
I-3 ~ 
E4 - 11477 ... 

7j ~111-~ 

E.Ivanov, E.Truhlik 

HARD PIONS 

AND AXIAL MESON EXCHANGE CURRENTS 

IN NUCLEAR PHYSICS 



E4 - 11477 

E.Ivanov, E.Truhlik * 

HARD PIONS 

AND AXIAL MESON EXCHANGE CURRENTS 

IN NUCLEAR PHYSICS 

Submitted to "Nuc l ear Physic s " 

*On leave lrom Institute o'l Nuclear Physics, 25068 Rei n. 
Prague, Czechoslovakia 



-i 
l 
i 

1 
ii 
11 
iii 
i 
•£ 
,·t 
,; 

il 
rl 
!i 

li 
'; 

Haaaoa E.A., TpyrnuK 3. 
E4 · ll477 

Meroa }l{eCTKHX ITHOHOB H 06MeHHbie cna6bie 8KCH8LlbHbie TOKH 
a smpax 

Paaaur nocneaoaarenbHbiii noaxoa K npo6neMe aKcuanbHbiX MeaoHHbiX 
o6MeHHbiX TOKOB (MOT) a Hapax Ha ocHoae Meroua >hecrKux nuoHoa. 3ro1J 
Meroa npeacraanHer co6oii caMocornacoaaHHyJO KOM6uHaUHJO noaxonoa anr<(6-
!Pbi TOKOB H BeKTOpHOfi AOMUHBHTHOCTII H fi03BOLl5!eT H3Y'I8Tb ellHHhlM o6pa3f.)M 
06MeHbl KBK fiHOHBMH, TaK H Tll}l{eLlblMII Me30HBMH. HcnOilb3YH MHHHMBLlhHbii i 
«!>eHo"feHonornqecKuli narpaa"'uaH ang A 1pTT -cucreMbi Mbi crpoHM oneparop 
aayxHyKnOHHbiX MOT a npu6nu"'eauu uepeabeB. 3ror oneparop aaroMarnqcCKII 
o6nauaer npaaunbHbiMH rpauc«j>opMauuoHHbiMH caoiicraaMu ornocurenbHO rpyn
fibi SU2 xSU2 U HMeer HMnynbCHyJO 38BIICHMOCTb HBCTOLlbKO I'Ll81lKYIO, Ha
'CKOLlbKO :3TO B03MO}I{HO B paMKBX KOM6HHHpOBBHHOI'O ITOAXOAa anre6pbl TOKOB 

~ BeKTOpHol! AOMHHBHTHOCTH. 8 llBHHOii MOileLlH Mbl paCCMBTpuaaeM ae5op
HOBCKyJO 'IBCTb aMnnuryllhi N +J A~ N +" H aeMoacrpupyeM, qro B MHI'Ko

HOHHOM npeaene OHa TO'IHO aocnpouaaoanr npeacKaaaHuH PCAC. 

Pa6ora BblfiOLlHeHa B na6oparopuu reoperu<JeCKOii «j>H3HKH OHHH. 

npenpuuT 06'beauueuuoro uucruryra smepubiX uccneaoaauuli. lly6ua 1978 

Ivanov E., Truhlik E. 
E4 · ll477 

Hard Pions and Axial Meson Exchange Currents 
in Nuclear Physics 

Starting from the hard meson method we develop a consistent 
approach to the problem of the axial meson exchange currents 
(MEC). This method incorporates the current algebra and PCAC 
together with the vector dominance and allows one to study the 
pion as well as heavy-meson exchanges on equal footing. Using 

a minimal, chiral and approximately gauge-invariant phenomenolo
gical Lagrangian (PL) model for the A 1 pTT -system we construct the 
two-nucleon axial MEC operator in the tree-approximation. This 
operator automatically possesses the correct chiral SU 2 x SU 2 -trans
formation properties and has the smoothest momentum dependence 
which is allowed within the combined current algebra and vector 
dominance approaches. In the given model, we consider the non
Born part of the amplitude N+J A~N +TT and demonstrate that in the 
soft pion limit, it exactly coincides with the PCAC prediction. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 

