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Meton xecTkKX muonos n of6MeHHble crafble aKCualbHBIE TOKH
B Aapax :

Passur flocllenoBaTensHbIi nooxox x npo6lleMe aKCHAIBHBIX Me3OHHLIX
oGMenHbIX TokoB (MOT) B flpax Ha OCHOBE MeTOOdA EeCTKHX NMHOHOB. DTO1
MEeTO4 Nmpeacrasiser co6oi CaMocoracoBaHHy 0 KOMGHHALHKIO TOAXONOB anrezs_
Pl TOKOB H BeKTOpHON AOMHHAHTHOCTH H MO3BOJAAET H3YYATb ©AHHbBIM Oﬁpaa;‘gm
o6MeHEl Kak IHOHAMH, TaK M TAXembiMH Me30CHaMH. Henonvaya munumanpupg i
¢eHOMeﬂonoruqecxnﬁ JlarpaHXuHaH ans Alpﬂ —CHCTeMbl Mbl CTPOHM Olleparop
ABYXHYKNOHHbIX MOT B npu6auxenun depeBbeB., dTOT oneparop asTomaTu4eCKH
o6lanaeT nmpaBusbHEIMK TpaHCHOpMALHOHHBIME CBONCTBaMK OTHOCHTe/NbNnO CpyN—
mur SU, xSUg ¥ umeer HMNyNbCHYIO 3aBHCHMOCTL HACTOABLKO rinaakymo, Ha-
CKO/ILKO 3TO BO3MOXHO B paMKax KOMGUHHpOBAHHOIO noaxona anrebpsl TOKOB
‘u BEeKTOPDHOR OOMMHAHTHOCTH., B naHHO# MOOENIH Mgl paccMmarpupaeM Hebop-
HOBCKYI0 WacTb ammautyast N+JA4. Nin H NeMOHCTpHpyem, UTO B MArKo—
MHOHHOM Npefene OHAa TOYHO BOCHPOUIBOAUT npeackalauua PCAC.

PaGora semonnena B MaGoparopuu Teopetuyeckoit pu3auku OUAU,
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Hard Pions and Axial Meson Exchange Currents
in Nuclear Physics

Starting from the hard meson method we develop a consistent
approach to the problem of the axial meson exchange currents
(MEC). This method incorporates the current algebra and PCAC
together with the vector dominance and allows one to study the
pion as well as heavy-meson exchanges on equal footing, Using

a minimal, chiral and approximately gauge-invariant phenomenolo-
gical Lagrangian (PL) model for the A, pr-system we construct the
two-nucleon axial MEC operator in the tree~approximation, This
operator automatically possesses the correct chiral 8Uyx8U, ~trans-
formation properties and has the smoothest momentum dependence
which is allowed within the combined current algebra and vector
dominance approaches., In the given model, we consider the non-
Born part of the amplitude N+JAsN+r and demonstrate that in the
soft pion limit, it exactly coincides with the PCAC prediction,

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR,
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1. INTRODUCTION

The problem of the axial meson exchange cur-
rent (MEC) effects has been studied (see refs,/1-8/
and refs, therein) for about twenty years in the
triton B -decay

SH.%He +e~ +;e . (1)

It is believed that these effects may explain the 2
discrepancy between the experimental value |Mgp| =
= 2.87+0,04791%  of the Gamow-Teller matrix ele-
ment and the predictions based on the calculations
with the single-particle current (impulse approxima-
tion) which yield the results smaller by =~ 5-8%.

The necessity of taking into account the axial
MEC effects in the reaction

noo+ SHe > 3H .+ Vi (2)

was demonstrated in refs./ll’m/.Without them, the

extracted value of the weak induced pseudoscalar
constant gp is in direct contradiction with the
Goldberger-Traiman relation. 13,

Recently, Dautry, Rho and Riska have eva-
luated the axial MEC effects in more simple, two-
nucleon reactions of principal interest

p+p-d +4%, (3)



P+P—’d+e++L'e, ' (4)
u_+d—»n+n+vp . (5)

They have shown that the calculated MEC effects
are norn-negligible in all three reactions (3)-(5).

