COUPLED BANDS
IN EVEN-EVEN NUCLEI

E4-11831

E.Nadjakov, R.Nojarov, G.Miankova. V.Antonova

MODEL OF COUPLED BANDS
IN EVEN-EVEN NUCLEI

Sulimitled to "Болгарский физический журнал"

```
Наджаков Е., Ножаров P., Мянкова Г., Антонова В.
            Модель связанных полос в четно-четных ядрах
    Предложена модель свяэанных рогационных полос на основе развития
```

амильтониана по элементарным операгорам переходов, включаюшая пря-
ую вращательно-колебательную связь с $\beta-{ }^{\prime}$, $\gamma-$ и $\kappa^{\pi}=1^{+}$фононами. Ее
ожно рассматривать как обобщение модели пересекающихся полос. Обсу

базисе.
Работа выполнена в Лаборатории теоретической физики ОНяи
Препринт Объединенного института ядерных исследований. Дубна 1978
Nadjakov E., Nojarov R., Miankova G., Antonova V. E4-11831
Model of Coupled Bands in Even-Even Nuclei
A model of coupled rotational bands is proposed on the basis
of an expansion of the Hamiltonian in terms of elementary transition
operators, including direct rotation-vibrational coupling with $\beta-\gamma$
and $K^{\pi}=1+$ phonons. A method for diagonalization in a suitable
and $K^{\prime \prime}=1$ phonons. A method for diagonal
The investication has been performed at the Laboratory
of Theoretical Physics, JNR.

Preprint of the Joint Instifute for Nucleor Reseorch.

1. INTRODUCTION

The intensive research in the field of heavy-ion reactions during the last years allowed to reach high-spin rotational states in a number of nuclei. Various interesting effects (back- and downbending in the ground state band and even in the β-band,for cranking and band crossing; see for example refs. /1,2/, which were found by "in beam" spectroscopy, stimulated extensive theoretical investigations on the possible mechanisms of these phenomena. Besides the efforts towards a more adequate microscopic description, which have lead as yet at best to a qualitative agreement with the experiment, a plenty of phenomenological models has been proposed. A brief review, covering many of them, can be found in ref. $/ 3 /$. These models differ strongly in degree of phenomenology ranging from formal schemes to semi-microscopic calculations.

We shall point out only the band hybridization model $/ 4,5 /$ here, since, as it is generally accepted by many authors, almost any physical mechanism might be expressed in its language. The intersecting bands have been experimentally identified in three back-
bending nuclei: ${ }^{154} \mathrm{Gd} / 6 /,{ }^{154} \mathrm{Dy} / 7 /$ and ${ }^{156_{\mathrm{Iy}} / 8 /}$ and in other cases only parts of higher bands have been observed. The schematic cslculations /4/, dealing with two nuclei, indicate the necessity of takins a $K^{\boldsymbol{\pi}}=1^{+}$rotational band into account. This allows a reproduction of the experimental picture of the back- and downbending effecto.

This paper presents a model of coupled rotational bands in even-even nuclei. The model is derived in a natural way from the theory of coupled modes in terms of elementary transition operators, developed in a series of papers $/ 9-11 /$ and generalizes the threeband example, discussed earlier /12,13/. The present model has the advantage of handling a number of bands, which would be difficult in a microscopic theory.

2. MODEL HMIIIRONLAN

The description of the nuclear rotation-vibrational motion is based on transition operators $\mathrm{B}_{\alpha \mathrm{I}}^{+} / 9,10 /$ which are irreducible tensors of rank I with projection M.
$B_{\alpha I M}^{+}=\sum_{I_{1} M_{1} I_{2} M_{2}}\left[(n+1)\left(2 I_{1}+1\right)\left(2 I_{2}+1\right)\right]^{1 / 2}\left(\begin{array}{lll}I & I_{1} & I_{2} \\ \mathrm{~K} & K_{1} & -K_{2}\end{array}\right)\left(\begin{array}{lll}I & I_{1} & I_{2} \\ M & M_{1} & -M_{2}\end{array}\right)(-1)^{M_{2}-K_{2}} \times$

$$
\begin{equation*}
x\left|v_{2} I_{2} H_{2}\right\rangle\left\langle H_{1} I_{1} V_{1}\right|, \tag{2.1}
\end{equation*}
$$

where $\mathcal{\alpha}$ denotes the type of the phonon, created by $\mathrm{B}_{\alpha \mathrm{IM}}^{+}$, as well as the K-number of the resultant state. The states in eq. (2.1) are supposed to have good angular momentum, definite number of phonons of type $\alpha: n$ in the state $" 1 "$ and $n+1$ in the state $" 2^{\prime \prime}$, K-numbers respectively K_{1} and K_{2} and they do not need further specification (the index Y includes both K and n numbers). In the case $n=K=0$, $\boldsymbol{V}_{1}=\boldsymbol{V}_{2}$ the operator does not create any phonon and realizes transitions inside the same rotational bend. It is denoted by $\mathrm{R}_{\mathrm{IM}}^{+}$

