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A model of coupled rotational bands is proposed on the basis

of an expansion of the Hamiltonian in terms of elementary transition

operators, including direct rotation-vibrational coupling with 8 -, y -

and K7 = 1% phonons. A method for diagonalization in a suitable
constructed multi-phonon basis is discussed.
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1. INTRODUCTION

The inteneive research in the field of heavy-~ion reactions
during the last years allowed to reach high-spin rotational states
in a number of nuclei. Various interesting effects (back- and down-
bending in the ground state band and even in the f3 ~band,for cran—
king and band crossing; see for example refs. /1,2/ ) which were
found by "in beam" spectroscopy, stimulated extensive theoretical
investigations on the possible mechanisms of these phenomena.
Besides the efforts towards a more adequate microscopic description,
which have lead as yet at best to a qualitative agreement with the
experiment, a plenty of phenomenological models has been proposed.

A brief review, covering many of them, can be found in ref. /3/
These models differ strongly in degree of phenomenology ranging
from formal schemes to semi-microscopic calculations.

We shall point out only the band hybridization model /4'5/here,
since, as it is generally accepted by many anthors, almost any
physicel mechanism might be expressed in its language. The inter-
secting bands have been experimentally identified in three back~



bending nuclei: 15A’C}d ’/G/, ‘54Dy 11/ and 1561)3! 8/ and in other
cases only parts of higher bands have been observed. The schematic
cilculations /4/, dealing with two nuclei, indicate the necessity
of taking a Kw= 1 rotational band into account. This allows a
reproduction of the experimental picture of the back- and down-
bending effects.

This paper presents a model of coupled rotational bands in
even-even nuclei. The model is derived in a natural way from the
theory of coupled modes in terms of elementary transition operators,

/9=11/

developed in a series of papers and generalizes the three-
band example, discussed earlier /12"3/. The present model has the
advantage of handling a number of bands, which would be difficult

in a microscopic theory.

2. MODEL HAMILTONIAN

The description of the nuclear rotation-vibrational motion is

+ /9,10/

based on transition operators B which are irreducible

tensors of rank I with projection M.

%l11, L\[11,1
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X v, M KH, I Y, (2.1)

where o denotes the type of the phonon, created by B;IH , a8 well
as the K-number of the resultant stute. The states in ®q. (2.1) are
supposed to have good angular mcmentum, definite number of phonons
of type ol : n in the state "1" and n+! in the state "2", K-numbers
respectively Kl and K2 and they do not need further specification

(the index Y includes both K and n numbers). In the case n=K=0,
Vi =Y, the operator does not create any phonon and realizes tran-

gitions inside the same rotational band. It is denoted by Rh.

¥We limit our treatment to three types of phonons: fb (I=k=0),
S (I=E=1) and f* (I=K=2); as pointed out abave, the second one was
propoped in refs. /4/. It can be proved 1/ that in this case the
basic operators are:
B B RL, ana T (2.2)
o [KIM" " |K|M' "2 ’ )
where o = ﬁ,s, JL and I is the angular momentum operator.
In order to deal with hermitian irreducible tensor operators having

time-reversal symmetries ( f iveness under time reversal), we intro-

duce the following combinations:
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where the notation « 1 means coupling to angular momentum L
by ¢

by summation with Clebsch-Gordan ccefficients.



Any physical quantity, i.e.,a miltipole operator acting between
the states of our model space, which includes states with any num-
ber of three types of phonons - jS , S and f , can be expanded in a
power peries in the basic operators. In particular, the model Hamil-

tonian is obtained us an irreducible tensor operator of rank zero:

‘I = kR + Lv + L‘c (2.4)

h, =W Mg + Wy Mg + W, Ny

o= 02T - IF 07T, A A
s 5 +
+X40V—0 P( XﬂZY—O ﬂ >T XzofOH() z ’

(2.5)

