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Hayuenue addexTop nmpoHuxHoBeHHd uepe3 Gapbep
B DAlHOAKTHBHOM HCIYCKAHMH CJIOXKHBLIX aaep

C umennio HCCllenoBadHsi BO3MOXHOCTeN Bbi6Opa MOTeHHHANLHOro 6apmepa
H ero BIHMAHHA HA BOJHOBYIO (YHKIHMIO MCNYUIEHHOH 4aCTHUB B Npoueccax
pPanoHOAKTHBHOIO pacnaga pacCMaTpuBaeTCsl TPexXHaCTHYHAA MoOAe/b: NBe
9aCTHlb!, B3auMoaeldCTByOWHe APYr C APYrOM ¥ C CHIOBLIM uHeHTpoM. [ns
PeIleHHs CUCTeMbl CBA3AHHLIX HHTerpa/bHbIX YpaBHeHHIl, OMHCHIBAIOWHKX
CHCTeMY, HCNONAL3YeTCH MeTol HTepanui., [lomyueHo TouHoe BbipaxeHHe
O WHPHHBL PAOHOAKTHBHOrO pacnagna. Iloka3aHo, 4TO WHpHHA paguOaKTHB~
HOro pacnaga 4yBCTBHTe/bHA K EIGOPY ONTHYECKOro NOTeHUHANA U ONTHYEC—
KHft MOTeHUMAa/, UCKaXawlHi BOJHOBYIO QYHKHHMIO HCNYLWIEHHOM YaCTHLEI,
HeoGxoauMo BLIGPATH TaKHM 06pal3oM, 4To6bl OH ¢ Haubodbpuiell BO3MOKHOMN
TOYHOCTDHIO ANNPOKCHMMHPOBA/ MOTEHUHA B3AaHMONCHCTBHA MeXAy HCNyUeHHOM
d9acTuleN A OO9ePHHM suIpOM,

Pa6ora BomonHena B JlaGoparopuu TeopeTuueckoit ¢uamku OUAU,
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Study of Barrier Penetration Effects in the Radiocactive
Emision of Composite Particles

In the expression for the decay width given in two recent
approximate analyses there appears to be a lack of uniqueness
of the choice of the barrier used to distort the wave function
of the emitted particle, This question is studied with a simple three-
body model for which an exact expression for the decay width may
be found. In that model it is seen that the potential distorting the
emitted particle wave function should be the best possible appro-
ximation to the true interaction potential acting between the emitted
particle and the daughter nucleus.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR,
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The width for rad/ioactive decay given in two recent
approximate analyses 1,2/ is

2
P=grj<y |V -0 0>, ¢))

where @, is the wave function for the parent nucleus,
Ypg 1s the daughter nucleus + emitted particles wave
function distorted by optical potential Upy, and Vpg is
the true interaction potential between the daughter nucleus
and the emitted particle. The derivations of this expres-
sion do not appear to provide a criterion for the choice
of the optical potential U__ : In this report we analyze
a three body model which exhibits radioactive emission
of a composite particle. In this model one can deduce the
exact expression for the decay width. From this expres-
sion one can see that the calculated width will have a sen-
sitivity to the choice of U, which depends on the extent
to which correlation effects are neglected in the parent
nucleus wave function ¢, .The best choice for U is then
seen to be the one that most nearly approximates V.

Our model consists of two equal mass s-wave par-
ticles N and P interacting individually with an infinite
mass center of force via potentials Vy and Vp.The par-
ticles N and P interact with each other via the potential -
Vyp Which can support at least one bound state.

The Schroedinger equation for the system is then

(E-T-V -V -V )V~ o, (2)



where E is the total energy and T is the operator for
the total kinetic energy. This equation is rewritten in the

form

®-T-V v =V W, ¥, ) (3a)
E-T-Vy W, = V@, +y) (3b)
3
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with
Wy oty i, 4)

Eq. (3) is modified by the introduction of the optlcal po-
tential U,

(E—T—VNP “U W =V oWy +¥ ) (5a)

1
E-T-Vouy =V @p+¥ V-5V v, (5b)

E-T-Vyp=Vp W+ ) - 2UD¢ (5¢)

The optical potential U, is arbitrary except that it is
required to depend only on the value of the center of mass

coordinate of particles N and P.

1, - -
U =0 (—
b=V GIT + T D, ®)
By adding Egs. (5b) and (5c) and defining

bp =y * Y )
we find that Eq. (5) may be replaced by

(E-T-Vyp -Up)¥p=Vyp¥yps (8a)

E-T-Vy-Vp)¥yp=Vp¥p (8b)

where

VD=VN +V, -U_ . 9)

The coupled differential equations displayed in Eq.(8)
may be transformed to a set of coupled integral equa-

tions.

l'bnz(ﬁn b NP"['NP ’ (10a)
Yap ~%wp *Cnp'p ¥ (10b)
where
! (11a)
Gy =(E-T-Vy, -U +id |
(11b)

-1
G = E-T-V =V, +19

and outgoing wave Green’s function operators and ¢p
and ¢NP are solutions of the homogeneous equations

-T - -U 12a
(E-T-V_-U )¢ (12a)
(E-'T-VN —VP )¢NP =0 (12b)
Eq. (10) can be decoupled by iteration.
4 -d’ +GDVNP¢NP GDVNP NPV "b (13a)
= G \Y vV 'G "
l'bNP ¢NP +@ NP D¢D NP D D VNP"['NP (13b)

The formal solution of these equations is then given by

"[, =1~ GDV NP‘G NPVD] (¢ +GDVNP¢ NP ’ (143.)
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I/IN —[I_GNPVDGDVNP] (¢NP+GNPVD¢D)" (14b)



Different choices of ¢ p and ¢yplead to different
solutions ¥ = 1// x// and V_ depend on the choice
of U ,but ¥ is 1ndepem¥ent of this choice.

