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1 , INTRODUCTICN 

The intensive research in the field of heavy-ion reactions 

during the last years allowed to reach high-spin rotational states 

in a number of nuclei. Various interesting effects (back- and down

bending in the ground state band and even in the j3 -band ,for cran

king and band crossing; see for example refs, /l ' 2
/ ) which were 

found by "in beam" spectroscopy, stimulated extensive theoretical 

investigations on the possible mechanisms of these phenomena. 

Besides the efforts towards a more adequate microscopic description, 

which have lead as yet at best to a qualitative agreement with the 

experiment, a plenty of phenomenological models has been proposed. 

A brief review, covering many of them, can be found in ref. /J/ 

These models differ strongly in degree of phenomenology ranging 

from formal schemes to semi-microscopic calculations. 

We shall point out only the band hybridization model I 4 ' 5/here, 

since, as it is general.l.y accepted by many authors, almost any 

physical mechanism might be expressed in its language. The inter

secting bands have been experimentally identified in three back-
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bending nuclei: 154Gd /G/, 154Dy /?/and 15~ /B/ and in other 

cases only parts of higher bands nave been observed. The sche~~Btic 

calculations / 4/, dealing with tuo nuclei, indicate tite necessity 

of taking a K'tl'= 1+ rotational band into account. This :Ulows a 

reproduction of the experimental picture of the back- and down

bending effects. 

Tnis paper presents a model of coupled rotational bands in 

even-even nuclei. The model is derived in a natural way from the 

theory of coupled modes in terms of elementary transition operators, 

developed in a series of papers /9- 1!/ and generalizes the three

band example, discussed earlier 112• 1}/. The present model has the 

adv:mtage of handling a number of bands, which would be difficult 

in a microscopic theory. 

2. >110DEL ILU.ULTONIAN 

The description of the nuclear rotation-vibrational motion is 

based on transition operators B~ 19 •
10

/ which are irreducible 

tensors of rank I with projection M. 

~(I I~ Iz)(I I 1 I 2) B~IM = L En+l )(2It1 )(2\+1 ~ K K~ -K2 M ~-~ (-1)MrK2 X 
IiNt I2N2 

X IV2 I2H2)(H~I 1 )f'tl• (2.1) 

where ~ denotes the type of the phonon, created by B+ <oGIM ' as well 

as the K-number of the rewltunt st«te. The states in ~q. ( 2.1) are 

supposed to have good angular momentum, definite number of phonons 

of type «. : n in the state "1" and n+ I in the state ".2", K-numbers 

respectively K1 and K2 and they do not need further specification 

(the index V includes both K and n numbers). In the case n=K=O, 

Vi = Y2 the operator does not create any phonon and realizes tran

sitions inside the same rotational band. It is denoted by R~. 

4 

Ve limit our treatment to three types of phonons: p (I=K=O), 

S (I=K=l) and f (I=K=2); as pointed out above, the second one was 

proposed in refs. / 4/. It can be proved /t1/ that in this case the 

basic operators are: 

+ + -
B"' IKIM' BoLIKIM' R2M and I ' (2.2) 

where d.= ,(3,:;, f and I is tile angul.ar momentum operator. 

In order to deal with hermitian irreducible tensor operators having 

time-reversal. symmetries ( ! iveness under time reversal}, we intro

duce the following combinations: 

M(+i B+ A. 000 = poo t Upoo' 
.P~c-' 1(B+ /3) 0 oo = T foOO - 'j3~o ' 

sg<+l-.! (B+ -HM8 ) 01M - i. ~fM $1-M ' O ~~H-H1 - B+ + HMB 
SiM . 51-M' 

on(+~ 
HI 

12 + + HM8 
u/2M ·'/2-M ' O!aH f (a+ MB ) 

211 = T u/ZM - H /2-M ' 

0 ~~(+)-.!. ( f/ 8 - <-t'B + 8 ) 
1M - i Sfl1 '/JOO '}00 $1-/'1 ' c2.:n 

OSJ3H + B M8+ B 
1M = B:11M 'foOO + (-) '.foOO Si-M' 

Sj(+)- i(B+ A. - + ) 051(-)- B+ B + 8 + 8 
ofM - i, 5i Uo"z B,z 8Si' 1M - ~=q Jl? '!~ 