We limit our treatment to three types of phonons: $\beta(\mathrm{I}=\mathrm{K}=0)$, $S(I=K=1)$ and $\gamma^{e}(I=K=2)$; as pointed out above, the second one was propesed in refs. /4/. It can be proved $/ 11 /$ that in this case the basic operators are:

$$
\begin{equation*}
B_{\alpha|K| M}^{+} \quad B_{\alpha|K| M}, R_{2 M}^{+} \quad \text { and } \quad \vec{I} \tag{2.2}
\end{equation*}
$$

where $\quad \alpha=\beta, S, \gamma^{2}$ and \vec{I} is tine angular momentum operator. In order to deal with hermitian irreducible tensor operators having time-reversal symmetries (\pm iveness under time reversal), we introduce the following combinations:

$$
\begin{align*}
& O_{00}^{\beta g(t)}=B_{\beta 00}^{+}+B_{\beta 00}, \quad O_{00}^{\beta g(-)}=\frac{1}{i}\left(B_{\beta 00}^{+}-B_{\beta 00}\right), \\
& O_{1 M}^{S g(+)}=\frac{1}{i}\left(B_{S 1 M}^{+}-(-)^{M} B_{S 1-M}\right), \quad O_{1 M}^{S g(-)}=B_{S 1 M}^{+}+(-)^{M} B_{S 1-M}, \\
& 0_{2 M}^{f g(t)}=B_{\gamma_{2 M}}^{+}+(-)^{M} B_{\gamma_{2}-M}, \quad O_{2 M}^{\gamma g(-)}=\frac{1}{i}\left(B_{g_{2 M}}^{+}-(-)^{M} B_{\ell_{2}-M}\right), \\
& 0_{1 M}^{S \beta(+)}=\frac{1}{i}\left(B_{S I M}^{+} B_{\beta 00}-(-)^{M} B_{\beta O O}^{+} B_{S 1-M}\right), \tag{2.3}\\
& O_{1 M}^{S \beta(-)}=B_{S 1 M}^{+} B_{\beta O O}+(-)^{M} B_{\beta O O}^{+} B_{S 1-M},
\end{align*}
$$

$$
\begin{aligned}
& O_{2 M}^{\gamma^{\beta}(+)}=B_{\gamma 2 M}^{+} B_{\beta 00}+(-)^{M} B_{\beta 00}^{+} B_{\gamma^{2}-M} \\
& O_{2 M}^{\gamma \beta(-)}=\frac{1}{i}\left(B_{\gamma 2 M}^{+} B_{\beta 00}-(-)^{M} B_{\beta 00}^{+} B_{\gamma 2-M}\right) \text {, }
\end{aligned}
$$

where the notation \qquad LM means coupling to angular momentur I by summation with Clebsch-Gordan coefficients.

Any physical quantity, i.e., a multipole operator acting between the states of our model space, which includes states with any number of three types of phonons $-\beta, S$ and ℓ, can be expanded in a power geries in the basic operators. In particular, the model Hamiltonian is obtained as an irreducible tensor operator of rank zero:

$$
\begin{equation*}
\hat{h}=\hat{h}_{R}+\hat{h}_{v}+\hat{h}_{c} \tag{2.4}
\end{equation*}
$$

with: $_{\hat{h}_{R}}=\frac{\vec{I}^{2}}{27}$

$$
\begin{equation*}
\hat{h}_{v}=w_{0} \hat{n}_{\beta}+w_{1} \hat{n}_{s}+w_{2} \hat{n}_{\beta \ell} \tag{2.5}
\end{equation*}
$$

$$
\hat{h}_{c}=\chi_{0} O_{00}^{\beta g(+)} \vec{I}^{2}+\chi_{1} \sqrt{\frac{3}{2}} O_{1}^{5 g(-)} T_{0}+\chi_{2} \sqrt{5} O_{2}^{p g(t)} T_{0}^{1}+
$$