The basic ideas of the modern calculations of
the MEC operators are collected in the pioneer
work by Chemtob and Rho’3’ There, these operators
are constructed in the one-boson exchange approxi-
mation by the methods based on the current algebra,
PCAC and (to some extent) vector dominance. The
meson exchanges, which are usually taken into
account, are those due to the pions and rho-mesons.
As to the contributions from various nucleon reso-
nances, the N*=N*@3.3)isobar contributes predomi-
nantly “%/ In the case of reaction (1), the N* _piece
taken together with purely mesonic currents exceeds
by 4%’7 the experimental value of Mgr

In the present paper, we construct the two-nuc-
leon axial MEC operators in the one-boson appro-
ximation starting with the model which differs from
the standard Chemtob-Rho approach, Nam;allgf_,lgye
consistently exploit the hard pion method ,which
incorporates the current algebra and PCAC together
with the important concept of the rho-dominance of
the isospin current /17/_ In our opinion, the hard pion
method provides the most suitable framework for the
MEC calculations as

i) it fixes the rho-meson couplings. As a result,
the important diagrams with the rho-exchange are
defined correctly, Note that the current algebra and
PCAC fix only the pion couplings but admit un-
certainties in treatment of the rho-exchange diagrams,
It is not clear, e.g., how many of them should be
taken into account,

ii) In the hard pion method, the explicit momentum
dependence of various form factors is specified up
to =1 GeV, while the current algebra itself determi-
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nes only the first terms in the expansion of the
proper vertices at low energies (in the soft pion
limit), The knowledge of the momentum dependence
(other than that coming from propagators) of the MEC
operators may turn out to be essential, as the rea-
listic nuclear wave function may be sensitive to it,

The new feature of the MEC calculations within
the hard pion method is the appearance of graphs
with the A;{ -meson which should be taken into
account with necessity for consistency of the current
algebra and the wvector dominance’'4'1%Let us note
that the very existence of the A{ -meson seems to
be now out of question/w/. Possible employment of
the Aj-meson in the nuclear physics calculations
was already noted in /197,

We use the phenomenological La%r‘angian (PL)
realization of the hard pion method’ 1218/ The PL
technique is most convenient for practical calcula-
tions, It enables one, applying the standard Feyn-
man rules, to write down all graphs which are re-
quired for a given process by the corresponding
dynamical principle.

The dynamical principle which governs the
structure of the hard pion PL is the chiral gauge
invariance (the invariance under the coordinate depen-
dent SUg4>8Ug -transformations), It is assumed to be bro-
ken only due to the non-zero mass m, and m, of
the rho- and A{ -mesons, This form of breakdown
ensures the universality of the minimal rho-meson
couplings and besides, leads to the field-current
identities which manifestly realize the wvector domi-
nance idea, The hard pion PL possesses also the
usual constant-parameter chiral invariance broken
by the pion mass. Hence, such a PL reproduces
in the soft pion limit all standard PCAC results,

The main feature of our study should be seen
in the consistent combination of the chiral approach
with the wvector dominance concept. It makes possible
an unambigous counting of the pion and heavy-meson
exchange graphs., The two-nucleon axial MEC ope-
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rator is defined as a transition amplitude (a set of
all possible graphs) constructed in the ‘tree- appro-
ximation from the hard pion PL., Due to the basic
properties of the PL, such an operator automatically
possesses the correct chiral SUp x8U, —transformation
properties,

The standard ideology accepted in the elementary
particle physics is that the hard pion method works
up to the energy scale = 1 GeV (:mp,mA)and in this
range the corresponding PL's provide a reasonable
approximation at the tree-level to the hadron ampli-
tudes, This is the reason why in constructing the
MEC operator we also restrict ourselves to the
tree-approximation, In other words, it makes no ser—
se to calculate loops in the approach we deal with,

We note that the one-loop approximation construct-
ed from the soft pion PL is nevertheless used in
the calculations dealing with the elementary particle
processes’?%’ Like the hard pion method it also
allows one to pass towards the higher energies in
comparison with the soft pion tree—approximation
which works at the threshold,

A direct important consequence of our consistent
approach for reaction (5) is’*1 that the contribution
to the doublet transition rate from the usually accept-
ed rho-meson weak current (see fig, 1b in’/13) turns
out to be nearly cancelled by the analogous graph
containing the A; -meson pole in addition., This
shows the real importance of taking into account the
A, -meson contributions.