111 1M 1M 1rl 
fjll+) + M + 

02M = BJf2.M Bpoo + H Bpoo B/Z-M 

/JlH 1 ( B... B - - 11 8+ B ) 02l1 =y 'J'ZM 'flO{) () 'flOO /2.-M, 

where the notation 1..----J means coupling to angular momentum L 
Ill 

by summation with Clebsch-Gordan coefficients. 
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Any physical quantity, i.e. 1 a multipole operator acting between 

the states of our monel space, which includes states with anY num

ber of three types of phonons - ft , $ and / , can be expanded in a 

power series in the basic operators. In particular, the model Hamil-

tonian is obtained as an irreducible tensor operator of rank zero: 

l=h+h+~ ti R V C 
(2.4) 

with:~ f 2 

hR = 2'f 
~ A ~ 

hv = Wo nfi + W1 n 5 + w2. n1 ( 2. 5) 

~c = XoO~:C+>y2 + X1ff o:~r-)Tt -r Xzi50t3
(+)'L -r 

L-----1 ,______. 
0 0 

+ 1rfOspr-Jrr + 115 st-(-) lf3'+J 
X1oVZ ~ X121201 ~ + Xzo"fs 0 2 ~ , 

0 ~ L------1 
0 0 

where fLM = 11 ... I means couplinB of L operators T to naxi

mum angular mome~~ L. The phonon number operators are /
14

/ 

"' + " B+ B A BT 11 
nJl = BJ)oo Bpoo' ns = -'{3 st s~' n! =Ys J'7 LJ!~ 

T ,.. " o 
( 2. 6) 

and they generate the vibrational part hv of h . The terms in the 

rotation-vibrational coupling part ~c represent the p-~ , $-3 , 
jf-~ , ~-j?> , S-1 and f-j?J coupling terms with .their respective 

coupling strengths. Eq. (2.4) can be obtained as a special case of 
/11/ .. 

the general expansion , including lowest order diagonal and non-

diagonal terms, acting between the ~ , ~ , S and Ji bands. It 

includes terms of second up to fourth order. 

lie make the following modification of the rotational part: 

h = C T2P~ 
R.X.=N3/!>,Jf 21"' (2.7) 

6 

with an intra band projection operator P~ = 1, P«. = P ( n«.), 

{ 
0 • for no(. =0 

p ( nd.) = 1 • for ll.<t. /:.0 • wher~ n~ is the number of phonons 

of type d. and 'J'~ is the moment of inertia of the ground state 

[ 
-t '1. -1]-1 band, and 'fa + iJ«. - or any band with d.. -phonons only. :ay 

means of eq. (2.7) we take into account the differences between the 

moments of inertia of our four bands in a simple way. We can rewrite 
~ 

the coupling Hamil ton ian he in a form, convenient for fUrther 

transformations: 

" + B )-2. . ,f3( + B ) he= Xo( Bfioo + poo I + Xtyz Bs~ + 
1 0 

+ X;/5 (B;~ ~8:~ + X,;a (B;, &51 
1
+ Bf' 5;)1; + 

0 ( 2.6) 

... xi;'{~( B;1 BIZ+ B;z Bs1)~ + X2oi5 ( B;o BJ2 + Bpo 8/z)Tz . 
•1--i-:' -1 :...r~ J I J ..J ._. c o . 2. I 0 

3. BASIC STATES A1ID l<IODEL HA.l>l!LTONIAN !•lATRIX 

The basis of the operators ( 2. 2) acting on the ground state 

is difficult to be handled since the operators have to be coupled 

by means of Clebsch-Gordan technique to definite angular momenta. 

To calculate the Hamiltonian matrix elements between such states is 

a complicated procedure. For this reason we have introduced /
14

/ 

the zero rank operators: 
+ + -2. 

ea=Bpol, 
+ a.+ 

g1 "' Usi ~ ' 
0 

g; = B;i)3 (3. 1) 

0 

Together with their hermitian conjugates they obey definite commu-

tation relations /t4/, 

The zero rank operators (3. 1) can not bring any angular momen

tum into the state they create, so we make them acting not on1y 

7 



on the eround state, aut also on each st<:.te of the ,_:;-roun<l-st:"te 

rotcJ.tional band with s.ppropriate values of I and M: I OIM >. Such ,. 
11rocedure is very convenient since the model HamU toni'lr. h is 

invaricmt with respect to rotations, and tnus it does not c.d.x dif

ferent values of I and M. Therefore the problem can oe solved for 

each IM separately. Thus our basic states are: 

+Jlo + nt( +)nz. 
\o<.IM>=Inon 1n2 IM>=N.x.(&o) (B1 ) &, IOIM>, (3.2) 

uhere no ' ni' Yl.z. are the numbers of J3 ' s ' r phonons 
A A A 

(the eigenvalues of nj3 'ns 'nJL ),respectively. 