Preprint of the Joint lnsti tute for Nuclear Research. Dubna 1978 
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1. INTRODUCTION 

The problem of the axial meson exchange cur
rent (1VIEC) effects has been studied (see refsJl-8/ 
and refs. therein) for about twenty years in the 
triton f3 -decay 

3 H ... 3 He + e- + v 
e 

(1) 

It is believed that these effects may explain the 
discrepancy between the experimental value !MaT !2 = 
= 2.87.:t.0.04 19

•
101 of the Gamow-Teller matrix ele

ment and the predictions based on the calculations 
with the single-particle current (impulse approxima
tion) which yield the results smaller by "" 5-SO/o. 

The necessity of taking into account the axial 
MEC effects in the reaction 

3 3 
+ He-+ H + vf.l f.1 (2) 

was demonstrated in refs. 111
•
121

. Without them, the 
extracted value of the weak induced pseudoscalar 
constant gp is in direct contradiction with the 
Goldberger-TrEiman relation. 

Recently, Dautry, Rho and Riska 1131 have eva
luated the axial MEC effects in more simple, two
nucleon reactions of principal interest 

P+P-+d +rr+, (3) 
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+ 
P+P ->d+e +t-' , e 

11-+d->n+n+v 
11 

(4) 

(s) 

They have shown that the calculated MEC effects 
are non-negligible in all three reactions (3)-(s). 

The basic ideas of the modern calculations of 
the MEC operators are collected in the pioneer 
work by Chemtob and Rho/ 3 /. There, these operators 
are constructed in the one-boson exchange approxi
mation by the methods based on the current algebra, 
PCAC and (to some extent) vector dominance. The 
meson exchanges, which are usually taken into 
account, are those due to the pions and rho-mesons. 
.As to the contributions from various nucleon reso
nances, the N"'""N*(3.3}-isobar contributes predomi
nantly 15~ In the case of reaction (1), the N* -piece 
taken together with purely mesonic currents exceeds 
by 4o/c/ 71 the experimental value of MGT . 

In the present paper, we construct the two-nuc
leon axial MEC operators in the one-boson appro
ximation starting with the model which differs from 
the standard Chemtob-Rho approach, Nam~ll-• we 
consistently exploit the hard pion method · 1 - 16 , which 
incorporates the current algebra and PCAC together 
with the important concert of the rho-dominance of 
the isospin current / 171

. In our opinion, the hard pion 
method provides the most suitable framework for the 
1\/IEC calculations as 

i) it fixes the rho-meson couplings. As a result, 
the important diagrams with the rho-exchange are 
defined correctly, Note that the current algebra and 
PCAC fix only the pion couplings but admit un
certainties in treatment of the rho-exchange diagrams
It is not clear, e.g., how many of them should be 
taken into account, 

ii) In the hard pion method, the explicit momentum 
dependence of various form factors is specified up 
to "'1 GeV, while the current algebra itself determi-

4 

... 

nes only the first terms in the expansion of the 
proper vertices at low energies (in the soft pion 
limit). The knowledge of the momentum dependence 
(other than that coming from propagators) of the MEC 
operators may turn out to be essential, as the rea
listic nuclear wave function may be sensitive to it, 

The new feature of the MEC calculations within 
the hard pion method is the appearance of graphs 
with the A1 -meson which should be taken into 
account with necessity for consistency of the current 
algebra and the vector dominance 114 

•1 ~ 1Let us note 
that the very existence of the At -meson seems to 
be now out of question ItS/. Possible employment of 
the At-meson in the nuclear physics calculations 
was already noted in 1 tg; . 