$$
+X_{10} \sqrt{\frac{3}{2}} 0_{1}^{5 \beta(-)} \underbrace{5}_{0}+X_{12} \sqrt{\frac{5}{2}} 0_{1}^{0_{1}^{5 j(-)} T_{1}}+X_{20} \sqrt{5} O_{2}^{8 \beta(1+)} T_{2}^{0}
$$

where $T_{L M}=\frac{\vec{I} \vec{I} \ldots \vec{I}}{\underbrace{}_{L M}}$ means coupling of L operators \vec{I} to maximum ansular momentum L. The phonon number operators are $/ 14 /$:

$$
\begin{align*}
& \hat{n}_{\beta}=B_{\beta 00}^{+} B_{\beta 00}, \hat{n}_{s}=-\sqrt{3} B_{51}^{+} B_{51}, \hat{n}_{\gamma \ell}=\sqrt{5} B_{\gamma 22}^{+} B_{\gamma 2} \tag{2.6}\\
& \hat{L}_{0}
\end{align*}
$$

and they generate the vibrational part \hat{h}_{v} of \hat{h}. The terms in the rotation-vibrational coupling part \hat{h}_{c} represent the $\beta-g, s-g$, $\gamma-g, S-\beta, S-\beta$ and $\beta-\beta$ coupling terme with their respective coupling strengths. Eq. (2.4) can be obtained as a special case of the general expansion $/ 11$, including lowest order diagonal and nondiagonal terms, acting between the g, β, S and γ bands. It includes terms of second up to fourth order.

$$
\begin{align*}
& \text { We make the followi } \tag{2.7}\\
& \hat{h}_{R}=\sum_{\alpha=g, \beta, s, \phi} \frac{\vec{I}^{2} \hat{p}_{\alpha}}{27_{\alpha}}
\end{align*}
$$

with an intraband projection operator $\hat{\mathbf{P}}_{g}=1, \hat{\mathbf{P}}_{\alpha}=P\left(n_{\alpha}\right)$, $P\left(n_{\alpha}\right)=\left\{\begin{array}{l}0, \text { for } n_{\alpha}=0 \\ 1, \text { for } n_{\alpha} \neq 0\end{array}\right.$, where n_{α} is the number of phonons of type α and $7 g$ is the moment of inertia of the ground state band, and $\left[7_{g}^{-1}+7_{\alpha}^{-1}\right]^{-1}$ - of any band with α-phonons only. By means of eq. (2.7) we take into account the differences between the moments of inertia of our four bands in a simple way. We can rewrite the coupling Hamiltonian \hat{h}_{c} in a form, convenient for further

$$
\begin{aligned}
& \text { transformations: } \\
& \hat{h}_{c}=\chi_{0}\left(B_{\beta 00}^{+}+B_{\beta 00}\right) \vec{I}^{2}+\chi_{1} \sqrt{\frac{3}{2}}(B_{S 1}^{+}+\underbrace{B_{S 1}}_{0}) T_{1}+
\end{aligned}
$$

$$
\begin{align*}
& +\chi_{12} \sqrt{\frac{5}{2}}(B_{1}^{B_{S 1} B_{\gamma 22}}+\underbrace{B_{L_{22}}^{+} B_{S 1}}_{0}) T_{1}+\chi_{20} \sqrt{5}\left(B_{\beta 0}^{+} B_{\gamma 2}+B_{\beta 0} B_{\gamma 22}^{+}\right) T_{2} . \tag{2.8}
\end{align*}
$$

3. BASIC STATES AND MODEL HAMILTONIAN MATRIX

The basis of the operators (2.2) acting on the ground state is difficult to be handled since the operators have to be coupled by means of Clebsch-Gordan technique to definite angular momenta. To calculate the Hamiltonian matrix elements between such states is a complicated procedure. For this reason we have introduced /14/ the zero rank operators:

$$
\begin{equation*}
B_{0}^{+}=B_{\beta 0}^{+} \vec{I}^{2}, \quad B_{1}^{+}=B_{s 1_{1}^{+} T_{1}}, \quad B_{2}^{+}=B_{P_{2} T_{2}^{+}}^{T_{2}} \tag{3.1}
\end{equation*}
$$

Together with their hermitian conjugates they obey definite commutation relations $/ 14 /$.