- > — —
where TLM =II..,. I means coupling of I operators I to maxi-

LM /14/
mumn angular momentum L. The phonon number operators are . :
A + A + A +
iy = B Byas» s =V By By My =8B Be
= A o

and they generate the vibrational paft hv of h . The terms in the
rotation-vibrational coupling part hc represent the ﬁ-a ,5-3
Al-ﬁ 5-13 , S-JY and Jf-f:) coupling terms with their respective
coupling strengths. Ba. (2.4) can be obtained as a special case of
the general expansion /m/ , including lowest order diagonal and non-
diagonal terms, acting between the 'y B S and Jf bands. It
includes terms of second up to fourth order.

We make the fo].lowmg modification of the rotational part:

i\‘ _ VL: 1 Pa.

R A= Gt 23,0‘ (2.7)

with an intraband projection operator f’% =1, i’d_ =P(n,),

0, for My =0
P(n,) = { 1, for Ng#0 where N, is the number of phonons
of type o and '}3 is the moment of inertia of the ground state
band, and [’}a -1] ' of any band with ol -phonons only. By
means of eq. (2.7) we take into account the differences between the
moments of inertia of our Afour bands in a simple way. We can rewrite
the coupling Hamiltonian hc in a form, convenient for further

transformations:

l‘(: = XO( B_;;oo+B oo)TZ + Xl@{&?i + 51)7; *
'4—-:‘_‘6__4

AL (B}:BE:E_JL__E}:E * Yoo 'zé(B;oBsﬁ B B;)Ta +

(2.8)

2

+ XQYZE(BS} B, + BJlZ B:i) + Xzar(f)ﬁa + Bpo Bau})rr ]

3. BASIC STATES AND MODEL HAMILTONIAN MATRIX

The baeis of the operators (2.2) acting on the ground state
ig difficult to be handled since the operators have to be coupled
by means of Clebsch~Gordan technique to definite angular momenta.
Po calculate the Hamiltonian matrix elements between such states is
/14/

a complicated procedure. For this reason we have introduced

the zero rank operators:
+ pt T2 + + + pt
gozﬁﬁol L} g4 :BSQ‘:E ’ gZ:BJQ‘_l‘; . (3.1)
2

Together with their hermitian conjugates they obey definite comm-
tation relations /14/.
The zero rank operators (3.1) can not bring any angular momen-

tum into the state they create, so we make them acting not only



on the ground state, but also on each stute of the aground-stute
rotational band with appropriate values of I and M: | OIM > . Such
A
procedure is very convenient since the model Hamiltonian ;1 is
invariant with respect to rotations, and tius it does not nix dif-
ferent values of I and M. Therefore the problem can be solved for

each IM separately. Thus our basic states are:

I PR PR
‘&1M>:lnon1nzIM>:N¢(go) (gi) (gz) [0IM)> , (3.2)
where M, , 7, nz are the numbers of [5 S, {F phonons
(the eigenvalues of nP , 71.5 , n&‘ )>respectively.
The calculation of the normalizing factor N;‘ » performed

elsewhere /14/, requires all the commtators of the operators in

(3.1)/14/
9/,

K =¥3 P\E . (3.3)

which gives the K-number of the state when acting on the state,

eys. and it is useful to introduce the X-number ope~

rator

defined by eq. (3.2). It is easily seen indeed that its K~number

eigenvalue is K = N, + Zn2 . Another operator sequence in eq.(3.2),

namely with the operators of type "2" preceeding these of type ™"i",

yieldsthe same state, but different expreseions for N;(' « Thus

/14/

one gets two expressions:

%

1D’ IO)HJD(IKM ﬂ S DK, OD(14,,-2) -

V=1 Vi=1 (3.4)
n, -%
H%D(Io)ﬂ #0001 5000k, 90104,
Yoot lZ )

where D(I,X) = I{I+1) - E(K+1) and Kﬂz'nz:ni+2n2 . The
states (3.2) zare ortnonormal, The D-coefficients vunish &% ezch
ziven value of the spin I for X = I + 1. This reflects tie fuct
that a band, ouilt up on a nhonon state with definite K-nurnoer
does not contain retational states with spin }c}i.