The calculation of the norunlizi.ng factor No{. , perforned 

else1·1here 114/, requires all the commutators of the operators in 

eqs. (}.1)/ 14/ and it is useful to introduce the K-number ope

rator /9/: 
... +-
K =-131\L!J (3.3) 

0 

which eives the K-number of the state when acting on the state, 

defined by eq. (}.2). It is easily seen indeed that its ~-number 

eieenvalue is K = n 1 + 2n2 • "\not her operator sequence in eq. (). 2), 

namely uith the operators of type "2" preceeding these of type "1", 

yield$the same state, but different expressions for N.x. • Thus 

one Gets /! 4/ two expressions: 

-12 
[ 

n. 2. ni nz If a 
N"- = n 1o D n,oJn ~~ D(I,K~P~~ 1) ~ 2~ ](I,K0~ 1)D(I,Kov; 2)J = 

1{,::1 111~1 llz-1 (}.4) 

[ 

n. 1 n1 nz ~42 
= 0VoD(I,o)n ~{D(I,Kv10-1)n :~D(I,K11tYz 1)D(I,Kn

1
Yz2)j, 

Y0 =1 Y'1=1 J/2:1 

8 

J 

' 

1 

where D(I,Z) = I (I+l) - K(K+l) and Kn1 n
2 
= n 1 +2 n 2 • The 

states (3.2) are orti10norr::al. The D-coefficients VJ.Eish a.'; ec.ch 

:;iven value o·f ~i1e spin I for ~C = I + 1. '£!tis reflects tice f:::.ct 

that a band, Ju.ilt up on a ,0honon state Hith definite i~-nun:Jer 

does not contain rrt·it~on<l.l ::;t·ctes w1th spin I<: V. 

lJefore calculating ti1e ::Iatrix elerJents of h , it is nore con

venient if we express the Ha11iltonian (2.8) in terms of the new 

operators (3.1). It is only the term with x12 in ec;,. (2.8) which 

needs special algebraic transformations - the other ones beinG 

obtained directly using eqs. (3. 1). From ref. /! 4/ ~~e have: 

5 + B T = 213 t/) 
S1 Jl2 1 , 2 • ...,.., 1 ~2 
1 '----C:::-1 K - K - I 

0 

e/ -- + 
'/2 BSf I 1 = z. f3 ~ g1 . ·• -
f~ K2

-K- 12 

0 

and finally eq. (2.8) becomes: 

he: Xo((t-80} + xJHC: +t) + xz'[5((-t-e2) -1" 

+ x1of.I t2( ( gJ. +(eo)+ x12"flzf3( Kz-~ -tz(Bz+(&1 KZ~R _y2) t 

+ Xzo'{S };2((&2 T e;eJ 
I 

(3.5) 

(3. 6) 

In this representation it is easy to cd.lculate the Hamilto

nian matrix elements with the help of eqs. (3.4) - the first of 

them is sui table for some of the terms in eq. (3. 6), while the 

second expression is required by the other ones. Finally, we shall 

give an expression, ready for the calculation of the Hamiltonian 

matrix elements between the orthonormal states (} .2): 

" [( 1 P(n...)) ] hlnon1n2> = n +L: 2'lo(, D(I,O) +L. W,.:nol. rncntrlz.)-t-
a'l ot.-=fl,"'-1 <1 ct.=~·"'·! 
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+ Xo .D(l,O)[ nr2 1r1o-1 n! n2> +('ho-r.d'~Ino+-1 n1 n2>J + 

. ~~ 
+ ~1 {[n 1 .D(I,K-1)] lnonc1 n2> + 

]Vz } + [(nf+ 1) ](I,K) I no nrd n2> + 

+ ~2 { [ '112 D(I,K-1) D(I,K -2)]~ rno nj n2 -1) + 

+ [(712. +1) D(I ,K+1) D(I,K )]~ I no n1 n2 -t1)} f

+ ~-te[[(n0 +1)n,.,D(I,K-1)]42 Ino+1 ni-1 n2> + 

+[no(rl1 +1) D(I,K)]%/no-1 ni+1 n 2 >-

- X~z{[(n1+1)n2 D(I,K-1)]1/zlno n~+11la.-1> + (3. 7) 