We use the phenomenological La.]rangian (PL) 
realization of the hard pion method11 ·16/ The PL 
technique is most convenient for practical calcula
tions. It enables one, applying the standard Feyn
man rules, to write down all graphs which are re
quired for a given process by the corresponding 
dynamical principle. 

The dynamical principle which governs the 
structure of the hard pion PL is the chiral gauge 
invariance (the invariance under the coordinate depen
dent SU 2 xSU 2 -transformations). It is assumed to be bro
ken only due to the non-zero mass mp and m A of 
the rho- and At -mesons, This form of breakdown 
ensures the universality of the minimal rho-meson 
couplings and besides, leads to the field-current 
identities which manifestly realize the vector domi
nance idea, The hard pion PL }X)Ssesses also the 
usual constant-parameter chiral invariance broken 
by the pion mass. Hence, such a PL reproduces 
in the soft pion limit all standard PCAC results. 

The main feature of our study should be seen 
in the consistent combination of the chiral approach 
with the vector dominance concept. It makes possible 
an unambigous counting of the pion and heavy-meson 
exchange graphs. The two-nucleon axial MEC ope-
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rator is defined as a transition amplitude (a set of 
all possible graphs) constructed in the tree- appr~ 
ximation from the hard pion PL. Due to the basic 
properties of the PL, such an operator automatically 
possesses the correct chiral SU2 xSU2 -transformation 
properties. 

The standard ideology accepted in the elementary 
particle physics is that the hard pion method works 
up to the energy scale "" 1 GeV ("'m p•mA) and in this 
range the corresponding PL's provide a reasonable 
approximation at the tree-level to the hadron ampli
tudes. This is the reason why in constructing the 
MEC operator we also restrict ourselves to the 
tree-approximation. In other words, it makes no sen
se to calculate loops in the approach we deal with. 

We note that the one-loop approximation construct
ed from the soft pion PL is nevertheless used in 
the calculations dealing with the elementary particle 
processes1201 . Like the hard pion method it also 
allows one to pass towards the higher energies in 
comparison with the soft pion tree-approximation 
which works at the threshold. 

A direct important consequence of our consistent 
approach for reaction (5) is 1211 that the contribution 
to the doublet transition rate from the usually accept
ed rh~meson weak current (see fig. 1b in/13') turns 
out to be nearly cancelled by the analogous graph 
containing the A 1 -meson pole in addition. This 
shows the real importance of taking into account the 
A 1 -meson contributions. 

The paper is organized as follows. In Sec. 2 
we present the hard pion PL model used here. For 
the A 1 p77 -sector, it coincides with the minimal 
model by Ogievetsky and Zupnik/16/. Having in 
mind the results of the previous investigations 11- 8 ·131 

we include together with the A 1 .p ,77 ,N also the N*
isobar (which is not required by the model itself, 
however). In Sec. 3, to illustrate the power of the 
hard pion PL technique, we consider the non-Born 
part of the weak pion production amplitude N+JA -+N+77 

6 

and show that its soft pion limit exactly coincides 
with the PCAC prediction. We explain why anal~ 
gous calculation in the Chemtob-Rho method 

131 

leads to the deviations from the PCAC results. 

2. FORMALISM 

There exist several different PL formulations of 
. /15 16/ 

the hard p10n method ' .We prefer the PL model 
by Ogievetsky and Zupnik/ 16 -' because it provides 
the smoothest momentum dependence of the proper 
vertices. The corresponding PL contains no more 
than two derivatives in each term. In this sense, 
it is the minimal hard pion PL. 

2.1. The Lagrangian for the A 1 p rr System 

The effective PL for the A1 prr system in the 
Ogievetsky-Zupnik model is completely determined 
by four phenomenological parameters m p , m A and 
the rho- and A 1 -meson coupling constants g p and 
gA 1, respectively. The pion decay constant frr is 
related to them by the first Weinberg sum rule 1221 

m 2 p 2 mp gA 1 2 
f - (-) [1-(---) ]. 