Hefore calculating tne nutrix elenents of h , it is more con~
venient if we express the Hamiltonian (2.8) in terms of the new
operators (3.1). It is only the term with XIZ in eq. (2.8) which
needs special algebraic transformations -~ the other ones heing
PALY:

obtained directly using eqs. (3.1). From re we have:

tp 7. 203 5 - y f
BMBJ!in' 5 _.zgigz B‘;ZBS!L:ZEZZ&T———_
e =

K X n T
(3.5)
and finally eq. (2.8) vecomes:
b= X6 ¢ XNEl+8) + LB e -
KB 58 40) X B oP (bl U )
(3.6)

' Xwﬁ—';:z(g:gz +4,4,).

In this representation it is easy to calculate the Hamilto-
nian motrix elements with the help of eas. (3.4) ~ the first of -
them is suitable for some of the terms in eq. (3.6), while the
second expression is required by the other ones. Finally, we shall
give an expression, ready for the calculation of the Hamiltonian
matrix elements between the orthonormal states (3.2):

A P(n) ]
hlnon1n2> - ‘:(23¢i d%f 23@) I,O) :%;‘;‘ddnd ,nanin.?)"'



e X, DO [Nt > s e m, m>] +
+ 7%&{[%1 D(I,K-i)]%!no Ng-1 N> +
+[(ng+1) ]J(I,K)]i/2 In, Ny+1 n2>} +
+ -xf { [, D1, K1) DOLK-2)] 2 Im, m, my-1> +
¢ [m+1) DA Ket) DOLK)] 2 Im n et} +
X“{[(n +0)n, D(1,K- 1] [M+1 n-1M,> +
*m(m,+1) D(I,K)]%’;na—i n+n,> -
- lzg{[(nx*i)ﬂz D(I,K-i)]%l'no N+t Ny-1) + (3.7
+[ng(n,+1) D(I,K)]i/zlno ny-1 n2+1>} +
+‘x§@{[(noﬂ)nzD(I,K-i)D(I,K-z)}%lnoq N, My-1> +
s{fitgrt) DOKAD(LKI] 11t 1y e 13}
After truncating the basis by the inclusion of a reso-
nable number of low lying phonon states of the type (3.2), one
may evaluate the matrix elements of the model Hamiltonian (2.4)
by means of eq. (3.7) and diagonalize it by standard numericel

metheds to fit the experimental spectrum with an optimal choice

of the parameters }d', U, and Xf‘ .

10

A h‘ T

4. SEPARABLE SOLUTION APPROXIMATION

In order to simplify the problem, in this section we are zoing
to consider only iwo types of phonons - ]3 and }l, or f} and S
vhonons. The K-number of the state is now simply Kn10= Ny, or

Ko,nz= 2n,, and eq. (3.4) reduces to:

-
N(n n [ ”VD(I 0)” wD(I K —1] for S phonons or:
¥,=1 Vr
- (4.1)
Noinyny) [Hfﬂaohn DIMW.UNL&HQﬂ

for Jﬁ phonons.

Thus eq. (3.8) becomes:

hingn> =[Eo(n + Ey(ma)]inome> +

(4.2}
+ ho(Nno)in,-1 N> + h,,(nﬁ-i)fnaﬁnf,) +l,ﬁ(nf.')m.,nf,,-1) thpMr it £

with the notations:

= 75, %?]um+wmu

P(’n

hoMy) = Xo n:/2 D(1,0), h,tny) = [mD(I n,-1 )]

(4.3)
%

hy(ny = 32 [m2 D(1,2m,-1) D(Lz”'f‘?’] h

where f{ = 1 or 2 refers to the case of 8 or f phonons.