+[ni(n2+1) .D(I,K)]v2 lrzo n1-1 n2+1>} + 

+ ~20 
{ [(nc+1) n2 D(I,K-1) D(I,K-2)]if21na+1 n~ n2.-1> + 

+[1lo(1l2+1) D(I,K+1) D(I,K)]% /'Tlo-11li n2-~-1> }· 

After truncating the basis by the inclusion of a reso

nable number of low lying phonon states of the type (3. 2), one 

may evaluate the matrix elements of the l!lOdel Hamiltonian (2.4) 

by means of eq. (3.7) and d.iagonalize it by standard numerical 

methods to fit the experimental spectrum with an optimal choice 

of the parameters l" . wo(, and x.fi . 

tO 

J 

' 

~ 

I 

L 

4. SEI'ARABLE SOLUTICN APPROXIMATIOn 

In order to simplify the problem, in tilis section we are e;oing 

to consider only two types of phonons - fo and jl, or f3 and ~ 

pnonons. The K-number of tile state is now simply K71i 0 = 'Yl1, or 

K0112 = 2 n21 and eq. (3.4) reduces to: 

[ 

n. 
2 

n1 Y.t -% 
N/non-J.)= nv.D(I,o)n6 D(I,1<~ 0 1)] for s phonons or: 

Yo"'1 14=1 f 
7l 'Y1. . -iL ( 4. 1) 

[ 

0 
2 2112 172 ~(nonz)= nVoD (1,0) n 20 D(I,Ko.;;1)D(I,K,Ii2.-Z) 

Yo=i ~-=1 
for ! phonons. 

~hus eq. (3.8) becomes: 

hI non,?= [ £0{n.') -r E,.<nttilino nfl> + 

(4.2) 
-t h0 (n.)l n.-.f nfi '> + h0 {no-t-1)lno·d nf"> + ~(1lr)l11c nf"-1. > + hrlrJr -rJ)/f!.nr+1) 

uith the notations: 

E ( [ 1 ~]D( ) on.)= 2Jt + 21o 1,0 + Wono , 

E ( P(nt'l}]. ) 
J'1 n/1)= ZJI"' (I,O + wf'1nf'1, (4.3) 

ho<no) = Xa no1f2 D(I,O), h1(n1 ) = ~4 
[ n~D(I, n1 -t)]~ 

h2(n2) = ~2 r~D(I,2n2-1) D(I,2n2.-2)]~ 
where f' .. 1 or 2 refers to the case of S or f phonons. 

For a given spin vaJ.ue I, the basis is composed of 'the states 
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IYlo nf'> Hith all the possible conbinations of flo = o, 1, 2, ••• 

=d 21!2. ~ I. The Schr~dincer equation is: hIt>::::: E If> , where 

1'¥> = L: a(n0 nf")ln, nr> . rt is useful to write this 
~on~ A 

mat rice eq_uation "-S an infinite system of equations, since h bas 

many zero matrix elements. Then the row, labelled by n. nr . is: 

[Eo<-nol+ E11 (nft)-E)a.(n.nf') = htl(n0)Q(nc-1,nr) + 

(4.4) 

+ h0(nu-t-1)a(nct1 1~) + hf'(n,-.}a (nc,nft-1) + hfl (n,.+1)a(rt
01 

rtr+1). 

By inserting a(n.nr)=a.(n.)a1ln.t) , B = E0+ Ef' ,eqs.(4.4) 

cun be separated in two parts: an infinite rub-system for the 

J3 -phonons and a finite one (remember that D(I,K) vanishes for 

K = I) for the f1 -phonons ( {If = 1 or 2). After separation the 

phonon number is a natural index, ordering the system, so that the 

Kth equation is: 

[E. 11 -E11 {K)]avtK) = h11(K)Q 11 (K-1) + ~y(K+1)Q.v(K+1) • (4. 5) 

where Y = O,f' , i.e., V= 0,1 or Y= 0,2. The g.s.b. rota-

tiona! energy is: E0 (0) = I(I+1)/2J~ 

'f'y(K} = Qy( K)/ Q 11 (K-1) 

one gets a recurrence relation for 

• Defining: 