The zero rank operators (3.1) can not bring any angular momentum into the state they create, so we make them acting not only
on the ground state, iut also on each stive of the ground-stiate rotational band with appropriate values of I and M : $\mid O I M>$. Such zrocedure is very convenient since the model Hamplonizr \hat{h} is invariant with respect to rotations, and thus it does not rix different values of I and M. Therefore the problem can be solved for each IM separately. Thus our basic states are:

$$
\begin{equation*}
|\alpha I M\rangle=\left|n_{0} n_{1} n_{2} I M\right\rangle=N_{\alpha}\left(b_{0}^{+}\right)^{n_{0}}\left(b_{1}^{+}\right)^{n_{1}}\left(b_{2}^{+}\right)^{n_{2}}|0 I M\rangle \tag{3.2}
\end{equation*}
$$ where n_{c}, n_{1}, n_{2} are the numbers of β, s, γ^{p} phonons (the elgenvalues of $\hat{n}_{\beta}, \hat{n}_{s}, \hat{n}_{f \ell}$), respectively.

The calculation of the normalizing factor N_{α}, performed elsevhere /14/, requires all the commutators of the operators in eqs. (3.1) $/ 14 /$ and it is useful to introduce the K-number operator $19 /$:

$$
\begin{equation*}
\hat{K}=-\sqrt{3} R_{I_{0}}^{+} \overrightarrow{I_{g}} \tag{3.3}
\end{equation*}
$$

which gives the K-number of the state when acting on the state, defined by eq. (3.2). It is easily seen indeed that its k-number eigenvalue is $\mathrm{K}=n_{1}+2 n_{2}$. Another operator sequence in eq. (3.2), namely with the operators of type "2" preceeding these of type "1", yields the same state, but different expressions for N_{α}. Thus one cets $/ 14 /$ two expressions:
$N_{\alpha}=\left[\prod_{V_{0}=1}^{n_{0}} v_{0} D D^{2}(I, O) \prod_{v_{1}=1}^{n_{1}} \frac{v_{1}}{6} D\left(I, K_{v_{1}}-1\right) \prod_{v_{2}=1}^{n_{2}} \frac{v_{2}}{20} D\left(I, K_{o V_{2}}-1\right) D\left(I, K_{o V_{2}}-2\right)\right]^{-1 / 2}=$
(3.4)
$=\left[\prod_{V_{0}=1}^{n_{0}} v_{0} D^{2}(I, 0) \prod_{V_{1}=1}^{n_{1}} \frac{v_{1}}{6} D\left(I, K_{V_{1}}-1\right) \prod_{V_{2}=1}^{n_{2}} \frac{v_{2}}{20} D\left(I, K_{n_{1}, V_{2}} 1\right) D\left(I, K_{n_{1}}-2\right)\right]^{-1 / 2}$
where $D(I, K)=I(I+1)-K(K+1)$ and $K_{n_{1} n_{2}}=n_{1}+2 n_{2}$. The states (3.2) are orthonormal. The D-coefficients vanish at ecch ziven value of the spin I for $K=I+1$. Tinis reflects ti:e fuct; that a band, suilt up on a honon state with definite in-numper does not contain rotational stites with spin $I<k$.

Before calculating the matrix elements of \overparen{h}, it is more convenient if we express the Hamiltonian (2.8) in terms of the new operators (3.1). It is only the term with χ_{12} in ec. (2.8) which needs special algebraic transformations - the other ones beine obtained directly using eqs. (3.1). Prom ref. /14/ we have:
and finally oq. (2.8) becomes:

$$
\begin{align*}
& \hat{h}_{c}=\chi_{0}\left(b_{0}^{+}+b_{0}\right)+\chi_{1} \sqrt{\frac{3}{2}}\left(b_{1}^{+}+b_{1}\right)+\chi_{2} \sqrt{5}\left(b_{2}^{+}+b_{2}\right)+ \\
+ & \chi_{10} \sqrt{\frac{3}{2}} \frac{1}{\vec{I}^{2}}\left(b_{0}^{+} b_{1}+b_{1}^{+} b_{0}\right)+\chi_{12} \sqrt{\frac{5}{2}} 2 \sqrt{3}\left(\frac{1}{\hat{\mathrm{k}}^{2}-\hat{k}-\overrightarrow{\mathrm{I}}^{2}} b_{1}^{+} b_{2}+b_{2}^{+} b_{1} \frac{1}{\hat{K}^{2}-\hat{k}-\overrightarrow{\mathrm{I}}^{2}}\right)+ \\
+ & \chi_{20} \sqrt{5} \frac{1}{\vec{I}^{2}}\left(b_{0}^{+} b_{2}+b_{2}^{+} b_{0}\right) \tag{3.6}
\end{align*}
$$

