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EaHr E., To6oKMBH B. 

Hay'!eHHe s¢¢eKTOB npoHHKHOBeHHSI 'lepea 6apbep 

B pS!lHOBKTHBHOM HCUYCKSHHH CJlO>KHbiX S!Oep 

E4 · ll825 

C UeJlblO HCCJleOOBSHHSI B03MO>KHOCTeli Bbi6opa UOTeHUHBJlbHOI'O 6apbepa 

H ere BJlHSIHHSI HS BOJlHOBYIO <J>yHKUHIO KCUyllleHHOlf 'IBCTHUbl B npOUeCCaX 

pa!lKOBKTHBHOI'O pacnaoa paCCMaTpKaaeTCSI TpeX'IBCTH'IHBSI MOoenh: nae 

'IBCTHUhi, B38HMO!leliCTBYIOIIlHe !lpyr C IIPYI'OM H C CHJlOBbiM UeHTpOM. llnSI 

peweHHSI CHCTeMhl CBSI38HHbiX liHTerpaJlbHbiX ypaBHeHHlf, OUHCb!BSIOIIlHX 

CHCTeMy, ncnonbayeTCSI Me Too HTepaunll. Oony'leHo TO'! HOe Bbipa>KeHHe 

!IJ1SI WHPHHhi pa!lHOaKTHBHoro pacna11a. OoKaaaHo, 'ITO wKpKHa pa!l<tOBKTI!B

HOro paCUBIIB 'IYBCTBKT9JlbHB K ~160py OUTK'I9CKOI'O UOTeHUHBJlB H OUTH'IeC

KHll UOT9HUHBJ1 1 HCKB>KSIOIIlHlf BOJlHOBYIO <J>yHKUHIO HCnyllleHHOli 'IBCTHllhl 1 

He06XOIIHMO Bbi6paTb TBKfiM 06pa30M, 'IT06b! OH C HBH60Jlblll9H B03MO>KHOlf 

TO'IHOCTbiO annpOKCHMHpOBBJl UOTeHUHSJl B3BHMO!l9HCTBHSI M9>KIIY HCUyllleHHOlf 

'lacrauell n ao'lepHHM SIIIPOM. 

Pa6ora BhmonHeHa B Jla6oparopuu TeopeTn'leCKoll ¢H3HKH OHHM. 

Coo6weHHe 06'bellHH9HHOI'O HHCTHTyTa S!JlepHblX HCCJlellOBSHHA. lly6Ha 1978 

Bang J., 'I'obocman W. E4-ll825 
Study of Barrier Penetration Effects in the Radioactive 
Emision of Composite Particles 

In the expression for the decay width given in two recent 
approximate analyses there appears to be a lack of uniqueness 
of the choice of the barrier used to distort the wave function 
of the emitted particle. 'This question is studied with a simple three
body model for which an exact expression for the decay width may 
be found. In that model it is seen that the potentiar distorting the 
emitted particle wave function should be the best possible appro
ximation to the true interaction potential acting between the emitted 
particle and the daughter nucleus. 

'The investigation has been performed at the Laboratory 
of 'Theoretical Physics, JINR. 
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The width for rad;oactive decay given in two recent 
approximate analyses 1, 2/ is 

2 
r = 2Jr 1<1/J I v - u I <ll >I , 

DE DE DE P 
(1) 

where <llp is the wave function for the parent nucleus, 
1/JDE is the daughter nucleus + emitted particles wave 
function distorted by optical potential U DE. and V DE is 
the true interaction potential between the daughter nucleus 
and the emitted particle. The derivations of this expres
sion do not appear to provide a criterion for the choice 
of the optical potential UDE : In this report we analyze 
a three body model which exhibits radioactive emission 
of a composite particle. In this model one can deduce the 
exact expression for the decay width. From this expres
sion one can see that the calculated width will have a sen
sitivity to the choice of UDE which depends on the extent 
to which correlation effects are neglected in the parent 
nucleus wave function <IJP • The best choice for UDE is then 
seen to be the one that most nearly approximates VDE. 

Our model consists of two equal mass s -wave par
ticles N and P interacting individually with an infinite 
mass center of force via potentials VN and V p. The par
ticles N and P interact with each other via the potential · 
VNP which can support at least one bound state. 

The Schr.-•edinger equatio;J for the system is then 

(E- 'I- v -\ - v ) IJI - (I 
N P NP . ' 

(2) 
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where E is the total energy and T is the operator for 
the total kinetic energy. This equation is rewritten in the 
form 

(E- T- V ) t/J = V (t/J + t/J ) , 
NP D NP N P 

(E-T-V )t/1 
N N 

(E - T - V P ) t/1 P 

with 
-
'~~=t/Jo+t/JN +t/Jp. 

VN(t/JP +t/JD ), 

V P (t/J N + t/J D ) ' 

(3a) 

(3b) 

(3c) 

(4) 

Eq. (3) is modified by the introduction of the optical po
tential U

0
. 