The paper is organized as follows. In Sec, 2
we present the hard pion PL model used here, For
the Ay pr -sector, it coincides with the minimal
model by Ogievetsky and Zupnik/18/, Having in
mind the results of the previous investigations /1-8,13/
we include together with the Ay,p,n N also the N*-
isobar (which is not required by the model itsels,
however), In Sec, 3, to illustrate the power of the
hard pion PL technique, we consider the non-Born
part of the weak pion production amplitude N+J®Nip
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and show that its soft pion limit exactly coincides
with the PCAC prediction, We explain why a/ng&}lo—
gous calculation in the Chemtob-Rho method
leads to the deviations from the PCAC results,

2, FORMA LISM

There exist Sever&}%ao}%f/ferent PL formulations of
the hard pion method /.1\6/\(e prefer the PL rnodel
by Ogievetsky and Zupnik ' because it provides
the smoothest momentum dependence of the proper
vertices, The corresponding PL contains no more
than two derivatives in each term., In this sense,
it is the minimal hard pion PL,

2,1, The Lagrangian for the Aipr System

The effective PL for the A ;p7 system in the
Ogievetsky-Zupnik model is completely determined
by four phenomenological parameters m, , m, and
the rho- and A, -meson coupling constants gp and
8ay, respectively, The pion decay constant . /izsz/
related to them by the first Weinberg sum rule’ **

m m
0 (2 - (2B
&p mAgp
which is, in fact, the consistency condition between
the current algebra and the wvector dominance. To
simplify the subsequent formulae, it is convenient
to use the phenomenoclogical KSFR relation
21% ® mi , )

nvp'

)2 1, (6)

which holds within 15%. We exploit in the/calcula-
tions also the second Weinberg sum rule 22/

e, -t | (@

which together with eqgs. (6), (7) implies the remark-
able Weinberg relation’ =2/



mi- 2m2p . (9)
/18/
Eq. (9 seems now to be confirmed experimentally .
Inserting eqgs. (6) and (7) into the general form
of the Ogievetsky-Zupnik PL /16/ , we extract from
it the elementary vertices relevant to the contsructi-
on of the MEC operators

E = g ; ;Xa m,
prm [ p
a -p 1
AjAp g(p#x L TPy xa ) da, (10)
Ea Ea o
e - 1 7 .32 xgn-l Lo P\ > >
A pr Puv xgm- = ——=QR~—3)p TXa
1 gf, KV K 1 g0, gi p
1
where ¢ ,5# are the rho- and A -meson fields,
respectively, and
> 'a P —8 Pt , _5. = _5. -_ a .
P ™ uPy TPy u au v ava#

2.2, Nucleon Part of the Lagrangian

Although the nucleon sector has not been con—-
sidered in ref,’18/ the relevant PL can be simply
constructed by using the general prescriptions of
refs. . The PL which is invariant under the gauge
isospin and non-linear gauge chiral transformations
is given by

LR

= - 24
LS"._Ny D N-MNN-—i—AN N. v
N Yo Py Ny, v ¥ v,
m (11)
1 Ky

Jr:1—gP—MN TN'ﬁ#V'

where the covarjant derivatives D #N, Vu’; and the
covariant curl p# * are determined following the
procedure of refs’23/ In eq. (11) g4 = 1.25 (we have
used here the Goldberger-Treiman relation) and
Ky = 3,7. The definition of the metrics and Dirac
matrices is the same as in ref,

After removing the unphysical A r -mixing, the
piece of the Lagrangian (11) which we need, reads
as follows:

- _ g N
e =-Ny 9 N— MNN-i AN PN(O 7 -
NA pm }’# u of W Vel ( #TT
5 g8 - B, —
_ x_, —1——N —yN.—» —l—ﬂN —,N.—y - _
gpP# 7) 5 y#r » T y#r X3, (12)

where
2’ > gAl (—y P > > 9 —») gAl
p =p + a xd mr=-a X m)+ mX
v [y f” gp [ 4 vooTu g [13%

Likewise, the part of the PL containing the N*-

resonance is
f

* - -
e -2 7NN [*TN. >
N*NAlpn 2 n NVTN VVTT
Gl N*y y TN.F
- —_— . +
P M ok sV Py

, *In contrast with the linearly transforming curls

R ) §#V from ref,”16/ z‘#y transforms like the co-

variant derivative V#; , i.e., nonlinearly, It is con—
structed out of the pion field and the curls . /23 }w

by general rules of Sec, 4 of the first of refs.