TT gp mAgp (6) 

which is, in fact, the consistency condition between 
the current algebra and the vector dominance. To 
simplify the subsequent formulae, it is convenient 
to use the phenomenological KSFR relation 

2 f 
2 2 2 
g -m . 

77 p p (7) 

which holds within 15°/o. VIle exploit in the calcula
tions also the second \Neinberg sum rule 1221 

2 2 
gAl '"'gp ' (8) 

which together with eqs. (6), (7) implies the remark
able Weinberg relation/ 221 

.7 



2 2 
rnA- 2m 

p 
(9) 

Eq. (9) seems now to be 
I 18/ 

confirmed experimentally 
Inserting eqs. (6) and 

of the Ogievetsky-Zupnik 
it the elementary vertices 
on of the MEC operators 

(7) into the general form 
PL 1 t 61 

, we extract from 
relevant to the contsructi-

~ 
-+ 

- g p 
prrrr p 11 

-+ -+ 
•rrxa rr, 

J1 

Q -+ ...... -+ -+ -+ 

oL A A P "" g (p x a - p x a ) • a a 
lt p/l V V /l /lV' 

g g2 
gAt -> -+ -> 1 At P -+ f ""- ---p • a X a TT- - --(2 - --) p 

Atprr g f 11 v J1 v 4 g f g 2 11 v 
p TT p TT At 

(10) 

~.. -+ 
• TT X a 

JlV' 

-> -> 
where P , a 11 
respectitely, and 

are the rho- and A 1 -meson fields, 

-- a .... a .... 
p/lV • JlpV- Vp11 

-> -+ -+ a ,.,aa -aa 
11V J1 V VJl 

2,2, Nucleon Part of the Lagrangian 

Although the nucleon sector has not been con
sidered in ref, 1 t 6 ! the relevant PL can be simply 
constructed by using the general prescriptions of 
refs/231

. The PL which is invariant under the gauge 
isospin and non-linear gauge chiral transformations 
is given by 

cu str - - g -
.L --Ny D N-MNN-i~Ny y rN. V; 

N 1111 f J15 11 
TT (11) 

1 Kv - ~.. -.. 
+ 4 gp 2M N a 11 v r N • P 11 v ' 

8 

where the cova~iant derivatives D 11 N , v 11 ; and the 
covariant curl p !LV * are determined following the 
procedure of refs/ 231 In eq. (11) g A = 1,25 (we have 
used here the Goldberger-Treiman relation) and 
Kv = 3, 7. The definition of the metrics and Dirac 

tr. . th . f /1/ rna tees IS e same as tn re • 
After removing the unphysical A 1 rr -mixing, the 

piece of the Lagrangian (11) which we need, reads 
as follows: 

cu - - gA - -+ 
oL N A .., - N y a N- MNN- i - N y y ?N (a rr -

1P" 11 11 2f 11 5 J1 
rr 

g - g'A --+ -+) . p N -+N -+ .~AfN -+N-> -> -g p xrr -1- y r •p -1..=..:.&. y r •rrxa 
Pll 2 J1 J1 2f J1 J1 rr 

(12) 

- -+ -+ 1 K - -+ -+ 
-ig g Ny y rN-a +-g ....:.JlNa rN·p' 

A A 1 J1 5 J1 4 P 2M J1V JlV 

where 
-+ gA g A 
-, -+ 1 -+ -+ -+ -+ 1 -+ -+ 
p -p +--(a xarr-a xa rr)+---rrxa 

JlV JW f g 11 V V J1 f g JlV 
TT p rr p 

Likewise, the part of the PL containing the N*
resomnce is 

f 
~ rr N N* - -+ -+ 

N*NA prr -2 N*TN. V rr 
1 m v v 

rr 

01 - -+ -+ 
- g-N* y y TN. p + 

PM J1 5v !LV 

*In contrast with the linearly transforming curls 
R !LV , S JlV from ref/ 161 ~!LV transforms like the co-
variant derivative V 11 ; , i.e., nonlinearly, It is ~on-
structed out of the pion field and the curls R!ll-' /: 8 yv 
by general rules of Sec. 4 of the first of refs. 23 . 