'({, (K): 

hyfK)/Yy (II-) + h
11

(K+1)"'f;,!Kt1) = Ev- £
11

(K) 

and an equation for ~(1): 

hv(1J'Yvt1} = £,- Ev(O), 

(4. 6) 

(4.7) 
which allows to obtain the following eigen-value infinite fraction 

equation: 

12 

h~W Ev- Ev(O) -= 
h~(Z) (4.6) 

E11 - Ev{1)-

E - E (2)-II y 

Joth systems ( V = O,f' ) can be solved sepamtely. Let Ey 

be a solution of eq. (4.8}. Then one can get 'o/y(K) for any K, 

using eq. {4. 6) vith 'f;,. ( 1) fror:~ eq. ( 4. 7}. This r:1eans that the 

system (4.6}, K= 1,2, ••• is satisfied. In calculations one may 

cut off the infinite chain fmction for j3 -phonons ( }f = 0) at 

a fixed number, say 50 phonons, o-md include in it, in the case of 

f -phonons ( V =f , finite fraction) all the allowed acates. 

Eq. (4.8) can be solved only numerically by evaluutin[' its ri,;nt

hand side for each value of Ev • Then one gets 'f/
11 

(I) I rom 

eq. (4.7) and one may find each 1fv.{K) from eqs.(4.6). They give 

the eigenvector components Q11 (K), K= 0, 1,2,... 1o1ithin a const2.nt 

factor, which may be used to normalize the vector. 

An exact SOlution can be found in the case y = 0 (p -9h0nons) 

if v1e take: 

'P0 (t<} = - Xo D(I,O)/ W0 (K 1 l
-1-

. - 0. (4.9) 

Then the equation set (4.6) is fulfilled since all the ri,;ht

hand sides become equal and depend no more on the index K. The 

ground-state band energies become: 

E = ICI+J) 
I 2 1~ 

2. 112. 
_ "X; [l(I +1b 

Wo 
(4.10) 

If we consider the ground-state and j3 -phonon state~, we can get 

a simple solution not only for the energies, but also for the 

eigenvector. After inserting Q
0 

= 1 we obtain the correlated 
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ground-state band: 

I IM> = ~ _1 [- Xo ~(I+t)Jnl ni M> 

n=o Vnl 0 

(4.11) 

where the nth term represents the adnixture of the band built on 

the state with n {3 -phonons. 

The physical meanint; of the solution can be easily seen in a 

simplified treatment when one considers the ground-state band and 

a second band built on a state with one phonon of the type )f 

( v = ~ or S , or J- ) . Then from eq s. (4.}) h
11

(1) .;. o, hv(k)=O 

for k ~ 2 and eq. (4.8) reduces to a quadratic equation wi.th the 

solutions: 

E''u = EviO)-+ Ev(1) + { [ EvlO)- Evi1} 12 
12 )}% 

v r. - +nv(1 
~ 2 .I 

( 4. 12) 

the second one corresponding to the yrast band. If the two bands 

intersect at spin I = I
0

, for low spins I<< Ic 

Euz Elf(O), i.e.,near the g.s.b. energy and for 

the energy ie 
II 

I>> I
0 

E ¢E 11(1), 

i.e., the well-known picture of band hybridization as a special case. 

5. CONCLUSIOH 

Calculations on realistic cases of band crossing are in. pro

gress. The parameters of the model Hamiltonian in these calcula

tions are extracted by a fit to experimental level energie e. Such 

calculations must shav1 on thE' first place ho•: far in the high spin 

region the experiment might be. reproduced. phenomenologically. 

Secondly, they car. give EJOD16 rude eat ina tee of the role of many 

phonon statef. in the bane hybridization picture since thiE pictun., 

a.c s.'lor>n at the end of sec. 4, can be vie't:ece upon ae. e special cas_ 

tii 

of our oodel uhen v1e i;ake only the c;round and one-phonon bwl.ds 

into account. Thirdly, they can Jive experimental values of the 

model Hamiltonian parai".eters, in p..'lrticular - of the different 

type coupling strengths. And finally, we hope to oe able to repro

duce the nodel Hamiltonian para1~eters nicroscopically /! 5
/ by a 

method, silllilar ~o the one, developed for the low-sl)in re-

gion /13' 16/ and thus - to obtain a simple microscopic description 

of band crossin;; and in particular - of the back-bending. 
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