+ ——.N* 5 5 ri:N. 3 h.c.
TITERMRES IN-p,, +he (13)

Here f yy+x is the 7NN* —coupling constant, mnis

the pion mass, and T is an operator which transforms

the nucleon isospin wave funct1on mto the isobar

one '24/ Further, according to ref,’
M
Gl =13 (Gl)SU6 ’ (}2=_ MT(G 1)SU6 ’ (GI)SUB =2,

where M* is the N* -isobar mass. For our purpose,
only the linear ter’m*s in the covariant derivative
V#; and the curl E#V are of interest

o=
o8

7= £ A L 0(2) o oo ,
VT +”gA1a#,O(n ), p}w p#V +0(n). (14)

2.3, Weak Currents

. 167
The wvector and the axial-vector currerits are

> 2

V m

h S

H g [

b (15)
2

A m, “ ]
J =g L3 —f 9 7 +f g C x72+ 0 2y,

R o T T pPy 7 O0r%)

where we have used the relation (6) and have expli-
citly written down in JA only terms up to the second
order in the fields, The vector current obeys the
exact field-current identity and is dominated by the
rho-meson., At the same time, the axial-vector current
consists of two parts, The 1+—part is dominated by
the field a,u , the 07 —-piece is mediated by the pion
pole in accordance with the general prescription of
the current algebra, Note also that by the equiva-

lence redefinition of the a#-fleld 'a' »51' = 3# +
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+ (g T, /gAm )p x7 + 0(r?) we might reduce
27 P 1P
J* to the form
K me
TA . D 3 -
J gA a’ u fﬂ (9#77
P +

in which the dominance of the 1 -term by the axial-
vector field becomes evident (of course, such a re-
definition would entail an appropriate rearrangement
of the elementary vertices in our PL),

The constant-parameter chiral invariance of the
present PL is also broken, as usual, by adding the

term m§f2[1 -7/t )2]% which supplies the pion field
m m

with the mass. This breakdown ensures that the
axial current satisfies the PCAC

e

N
o0 TA-m?% 7.
pop mm

Of course, the vector current remains conserved,

2,4, Two-Body Axial MEC Operator

We now present in the given model, the two-body
axial MEC operator (fig, 1). It is the set of all admis-
sible graphs in the tree-approximation,

The sign of some of the coupling constants in
eas. (10)=(13) is unknown. No difficulty arises, if a
graph is composed of the wvertices eqs. (10), (12)
(only the squares of the g4, , 8p , f; appear), It is
not so in the case of the graphs la and 1b with
JU=N* and B=p, Fortunately, the contribution from
these graphs is negligible’?!/.

As the PCAC is satisfied, the divergence of the
set of graphs in flg. 1 should be zero in the limit
of zero pion mass, We have verified that the sum
of graphs la-1b (for each intermediate baryon and
for each boson exchanged), lc-1f and 1g-1j are
divergenceless separately.

The graphs la+1lb with N=N,B=r (Born terms), la
with N=N*, B=r ( N* _excitation current) and 1d (p -7
weak decay current) are of the same form as the

1"
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Fig. 1. The two-nucleon axial MEC operator in the

tree-approximation, The wavy line represents the
axial-vector current, In the graphs a and b , N

stands either for the nucleon or N*-isobar, B=r, Ayp.