(E-T-VNP -UD)t/JD =VNP(t/JN +t/JP ), (5a) 

1 
(E - T - V N) t/J N ""' V N ( t/J P + t/J D ) - 2 U D t/J D ' (5b) 

1 
(E- T-V p) t/J p = V p (t/J D + 1/J N) - 2 U D t/J D. (5c) 

The optical potential U0 is arbitrary except that it is 
required to depend only on the value of the center of mass 
coordinate of particles N and P. 

1 - -U = U (-1 r + r 1). 
D D 2 N P 

(6) 

By adding Eqs. (5b) and (5c) and defining 

t/JNP =t/J N + t/J P (7) 

we find that Eq. (5) may be replaced by 

(E-T-VNP -UD)t/JD =VNPt/JNP' (8a) 

(E - T - V N - V p ) t/J NP""' V D t/J D , (8b) 
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where 

V =V +V -U 
D N P D 

(9) 

The coupled differential equations displayed in Eq.(8) 
may be transformed to a set of coupled integral equa
tions. 

t/1 = ,~.. + 'G V ·'· , D '+' D D NP 'f' NP 

•1• - ,~.. + 'G V ·'· 
'f' NP - '+' NP NP D 'f' D ' 

where 

-1 
G = (E- T-V - U +if) 

D NP D ' 

·G = (E- T-V - V + id 
NP N P 

-1 

(lOa) 

(lOb) 

(lla) 

(llb) 

and outgoing wave Green·'s function operators and ¢ 0 
and ¢NP are solutions of the homogeneous equations 

(E-T - V - U ) ¢ "" 0 , 
NP D D 

(12a) 

(E-T-V -V )¢ =0 N P NP . 
(12b) 

Eq. (10) can be decoupled by iteration. 

•1• - ,~.. G V ,~.. 'G V G V ·'· 
'f' D - '+' D + D NP '+' NP + D NP NP D 'f' D ' (13a) 

t/1. = ¢ + G V ¢ + 'G V 'G V t/J • 
NP NP NP D D NP D D NP NP (13b) 

The formal solution of these equations is then given by 

-1 
1/J = [ 1- G V 'G V ] (¢ +'G V ¢ ) (14a) 

D D NP NP D D D NP NP ' 

-1 
t/1 =[1 -'G V 'G V ] (¢ +'G V ¢ ).. (14b) 

NP NP D D NP NP NP D D 
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Different choices of ¢ D and ¢NP lead to different 
solutions 'l' = t/1 D + t/JNP' ¢ D and V p depend on the choice 
of u

0
, but 'l' is independent o:i th1s choice. 

Now let us choose 

rl. - 0 rl. - rl. (0) 
'f' D - ' 'f' NP - 'f' NP ' (15) 

where ¢~~ is a bound state solution of Eq. (12b) with 
an eigenvalue E located in the continuum of the spectrum 
of Eq. (12a). Thus v NP, V N , and V P must be such that 
the discrete spectrum of Eq. (12b) overlaps the conti
nuous spectrum of Eq. (12a). Then Eq. (14) may be 
written as follows. 

t/1 (0) ='a V t/1 (0) 
D D NP NP 

(16a) 

tjJ (O) =¢ (O) +'a V [ 1-'a V 'a V ]-1 'a V ¢ (O). (16b) 
NP NP NP D D NP NP D D NP NP 

From these expressions it is clear that t/1~) describes 
the asymptotic flux of N-t-P=D bound states and t/J<~P 
describes the asymptotic flux of free N 's and P 's. 

To construct an explicit expression for 'G 0 we note 
that 

h2 a2 h2 a2 _1 a =(E+- --+- --- V -U +if) , 
D 2m ()r 2 2m ()r 2 NP D 

N p 

=(E+.IC ~ h
2 a2 

4m aR2 +-;;;-- ar 
2 

-VNP(r)-U 0 (R)+i£) -
1 

where 

6 

- -
r "'I r - r I, N p 

1 - -
R=-lr +r I· 2 N p 

(17) 

(18a) 

(18b) 

1 
\ 

I 
\ 

Let us write 

-1 
ao=(E-h- J( +h) , (19a) 

h=-112 a2 m --;;2 - V NP(f ), (19b) 

2 a2 J( =- .:fL_ __ - Uo (R). 
4rn aR 2 

(19c) 

Then we can set 

a =- 4m ~ {dR' jdR"I' (r) o(R-R')> x 
D ~2 i'n n 

11 0 0 
(20) 

X k :
1 

f (k nR <) g(k n R >) <'n (r) o(R-R'") I' 

where the sum and integral is over the spectrum of 
eigenvalues fiJ of h, 

(f -h) ' (r) = 0, n n (21a) 

1i2k 2 f 
(--n - J{') I l = 0 , 

4rn g (21b) 

and 2 2 

h kn =E-€n. 
4rn 

(21c) 

f is the regular solution of Eq. (21b) which has the 
asymptotic form 

f ... sin(k R + o ) , 
n n 

(22a) 

and g is the irregular solution of Eq. (21b) which has 
the asymptotic form 

g ... exp i (k R + 8 ) • n n 
(22b) 
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We return to the wave function given by Eq. (16) 

'l' (0) = ¢ (0) + G V t/1 (0) + G V-v (0) • 
NP D NP NP NP D" D 

(23) 

This is the wave function for a situation where some 
external agency is acting as a source of N and P par
ticles so as to maintain the amplitude of the term q}~P 
while feeding flux to the open channels described by the 
asymptotic parts of the other two terms. 