In this representation it is easy to calculate the Hamiltonian matrix elements with the help of eqs. (3.4) - the first of them is suitable for some of the terms in eq. (3.6), while the second expression is required by the other ones. Finally, we shall give an expression, ready for the calculation of the Hamiltonian matrix elements between the orthonormal states (3.2):

$$
\hat{h}\left|n_{0} n_{1} n_{2}\right\rangle=\left[\left(\frac{1}{27_{G}}+\sum_{\alpha=\beta, 5, \chi^{\prime}} \frac{P\left(n_{\alpha}\right)}{27_{\alpha}}\right) D(1,0)+\sum_{\alpha=\beta, 5, \psi} w_{\alpha} n_{\alpha}\right]\left|n_{c} n_{1} n_{2}\right\rangle+
$$

$$
\begin{align*}
& +\chi_{0} D(I, 0)\left[n_{0}^{1 / 2}\left|n_{0}-1 n_{1} n_{2}\right\rangle+\left(n_{0}+1\right)^{4 / 2}\left|n_{0}+1 n_{1} n_{2}\right\rangle\right]+ \\
& +\frac{\chi_{1}}{2}\left\{\left[n_{1} D(1, K-1)\right]^{1 / 2}\left|n_{0} n_{1}-1 n_{2}\right\rangle+\right. \\
& \left.+\left[\left(n_{1}+1\right) D(I, K)\right]^{1 / 2}\left|n_{0} n_{1}+1 n_{2}\right\rangle\right\}+ \\
& +\frac{\chi_{2}}{2}\left\{\left[n_{2} D(I, K-1) D(I, K-2)\right]^{1 / 2}\left|n_{0} n_{1} n_{2}-1\right\rangle+\right. \\
& \left.+\left[\left(n_{2}+1\right) D(1, K+1) D(1, K)\right]^{1 / 2}\left|n_{0} n_{1} n_{2}+1\right\rangle\right\}+ \\
& +\frac{\chi_{10}}{2}\left\{\left[\left(n_{0}+1\right) n_{1} D(1, k-1)\right]^{1 / 2}\left|n_{0}+1 n_{1}-1 n_{2}\right\rangle+\right. \\
& +\left[n_{0}\left(n_{1}+1\right) D(I, K)\right]^{1 / 2}\left|n_{0}-1 n_{1}+1 n_{2}\right\rangle- \\
& -\frac{\chi_{12}}{2}\left\{\left[\left(n_{1}+1\right) n_{2} D(I, K-1)\right]^{1 / 2}\left|n_{0} n_{1}+1 n_{2}-1\right\rangle+\right. \tag{3.7}\\
& \left.+\left[n_{1}\left(n_{2}+1\right) D(1, K)\right]^{1 / 2}\left|n_{0} n_{1}-1 \quad n_{2}+1\right\rangle\right\}+ \\
& +\frac{X_{20}}{2}\left\{\left[\left(n_{0}+1\right) n_{2} D(1, K-1) D(1, K-2)\right]^{1 / 2}\left|n_{0}+1 n_{1} n_{2}-1\right\rangle+\right. \\
& \left.+\left[n_{0}\left(n_{2}+1\right) D(I, K+1) D(I, K)\right]^{1 / 2}\left|n_{0}-1 n_{1} n_{2}+1\right\rangle\right\} .
\end{align*}
$$

After truncating the basis by the inclusion of a resonable number of low lying phonon states of the type (3.2), one may evaluate the matrix elements of the model Hamiltonian (2.4) by means of eq. (3.7) and diagonalize it by standard numerical methode to fit the experimental spectrum with an optimal choice of the parameters F_{α}, W_{α} and X_{μ}.
4. SRParable solution approiimarioly