Otherwise heavy double and light dashed lines are
for the A; -meson, rho-meson and pion, respecti-
vely,
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graphs usually calculated in the standard approach
with the pseudoscalar (p.s) 7 N~coupling, Because
we are working with the pseudovector (p.v.) N -
coupling, our Born terms differ from the standard
ones, The problem of eliminating the piece, which
is already included in the nuclear wave function,
will be discussed in the next paper where also the
numerical results for reaction (5) will be published,

3. WEAK PION PRODUCTION IN THE
HARD MESON METHOD

In the present section we consider the non-Born
part of the amplitude for the pion production from
the nucleon by the axial-vector current

N(p, )+J Ty *N(@,)+ 7" (q) (16)

in the hard meson method, In eq. (16),.1)/\\J (k) is the
axial-vector current with the isospin index j and
7" (qQ) stands for the pion in the isospin state 0 ,
This amplitude enters en bloc into the axial MEC
operator (graphs a~f in fig, 1) and, hence, has a
direct relevance to the main subject of our study,
We show here that the consistent application of the
hard pion PL method enables one to avoid discre-
pancies with the pure PCAC approach, which are
present in Alder’'s’?6/ and Chemtob-Rho's 73/
analysis of this amplitude, We restrict ourselves
to the two important limits, as k-0 or q- 0.

In the limit k=0 , we parametrize the non-Born
term MA of the amplitude Mf)t of the process (16)
as follows:

ML (0° k=0)=iB(p, )iay y(a® da, +a (T 1ig" (a ¥12)

—~%2ia’(q?
X0y, 9,~21ia’(@®)My, Hu ),
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where a(i)z%—[fn,fj ]i are the isospin projection ope-
rators, and a’(@®),8°(#).y(ad are the form factors which
survive in the limit k =0 [q (q%)=a (q2k=0)etc.]. We choose
the covariants o, 4, and y, instead of (py+P; )\

and Y, because sandwiched between the nucleon

s pinors they remain independent also in the limit

q= 0. Therefore, the form factors a’,8'y remain
also independent in this limit, and the analysis turns
out to be more simple than in refs, /8.28/  Our form
factors a,8° are related to a.,f from’3/ as follows:

B (a%)=B(a2), a’(@%)=a(qa?)+ B2 ). (18)

Due to the PCAC, the form factors a’.8",y are
related to the non-Born part of the N -scattering
amplitude taken at zero momentum of one of the pions
involved (see, e.g., eq. (2.15) in ret.”¥ ), These
relations hold also in our model.

More detailed information is provided by the cur-
rent algebra and PCAC for the form factor a’(@®)
when q=0 /17

, 1
a’(0) -ﬁ-f;(l—gﬁ ). (19)

where g, = gA0) is the axial B -decay constant,

It was observed in refs, /326’ that the amplitude
(17) evaluated within the pure rho-exchange appro-
ximation shows some deviation from eq. (19). We
show that the discrepancy disappears if the A;-meson
contribution is correctly taken into account.

_  The graphs which contribute to the amplitude

MA (q®k=0) are given in fig. 2, Before evaluating
them, let us note that the decomposition of the pion
production amplitude into the Born and non-Born
parts depends on the form of the 7N -coupling

(i.e., the non-Born terms are different for the p.s.
and p.v. 7N —-couplings). In order to make the compa-
rison with the results of refs,’3:26/ unambiguous, we

14
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Fig. 2. The contribution from different processes
a_dAmitted by the PL eq. (12) to the non-Born part
M) of the pion weak production amplitude,

pass in our PL (12) to the p.s. 7N —coupling, which
was used there, It can be made by the standard
equivalence redefinition of the nucleon field

iSTA—yE)(;.T?)
N->N'=e i N. (20)
This replacement leads also to the renormalization
of the coupling constants in a number of the contact
vertices and, generally, produces some new vertices,
This is the reason why the non-Born terms are
different for the p.s. and p.v. »N -couplings, The
effect of the canonical transformation (20) on the
amplitude (17) is

i) the renormalization of the minimal A;7N coupling
constant in the graph 2a

S --Lg @-2g%) (21)
7NA 2f7r Aq 2f17 Aq A

ii) the appearance of a new graph (fig.3) due to the
non-derivative = N -coupling M(g§/2 f,f)I:JN 72 which
comes from the nucleon mass term (the derivative
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Fig. 3. The graph which appears after passing in
the PL eq. (12) to the pseudoscalar 7N —coupling,

coupling ~Ny rN.#xd, 7 which arises from the nuc-
leon kinetic ‘energy term makes no contribution in
either limit we deal with),

Using the PL (12) with these modifications taken
into account, we evaluate the contributions of the
graphs in figs. 2 and 3 to the form factors a’.8"y.
They are listed in table 1.