9 



02_ ... +- ... ... 
+g - 2 N* y (a -a )TN.p- +h.c. 

p 2M 11 5 v ~' f.LV 
(13) 

Here f TTNN* is the rr NN* -coupling constant, m 
77 

is 
the pion mass, and T is an operator which transforms 
the nucleon isospin wave function into the isobar 

125 ' one 1241 . Further, according to ref, 

01 "'1.3 (0 1) sua 
M , 0 ;- --(0 ) 

2 M* 1 su 6 
(O 1 )su "' 2 • 

6 

where M* is the N* -isobar mass, For our purpose, 
only the linear terms in the covariant derivative ... ... v rr and the curl p are of interest 

f.L f.LV 

... 1 -· -. 2 ~ -+ ( ) v TT•-2 a 7T +f gA a,dO(rr ). p -p +O(rr). 14 
f.L f.L 7T 1 r f.LlJ f.LV 

2,3, Weak Currents 

. t ' 16 The vector and the ax1al-vec or currents Llre 
--v m 2 

J - =..i2. p 
f.L g 11 

p 

m2 
_.A £?.. ... -• J ,.g - a -f a 7T 

f.L A1 g2 f.L TT 11 
p 

+f g p• Xlt+ O(rr2 ), 
7T p 11 

(L>) 

where we have used }he relation (6) and have expli
citly written down in J A only terms up to the second 
order in the fields, Th~ vector current obeys the 
exact field-current identity and is dominated by the 
rho-meson, .PJ; the same time, the axial-vector current 
consists of two parts, The 1 +-part is dominated by 
the field a f.L , the o- -piece is mediated by the pion 
pole in accordance with the general prescription of 
the current algebra, Note also that by the equiva
lence redefinition of the a f.L- field, all ... a~ ~ a f.L + 

10 

2 __, ... 2 
~ (gp f 77 lgA

1
mp )p

11 
xTT + O(TT ) we might reduce 

J A to the form 
f.L e 

_.A m _. 
J" ~ gA _p_ a' - f a i? , 

,..- 1 i: f.L TT f.L 
p 

in which the dominance of the 1 + -term by the axial
vector field becomes evident (of course, such a re
definition would entail an appropriate rearrangement 
of the elementary vertices in our PL). 

The constant-parameter chiral invariance of the 
present PL is also broken, as usual, by adding the 

term m 2 f 2 [1-(T!/f )2 ]1h which supplies the pion field 
TT TT TT 

with the mass. This breakdown ensures that the 
axial current satisfies the PCAC 

a JA ~ m2f ; . 
f.Lf.L TTTT 

Of course, the vector current remains conserved, 

2,4, Two-Body Axial MEC Operator 

We now present in the given model, the two-body 
axial MEC operator (fig, 1), It is the set of all admis
sible graphs in the tree-approximation, 

The sign of some of the coupling constants in 
eqs, (10)-(13) is unknown. No difficulty arises, if a 
graph is composed of the vertices eqs, (10), (12) 
(only the squares of the g A

1 
, g p , f 77 appear), It is 

not so in the case of the graphs 1a and 1b with 
Yl - N * and B-p , Fortunately, the contribution from 
these graphs is negliglble 1 21/. 