Let ~0 (n) be the internal motion wave function for 
one of the open D channels. Then the flux into that 
channel is 

ti a a 
J
0 

= --[ g(k R) * -g(k R)- g(k R) -g(k R)l x 
4mi o aR o o aR o 

8 2 (0) 2 
x(-m-) I<~O(r) f(kOR)IVNPit/JNP >I 

1i2k 
0 

8m 

1i
3

k 0 

\<~ fiV I t/1 (0) > 12 
0 NP NP 

(24) 

Now we suppose that ¢~~ is normalized to unit 
probability. 

00 00 (0) 2 
1 = f drN f dr p(¢ NP) • (25) 

0 0 
Then the partial width for decay into the ~0 channel is 

f' =1'1J = ~I< fiV I t/1 <O> >\
2 

(26) 
0 0 h2k 0 NP NP 

0 
since the mean lifetime for decay into that channel is 
J~1 =1Vf' 

0
• To introduce the conventional normalization 

we define 
(0) 

<ll 
0 

= ~ 
0

(r) f(k
0

R), (27a) 

4m 1h 
f(k

0
R) =( ) f(k0 R), 

rr'tt~o 

(27b) 
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so that 

00 

fi &-6; ')= f dR f(kR) f(k 'R) , 
0 

n2k2 
0=--· 

4m 

Then the decay width is just 

I' =2rrl<<ll(O) IV lt/J(O)>I 2 
0 D NP NP 

=2rrl<<ll(O)IV [1-G V G V ]-1 I<D(O)>I 2 
D 1 NP NP D D NP NP ' 

where we have made use of Eqs. (14b) and (15). 

(28a) 

(28b) 

(29) 

Eq. (29) is an exact expression for the decay width. 
The first order approximation to it is 

r 0 > = 2-rl<<ll <O> 1 v l<ll (o) > \
2 (30) 

0 D NP NP 

¢ ~~ is a bound state wave function, and VNP is a short 
range operator. Thus V NP <ll ~~ will be non vanishing 
only in a small region enclosing the center of force 
causing V N and Vp . The value of r 0) is therefore 
very sensitive to the value of <ll(~ in the vicinity of the 
center of force. This quantity in turn is very sensitive 
to the potential barrier contained in the optical potential 
U 

0
. Thus the first order approximation to the decay 

width depends very strongly on the choice of the optical 
potential. 

The decay width 1 0 is, of course, independent of the 
optical potential u0 . Thus the dependence on U 0 of 
<JI~) and V 

0 
in Eq. (29) must cancel each other. On 

the other hand, the first order approximation f11) de
pends strongly on U 0 . Clearly, the best choice for U 0 
in the evaluation of 0~> is that value which renders 
0~> the best possible approximation to 1 0 • This is the 
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choice which minimizes the contribution of the 
order terms in Eq. (29), which may be written 

00 (0) n (0) 2 
ro=2rrl I <<llD IVNP(GNPVDGDVNP) l<llNP>I • 

n=O 

higher 

(31) 

The action of the factors GNP V D 'G 0 V NP in Eq. 
(31) is to generate the correlations between N and P 
which are present in 1/J J'P but absent in <llW1· The im
portance of the higher order terms in Eq. ~31) can be 
minimized by choosing u D so that Vn is effectively 
as small as possible. For instance, the cnoice 

U (R) = V (R) + V (R) 
D N P 

(32) 

which gives 

Vn=VN (IR+ i~\)+Vp<IR-; ~1)-VN(R)-Vp (R) (33) 

might be a good one. Minimizing the importance of the 
higher order terms means that correlation effects are 
less important and the first order term is a better 
approximation to the exact result. 

Our first order approximation to the width, Eq. (30), 
differs from the expression given in Eq. (1), but the two 
are equivalent by virtue of post-prior equivalence in 
Born approximation. By virtue of post-prior equivalence 
Eq. (30) may be rewritten to read 

r o> = 2>T I <<ll <o> I v I <ll <o\' 2 (34) 
0 D D NP t 

which is equivalent to Eq. (1). 
With the numerical techniques presently available /a/ 

it is possible to solve this model problem with any de
sired accuracy. The result of such a calculation could 
then be used to provide an exact value of the decay width 
r0 • Values for the first order width r\P calculated with 
different choices for the optical potential UD could then 
be compared with the exact width. In this way it would 
be possible to test the validity of our proposal con
cerning the best choice for u . 

Another means of studyintf this question is the nume
rical evaluation of the higher order contributions to the 

10 

width and the comparison of these with the first order 
contribution as a function of UD . 

The sort of correlation effects manifested by our 
model are of course rather different from that which 
occurs in complex nuclei. A crude approximation to ref
lect one aspect of these many-body effects could be 
introduced into our model by adding a short range R 
dependence into VNP causing it to be weaker when the 
N+P=D system is close to the center of force pro
ducing VN and V P. 
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