In order to simplify the problem, in tinis section we are soing to consider only two types of phonons - β and $j \ell$, or β and s phonons. The K-number of the state is now simply $K_{n_{1} 0}=n_{1}$, or $K_{0 n_{2}}=2 n_{2}$, and eq. (3.4) reduces to:

$$
\begin{align*}
& N_{1}\left(n_{0} n_{1}\right)=\left[\prod_{V_{0}=1}^{n_{0}} V_{0} D^{2}(I, 0) \prod_{V_{1}=1}^{n_{1}} \frac{v_{1}}{6} D\left(I, K_{V_{1}}-1\right)\right]^{-1 / 2} \quad \text { for } \quad \text { s phonons or: } \\
& N_{2}\left(n_{0} n_{2}\right)=\left[\prod_{\nu_{0}=1}^{n_{0}} V_{0} D^{2}(1,0) \prod_{V_{2}=1}^{n_{2}} \frac{v_{2}}{20} D\left(I, K_{0 V_{2}}-1\right) D\left(I, K_{0 V_{2}}-2\right)\right]^{-1 / 2} \tag{4.1}
\end{align*}
$$

Thus eq. (3.8) becomes:

$$
\begin{equation*}
\hat{h}\left|n_{0} n_{\mu}\right\rangle=\left[E_{0}\left(n_{0}\right)+E_{\mu}\left(n_{\mu}\right)\right]\left|n_{0} n_{\mu}\right\rangle+ \tag{4.2}
\end{equation*}
$$

$+h_{0}\left(n_{0}\right)\left|n_{0}-1 n_{\mu}\right\rangle+h_{0}\left(n_{0}+1\right)\left|n_{0}+1 n_{\mu}\right\rangle+h_{\mu}\left(n_{\mu}\right)\left|n_{0} n_{\mu}-1\right\rangle+h_{\mu}\left(n_{\mu}+1\right)\left|n_{0} n_{\mu}+1\right\rangle$ With the notations:

$$
\begin{aligned}
& E_{0}\left(n_{0}\right)=\left[\frac{1}{27_{7}}+\frac{P\left(n_{0}\right)}{27_{0}}\right] D(1,0)+w_{0} n_{0}, \\
& E_{\mu}\left(n_{\mu}\right)=\frac{P\left(n_{\mu}\right)}{27_{\mu}} D(1,0)+w_{\mu} n_{\mu}, \\
& h_{0}\left(n_{0}\right)=\chi_{0} n_{0}^{1 / 2} D(1,0), \quad h_{1}\left(n_{1}\right)=\frac{\chi_{1}}{2}\left[n_{1} D\left(1, n_{1}-1\right)\right]_{,}^{1 / 2} \\
& h_{2}\left(n_{2}\right)=\frac{\chi_{2}}{2}\left[n_{2} D\left(1,2 n_{2}-1\right) D\left(1,2 n_{2}-2\right)\right]^{1 / 2}, \\
& \text { where } \mu=1 \text { or } 2 \text { refors to the case of s or } f^{4} \text { phonons. }
\end{aligned}
$$

For a given spin value I, the basis is composed of the states
$\left|n_{0} n_{\mu}\right\rangle$ with all the possible combinations of $n_{0}=0,1,2, \ldots$ and $2 n_{2} \leqslant I$. The Schrodinger equation is: $\hat{h}|\bar{\psi}\rangle=E|\Psi\rangle$, where $|\Psi\rangle=\sum_{n_{0} n_{\mu}} a\left(n_{0} n_{\mu}\right)\left|n_{0} n_{\mu}\right\rangle$. It is useful to write this matrice equation as an infinite system of equations, since \hat{h} has many zero matrix elements. Then the row, labelled by $n_{0} n_{\mu}$, is: $\left[E_{0}\left(n_{0}\right)+E_{\mu}\left(n_{\mu}\right)-E\right] a\left(n_{0} n_{\mu}\right)=h_{0}\left(n_{0}\right) a\left(n_{0}-1, n_{\mu}\right)+$
$+h_{0}\left(n_{0}+1\right) a\left(n_{0}+1, n_{\mu}\right)+h_{\mu}\left(n_{\mu}\right) a\left(n_{0,} n_{\mu}-1\right)+h_{\mu}\left(n_{\mu}+1\right) a\left(n_{0,} n_{\mu}+1\right)$.
By inserting $a\left(n_{0} n_{\mu}\right)=a_{0}\left(n_{c}\right) a_{\mu}\left(n_{\mu}\right), B=E_{0}+E_{\mu}$, eqs. (4.4) can be separated in two parts: an infinite sub-system for the β-phonons and a finite one (remember that $D(I, K)$ vanishes for $K=I$) for the μ^{μ}-phonons ($\mu=1$ or 2). After separation the phonon number is a natural index, ordering the syatem, so that the $K^{\text {th }}$ equation is:

$$
\begin{equation*}
\left[E_{\nu}-E_{v}(k)\right] a_{v}(k)=h_{v}(k) a_{v}(k-1)+h_{v}(k+1) a_{\nu}(k+1) \tag{4.5}
\end{equation*}
$$

where $V=0, \mu^{M}$, i.e., $V=0,1$ or $V=0,2$. The g.s.b. rotational energy is: $E_{0}(0)=I(I+1) / 27 g$. Defining:

$$
\Psi_{y}(k)=a_{v}(k) / a_{y}(k-1)
$$

one gets a recurrence relation for $\Psi_{V}(K)$:

$$
\begin{equation*}
h_{v}(k) / \bar{\Psi}_{v}(k)+h_{v}(k+1) \Psi_{v}(k+1)=E_{v}-E_{v}(k) \tag{4.6}
\end{equation*}
$$

and an equation for $\Psi_{V}(1)$:

$$
\begin{equation*}
h_{v}(1) \Psi_{v}(1)=E_{v}-E_{v}(0) \tag{4.7}
\end{equation*}
$$

which allows to obtain the following eigen-value infinite fraction equation:

$$
\begin{equation*}
E_{v}-E_{v}(0)=\frac{h_{v}^{2}(1)}{E_{v}-E_{v}(1)-\frac{h_{v}^{2}(2)}{E_{v}-E_{v}(2)-\ldots}} \tag{4.8}
\end{equation*}
$$

3oth systems ($V=0, \mu$) can be solved separately. Let E_{V} be a solution of eq. (4.8). Then one can get $\Psi_{V}(K)$ for any K, using eq. (4.6) with $\Psi_{\gamma}(1)$ from eq. (4.7). This means that the system (4.6), $K=1,2, \ldots$ is satisfied. In calculations one may cut off the infinite chain fraction for β-phonons ($\mathcal{V}=0$) at a fixed number, say 30 phonons, and include in it, in the case of f-phonons ($V=\mu$, finite fraction) all the allowed siates. Eq. (4.8) can be solved only numerically by evaluatine its righihand side for each value of E_{V}. Then one gets $\Psi_{V}(1)$ irom eq. (4.7) and one may find each $\dot{\Psi}_{\nu}(K)$ froin eqs. (4.6). They give the eigenvector components $a_{\nu}(K), k=0,1,2, \ldots$ within a constent factor, which may be used to normalize the vector.

An exact solution can be found in the case $\gamma=0$ (β-nhonons) if we take:

$$
\begin{equation*}
\Psi_{0}(k)=-\chi_{0} D(1,0) / w_{0} \sqrt{k}, \quad 7^{-1}=0 \tag{4.9}
\end{equation*}
$$

Then the equation set (4.6) is fulfilled since all the righthand sides become equal and depend no more on the index K. The ground-state band energies become:

$$
\begin{equation*}
E_{I}=\frac{I(I+1)}{27 g}-\frac{\chi_{0}^{2}}{\omega_{0}}[I(I+1)]^{2} \tag{4.10}
\end{equation*}
$$

If we consider the ground-state and β-phonon states, we can get a simple solution not only for the energies, but also for the eigenvector. After inserting $a_{0}=1$ we oitain the correlated
ground-state band:

$$
\begin{equation*}
|I M\rangle=\sum_{n=0}^{\infty} \frac{1}{\sqrt{n!}}\left[-\frac{\chi_{0} I(I+1)}{w_{0}}\right]^{n}|n I M\rangle \tag{4.11}
\end{equation*}
$$

where the $n^{\text {th }}$ term represents the admixture of the band built on the state with $n \beta$-phonons.

The physical meaning of the solution can be easily seen in a simplified treatment when one considers the ground-state band and a second band built on a state with one phonon of the type \mathcal{V} $(\nu=\beta$ or s, or $\ell)$. Then from eqs. (4.3) $\quad h_{v}(1) \neq 0, h_{\nu}(k)=0$ for $k \geqslant 2$ and eq. (4.8) reduces to a quadratic equation with the

$$
\begin{align*}
& \text { solutions: } \\
& E_{v}^{1,16}=\frac{E_{v}(0)+E_{v}(1)}{2} \pm\left\{\left[\frac{E_{v}(0)-E_{v}(1)}{2}\right]^{2}+h_{v}^{2}(1)\right\}^{1 / 2} \tag{4.12}
\end{align*}
$$

the second one corresponding to the yrast band. If the two bands intersect at spin $I=I_{0}$, for low spins $I \ll I_{c}$ the energy is $E^{\prime \prime} \approx E_{V}(0)$, i.e., near the g.s.b. energy and for $I \gg I_{0} E^{\prime \prime} \approx E_{y}(1)$, i.e., the well-known picture of band hybridization as a special case.