Summing up the contributions and neglecting for
simplicity the terms ~(@/M*R  we héave

f2 * £ 1 g
NN
y@®)=3- 15T wom A
M? M*-M fa q +m >
9 2
o2 Ky My 4 Tenwrfn 4
M. m2 4+q2 M? M*—-M
(22)
2
a’ (@)= L-[1-8% - -]
f17 q +mp

It is seen from egs. (22) that the low energy
theorem (19) is exactly satisfied in our model, The
origin of the controversy with the current algebra
predictions in’ 3%% lies in the overpassing the
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Table 1
The contributions of the graphs in figs. 2 and 3

to the form factors ¢’ 8" andy in the limit k- 0.

a’(q?)

2
ga )

1
(4-

. S
SME

q2
+q2

N Q

aME_

1

MM MM*

M2

1
9

B (a®)

-t

2V
Mf

q —
_ m?, g2

Y

y(a?)

form

factors

graphs

2a

2b

2c

2d+2e
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graphs with the Aj-meson pole, Just these graphs
ensure the compatibility of the current algebra and
the rho-dominance for the given process. Note that
the contact Ajn N —coupling (graph 2a) is prescribed
by the gauge chiral invariance principle and is pre-
sent in any PL realization of the hard pion method *

The second reason why the calculations of
ref.,” and partly of ref,’?®’ deviate from the current
algebra predictions is the incorrect treatment of the
off-the-mass-shell behaviour of the anA-vertex in
the rho-meson weak decay current, It is usually
assumed that this vertex is well approximated by
its soft pion value

. n Aj ¢ k/\k_L n]p
S (O)IJA (k)lp# > -gpﬂJA (5/\# +——-m—2 )e , (23)
where 0

By @ ™2

B A= —mp——— ——
pml Mgy 8

The Goldberger-Treiman relation f 78 ,nn=Mg, together
with the KSFR relation (7) vield .

Bomga=2l 8, (24)
Then this value of g, A  is substituted > into the

weak decay p-n graph at k~0 (small momentum
transfer). '

* We might remove the AinN —coypling by the

-

equivalence transformation of the p -field, ﬁl *pl: =

= f}’# +(gA1/gpfﬂ)(1—2gi)§x§# JAs a resuﬁ, we would be
left only with the p’ -exchange graphs. In contrast
with ;# , the p° is not trapsversal off-the-mass-
shell and the terms q,q9,/m;, in the p’-propaga-
tor would contribute instead of the contact graph.,
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However, such an approximation is justified only
if the off-the~-mass-~shell form factor gp”JA (q-O,kz)
is assumed to be nearly constant in a rather wide
range 0<-k <mi . Within the hard pion method, it
is possible to estimate explicitly the correction
terms which arise when extrapolation from k%=-—m?2
to k =0 is made, The off-the-mass-shell anA—VerE-
tex is now composed of the contact and A -pole
parts which enter into the graphs 2b and 2c, res-
pectively,

0 Aj ¢ . o (@+k) ) (a+k) "
<T@, ®p , e [(3/\# +——m—2*)x (25)
P

t mg —2q°
X ﬂgp W—+ O(QR)]

When the rho-meson is on-the-mass-shell, the
soft pion limit (q=0,k2-—n12p) of eq. (25) coincides
with eq. (24). We obtain the same value of Bpmyh
also if k=0 and qz-—mz . However, in the combined
limit q=0 and k=0 (the rho-meson is off~-the-mass-~
shell), the vertex (25) has the value

gpﬂJA(Q=0,k-0)=fﬂgp, (26)

ive., it is twice smaller in comparison with (24). This
shows the importance of the off-the-mass-shell cor-
rections. In our scheme, just the value of g - A-fﬂg
enters into the graph 2b, Consequently, the %ontribu—
tion from this graph is twice smaller as compared
to the standard calculations 3’ , Note that the hard
pion momentum dependence of the prI® ertex has
been taken into account by Adler /%/who, however,
did not consider the contact graph 2a, and there-
fore, did not obtain the complete agreement with the
PCAC results,

The momentum deperdence of the prrJA—Vertex
turns out to be important in the practical calcula-
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tions. Indeed, we have shown’/2l/ for reaction (5)
that the contribution to the doublet transition rate
from the graph 1d is nearly cancelled by that due
to the Aq-pole graph le, This type of cancellatlon
may also bring the calculations of ref.’7" for reac-
tion (1) into better agreement with experiment,