I*?ow let us choose

@
b =0 = s (15)

where ¢(0;, is a bound state solution of Eq. (12b) with
an eigenvalue E located in the continuum of the spectrum
of Eq. (12a). Thus V,, V4 , and V, must be such that
the discrete spectrum of Eq. (12b) overlaps the conti-
nuous spectrum of Eq. (12a). Then Eq. (14) may be
written as follows.

o _, ® 16a
l'/'D GDVNP"/’ ’ ' (162)

®_, O _ \ -1, ©
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From these expressions it is clear that x//D descrlbes
the asymptotic flux of N+P=D bound states and ¢: NP
describes the asymbptotic flux ofi free N5 andPT.

To construct an explicit expression for G, we note
that

. n® 9% n? 9% 1
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Let us write

Gp=(E-h- K +id © | (19a)
412 9%
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Then we can set

'GD=--;4-I-“—£ deOde"|g ® 5(R-R*)> x

(20)
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where the sum and integral is over the spectrum of
eigenvalues ¢ of h,

-n¢ @ =0, (21a)
LLFNL R
(4m - g =Y (21b)
and
h®k ©
p —=E-c_. (21c)

f is the regular solution of Eq. (21b) which has the
asymptotic form

f-sink R+68 ), (22a)

and g is the irregular solution of Eq. (21b) which has
the asymptotic form

g»expi(k R+3 ). (22Db)



We return to the wave function given by Eq. (16)

WO g R CpVp¥ g)l)>+GNPVDX([())) : (23)
This is the wave function for a situation where some
external agency is actingasasourceof N and P par-
ticles so as to maintain the amplitude of the term qﬁ(%)p
while feeding flux to the open channels described by the
asymptotic parts of the other two terms.

Let {,(@ be the internal motion wave function for
one of the open D channels. Then the flux into that

channel is
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Now we suppose that qS(N)p is normalized to unit
probability.
1= fay [ agein) - (25)
0 0

Then the partial width for decay into the éo channel is
roong - ¢
0 0 h¥%,
since the mean lifetime for decay into that channel is
ng =T 4. To introduce the conventional normalization
we define

PRI IRNG, (26)

)
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4m Y
f(k R) =( ) f(k,R), (27p)

so that
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Then the decay width is just
s (0) o _, 2
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where we have made use of Eqs. (14b) and (15).
Eq. (29) is an exact expression for the decay width.
The first order approximation to it is

(D (@

0 _.2
ry =2rl<d DlVNP (P 0> (30)

CD(I?I); is a bound state wave function, and Vyp is a short
range operator. Thus V @ % will be nonvanishing
only in a small region enclosing the center of force
causing Vy and Vp. The value of () is therefore
very sensitive to the value of (13(%) in the vicinity of the
center of force. This quantity in turn is very sensitive
to the potential barrier contained in the optical potential
Up. Thus the first order approximation to the decay
width depends very strongly on the choice of the optical
potential.

The decay width I'y is, of course, independent of the
optical potential Up. Thus the dependence on Uy of
#©® and V_ in Eq. (29) must cancel each other. On
the other hand, the first order approximation I  de-
pends strongly on Up. Clearly, the best choice for U
in the evaluation of is that value which renders
the best possible approximation to Fo. This is the

NP

0
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choice which minimizes the contribution of the higher
order terms in Eq. (29), which may be written

* 0 n 0 2
F0=2"ln§o<®l(3)lVNP(GNPVDGDV Np) |¢;1)9>| - @D
The action of the factors GypV G pVyp in Eq.

(31) is to generate the correlations between N and P
which are present in (9 but absent in ®{?). The im-
portance of the higher order terms in Eq. &1) can be
minimized by choosing U_ so that V is effectively
as small as possible. For instance, the (I:)hoice

U B =V, ®+V, ® (32)
which gives
Vo=V (R+ -él-ﬂ) +V,(R —%-r_l) Y ®) -V, B (33)

might be a good one. Minimizing the importance of the
higher order terms means that correlation effects are
less important and the first order term is a better
approximation to the exact result.

Our first order approximation to the width, Eq. (30),
differs from the expression given in Eq. (1), but the two
are equivalent by virtue of post-prior equivalence in
Born approximation. By virtue of post-prior equivalence
Eq. (30) may be rewritten to read

6] 0 0. 2

r o =2r|<® D |VD|<I> NP>L (34)
which is equivalent to Eq. (1).

With the numerical techniques presently available /3/
it is possible to solve this model problem with any de-
sired accuracy. The result of such a calculation could
then be used to provide an exact value of the decay width
Ty . Values for the first order width ')’ calculated with
different choices for the optical potential UD could then

be compared with the exact width. In this way it would
be possible to test the validity of our proposal con-
cerning the best choice for U _,

Another means of studying this question is the nume-
rical evaluation of the higher order contributions to the
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width and the comparison of these with the first order
contribution as a function of U_.

The sort of correlation effects manifested by our
model are of course rather different from that which
occurs in complex nuclei. A crude approximation to ref-
lect one aspect of these many-body effects could be
introduced into our model by adding a short range R
dependence into Vyp causing it to be weaker when the
N+P=D system is close to the center of force pro-
ducing VN and VP.
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