5. CONCLUSIOA

Celculations on realistic cases of band crossing are in progress. The parameters of the model Hamiltonian in these calculatione are extracted by a fit to experimental level energies. Such calculations must show on the first place how far in the high spin region the experiment might be reproduced phenomenologically. secondly, they car. give some rude estimates of the role of many phonon statee in the band hybridization picture since thie picture, a.c shown at the end of eec. 4, can be vievec upon as ε special cas.
of our model when we Gake only the cround and one-phonon bands into account. Thirdly, they can tive experimental values of the model Hamiltonian parameters, in particular - of the different type coupling strengiths. And finally, we hope to be aiole to reproduce the nodel Hamiltonian paraneters microscopically /15/ by a method, similar to the one, developed for the low-snin region $/ 13,16 /$ and thus - to obtain a simple microsconic description of band crossing and in particular - of the buck-bending.

REFEREICES

1. A.Johnson, Z.Şzymanski. Phys.Rpts., C7, 181 (1973). R.M.Lieder, H.Ryde. Adv.Nucl.Phys., 10, (1977)
2. R.Sorensen. Revs.Mod.Phys., 45, 353 (1973). F.S.Stephens. Revs.Mod.Phys., 47, 43 (1975).
3. E.Nadjakov, R.ivojarov. Bulg.J.Phys., 3, 352 (1976).
4. A.Molinari, T.Regge. Phys.Lett., 418, 93 (1972). R.A.Broglia, A.Molinäri, G.Pollarolo, T.Regge. Phys.Lett., 50B, 295 (1974); Phys.Lett., 57B, 1.13 (1975).
5. Y. Zl Masri, J.M.Ferté, R.Janssens, C.Michel, P.Monseu, J.Steyaert, J.Vervier. Nucl.Phys., A271, 133 (1976).
6. T.L.Khoo, F.M.Bernthal, J.S.Boyno, R.A.Warner. Phys.Rev.Lett., 31, 1146 (1973).
D.Ward, R.L.Graham, J.S.Geiger, H.R.Andrews. Phys.Lett., 448, 39 (1973).
7. H. Beuscher, W.F.Davidson, R.M.Lieder, A.Neskakis, C.MayerBrricke. Proc.Int.Conf. on Reactions between Complex Nuclei, Nashville, V.1, 189, North-Hołland, Ameterdan (1974).
8. H.R.Andrews, D.Ward, R.L.Graham, J.S.Geiger.

Nucl.Phys. A2I9, 141, (1974).
R.if.jieder, il. jeuscier, W.F.jevidson, A.Neskatis, C.MayerBfricke, $\mathrm{I} . \mathrm{l}$ Masri, P.Monseu, J.Stevaert, J.Vervier. Hys. Iett., 49B, 161 (1974).
Z.: M Mari, $\mathrm{H} . \mathrm{Janssens}, \mathrm{C.Michel}, \mathrm{P.Monseu}, \mathrm{J.Steyaert}$, J.Vervier. 2.f.Phys., A274, 113 (1975).
9. D. Nadjakov, I.N.Mikhailov, IWTP, Trieste, Freprint IC/7i/111,1971.
10. I.N.Mikhailov, E.Nadjakov, D.Karadjov. Particles and Nuclei (USCR), 4, 3i1 (1973).
11. L.Hadiakov. He:vy-Ion, Higin-ipin States and Nuclear Structure, Lisa, Vienna, v. 1, 493 (1975).
12. F. Wadjakov. ICPP, Prieste, Preprints: Io/75/34 and IC/75/37,1975.
13. A.Nadjukov. J.Fins. G: Ifucl.Fhys., 3, 1671 (1977).
14. D.Nadjakov, inilojarov, V.Antonova. to be publ. in sule.J.linys.
15. Z.iadjainov, V.Antonova, i.iłojarov. JINR, E4-11832, Trabne (1978) and in Julg. J.Phys. (1978).
16. D.Kuradjov, I.I.Mikhatilov, L.Nadjakov, I.Piperava. to appe:tr in Nucl.Phys. (1978);
D.Karadjov, I.J.Mikhailov, R.Nadjakov, I.Piperova. to apnear in fucl.phys. (1976).

```
Peceived by Publishing Department
    on August 15 1978.
```