In the limit 4=0,k £0, we parametrize the amplitude
M\ by analogy with eq. (17)

= A - 2 .=~ ) 2 (=}; 2
My (a=0k*)=iu(py)alp (k )k;ﬁanﬁ“(k Y95 Ky~ (27)

—2ia’(k2)MyA ]}u(pl),

where now a’( k2)za'(q-0,k2), etc, It follows from eqgs,
(17) and (27) that ¢’ is the only form factor which
survives in the combined limit =0, k =0.

Generally, the form factors p,A and a° are
restricted by the current algebra and PCAC as

follows 26/

2 1 2
p(k )--_f:gAgP(k ),

Ak 2y = Lor V),
f, 2 (28)

@ (%) n = [P (67,8, )1,

where gp ,8, are the standard weak mduced psSeu-
doscalar and axial-vector form factors, F‘l (k )-1+0(k )

and F (k2)- +O(k 2) are the wvector current form
factors.

In the framework of our defmltlon of the non-
Born part M)\ of the amplitude M,\ (figs. 2 and 3),
p&® is given by the graph in fig. 3 and contains
only the pion-pole piece, Notice, however, that our
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gp(k ) consists of the pion-pole as well as Aj-meson
pole parts (the last one coming from the term ~k k)
in the Aj-meson propagator which mediates the weak
axial-vector current in the NNJ4 vertex). The seeming
inconsistency with the first of eqgs. (28) is removed
by puttm% our Born terms into the form used in
refs, (they remained different even after passing
to the p.,s. 7N —coupling). Then we obtain for p(k?)
the missing A;-meson pole part as demanded by the
first of eqs. (28).

The remaining part of the amplitude (27) is given
(see table 2) by the graphs 2a-2c ( N* -isobar
makes no contribution in the limit q»0 ), Summing

Table 2
The contributions of the graphs 2a-2c to the form
factors A and «’ in the limit gq-0.

form
factors A (kz) a’(k 2 )
praphs
. 2 2
m m
2a v Tp : 1 _._‘)P_(1..2g2)
2Mf, m? . k? ME, mik? A
2 2’
2b v Mp S
4Mf & < Mf 2 .2
7o Mo+ k 4 - mp+k
2.2 2.2
o _ Ky 2mé)k2 _ _1_ mpk
Mf 4Mf (R Lk ? 2 2
AN (SR k") ,,(mp+k Y(m’ + K5)
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up the contributions and using the first Weinberg
sum rule (6), we finally have
2
K m
AR ) e —L - P
2Mfﬂ m§+k2

2 2 (29)
. 1 my 2 ma
a’ (k%)= ( -g ).
Mf m§+k2 A mi+k2

Keeping in mind that in the present model
Vo 2 2 2 2 \Y
Fo&®)=m’/mls &°). F, (kz)-(xv/2M)m§/(m§+k2)

(rho-dominance), and besides gA(kg)-gAmi/(mi+k2),we
observe complete agreement between our calculations
and the general PCAC predictions (26). Again, the
crucial role in attaining this agreement is played

by the contact graph 2a. Note, that in the limit k-0,
we again recover the Adler-Weisberger theorem

(19).

Let us emphasize that the inclusion of other
particles into the present scheme (such as the nuc-
leon isobars with J=1/2 ) cannot affect eqs. (29) as
far as it is made in a gauge chiral invariant way.
Note also, that the minimal model by Ogievetsky
and Zupnik corresponds to the choice §=-1 for the
anomalous maghnetic momentum & of the A ,-meson
in the general hard pion ver“tices/M/.Any other
choice leads to a stronger momentum dependence
of the form factors, However, in the limit q -0 , the
weak pion production amplitude does not depend on
the 8 , and the relations (29) hold in any realization
of the hard pion method,

Throughout this section we used the KSFR re-
lation (7) alongside with the first Weinberg sum
rule (6). However, the correct PCAC behaviour of
the amplitude is governed by the first Weinberg sum
rule alone, In particular, the derivation of eq. (29)
is completely independent of employing the KSFR rela-
tion,
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