For a given spin velue I, the basis is composed of the states

n



’no Tl‘q) with #11 the possible combinations of 7, = 0, 1, 2,

"
end 2M, £ I. The Schrdinger equation is: hIP)d = [ 1¥> , where
h”) :‘Z:‘n a(nonfd),mn/"> . It is useful to write this
Mo N »
matrice ejuation ws an infinite system of equations, since h has

many zero matrix elements. Then the row, labelled by N, "/" , is:

[E4n,) + E) ~EJaimany) = hy(n,) a(ne-t,ng) +
(4.4)

+h,(m,+ 1)a(n,+1,n/.,) + hp (nr.)a (n,,,n,.,-1 )+h o (np+1}a(no, ).

By inserting a(n,nr)zao(nc)aﬁ(nr,l » B=E+ Ef‘ yea5.(4.4)
can be separated in two parts: an infinite sub~-gystem for the
P -phonons and a finite one (remember that D(I,K) vanishes for
K = I) for the l‘( -phonons ( /\1 = 1 or 2). After separation the
phonon numober is a natural index, ordering the system, so that the

Kth equation is:

[E,-E 0] @y6) = k)@, (k-1) + b (k+1) Gy (K+1) . (4.5)

where ¥ = 0,]‘1 » i.e.s V=0, or y=0,2, The g.5.b. rota-
tional energy is: EO(O) = I(I+1)/2'a‘? . Defining:

Vy(K) = ay(K)/ a,(k-1)

one gets a recurrence relation for \K(K):

hyt)/F, () + h (K Y, (Ket) = E, - E,(K) (4.6)
and an equation for ‘Pv(i):

h(0¥,1) = E, - E,(0), (4.7)

which allows to obtain the following eigen-value infinite fraction

equation:

12

hy (1)
-, (1) - hu@) e
E,-E,2)- ...

E, -E,(0) =

Joth systems ( Y = 0,]‘1 ) can be solved separately. Let B,
be a solution of eq. (4.8). Then one can get ‘PY(K) for any K,
using eq. {4.6) with \K_(l) from eq. (4.7). This means that the
systen (4.6), K= 1,2,... is satisfied. In calculations one may
cut off the infinite chain fraction for p -phonons ( J = 0) at
a fixed number, say 30 phonons, and include in it, in the case of
F ~phonons ( =f1 y, finite fraction) all the allowed s:iates.
Eq. (4.8) can be solved only numerically by evaluating its rigni-
hand side for each value of E, . Then one gets ‘Vy(i) from
eq. (4.7) and one may find each 1Hf(}{) from eqs.(4.6). They give
the eigenvector components QV(K), K= 0,1,2,... within a ccnstont
factor, which may be used to normalize the vector.

An exact solution can be found in the case y = 0 (p -phonons)

if ve take:
1

Fol) = - X DLO/w ik , 77'=0. (4.9)

Then the equation set (4.6) is fulfilled since all the right-
hand sides become equal and depend no more on the index K. The

ground-state band energies become:

(1+1) on 2
E, =%§ - a—,o[l(m)] .

If we consider the ground-state and f) ~phonon states, we can get

(4.10)

a simple solution not only for the energies, but also for the
eigenvector. After inserting a, = 1 we obtain the correlated

13



ground-state band: of our model when we tuke only the ground and one-phonon binds

. .. into account. Thirdly, they can give experimental vilues of the
N Xo I(1+1) _
[IM> = Z -2 InIM . (4.11) model Hamiltonian parameters, in particular - of the different
| W )
n=0 n type coupling strengths. And finally, we hope to ve abvle to repro-
th .
where the n term represents the adrixture of the band built on duce the rodel Hamiltonian parameters microscopically /15/ v a
the state with n ﬁ ~phonons. method, similar to the one, developed for the low-snin  re-
The physical meaning of the solution can be easily seen in a gion /13,16/ and thus - to obtain a simple microscovic description
simplified treatment when one considers the ground-state band and of band crossing and in particular - of the back-bending.
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