As the PCAC is satisfied, the divergence of the 
set of graphs in fig. 1 should be zero in the limit 
of zero pion mass, We have verified that the sum 
of graphs 1a-1b (for each intermediate baryon and 
for each boson exchanged), 1c-lf and 1g-1j are 
divergenceless separately, 

The graphs 1a+ 1b with Yl-N, B-rr (Born terms), 1a 
with Yl "'N*, B •TT ( N* -excitation current) and 1d ( p -rr 

weak decay current) are of the same form as the 

11 
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Fig. 1. The two-nucleon axial MEC operator in the 
tree-approximation. The wavy line represents the 
axial-vector current. In the graphs a and b , ')( 
stands either for the nucleon or N*-isobar, 8=;rr,A 1 .p. 
Otherwise heavy double and light dashed lines are 
for the A 1 -meson, rho-meson and pion, respecti
vely. 
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graphs usually calculated in the standard approa.ch 
with the pseudoscalar (p.s.) rr N -coupling. Because 
we are working with the pseudovector (p.v.) rrN -
coupling, our Born terms differ from the standard 
ones. The problem of eliminating the piece, which 
is already included in the nuclear wave function, 
will be discussed in the next paper where also the 
numerical results for reaction (5) will be published. 

3. WEAK PION PRODUCTION IN THE 
HARD MESON METHOD 

In the present section we consider the non-Born 
part of the amplitude for the pion production from 
the nucleon by the axial-vector current 

Aj 
N (p 

1 
)+ J ,\ (k) .,. N (p 

2
) + rrn (q) (16) 

in the hard meson method. In eq. (16) ,J t j (k) is the 
axial-vector current with the isospin index j and 
nn (q) stands for the pion in the isospin state n • 
This amplitude enters en bloc into the axial MEC 
operator (graphs a-f in fig. 1) and, hence, has a 
direct relevance to the main subject of our study. 
We show here that the consistent application of the 
hard pion PL method enables one to avoid discre
pancies with the pure PCAC approa.ch, which are 
present in Alder's /26/ and Chemtob-Rho's 13/ 

analysis of this amplitude. We restrict ourselves 
to the two important limits, as k ... Q or q ... 0. 

In the limit k~O , we parametrize the non-Born 
term M ~ of the amplitude M~ of the process ( 16) 
as follows: 

-A 2 - (+) 2 (-)[.{3'( 2) 
M,\ (q ,k .. Q),.,iu(p2 )!anj y(q )q,\ +anj 1 q ~17) 

xa,\v qv -2ia'(q2)My,\ ]!u(p 1), 

13 



h 9: ) 1 [ ] th . . . t' w ere a "'T rn,rj ± are e 1sosp1n proJeC ton ope-

rators, and a' (q2).{3 '(cf ),y(q!) are the form factors which 
survive in the limit k -0 [a '(q2)=a '(q2,k,.O)etc.J. We choose 
the covariants a Avqv and YA instead of (pl +P2 )A 
and Y A because sandwiched between the nucleon 
s pinors they remain independent also in the limit 
q- 0. Therefore, the form factors a ',(3 ',y remain 
also independent in this limit, and the analysis turns 
out to be more simple than in refs. 13 •261 . Our form 
factors a',f3' are related to a .{3 from/3/ as follows: 

{3'(q2)-{3(q2), a'(q2)•a(q2)+{3(q2 ). (18) 

Due to the I=CAC, the form factors a', f3 '. y are 
related to the non-Born part of the rr N -scattering 
amplitude taken at zero momentum of one of the pions 
involved (see, e.g., eq. (2.15) in ref. 131 ). These 
relations hold also in our model. 

l\llore detailed information is provided by the cur
rent algebra and PCAC for the form factor a '(q 2 ) 

when q "'0 1211 

a '(0) ,. --1 - ( 1 -g! ) . 
2 Mf TT 

(19) 

where gA= gA(O) is the axial f3 -decay constant. 
It was observed in refs. 13 ·26

1

• that the amplitude 
( 17) evaluated within the pure rho-exchange appro
ximation shows some deviation from eq. (19). We 
show that the discrepancy disappears if the A1-meson 
contribution is correctly taken into account. 
_ The graphs which contribute to the amplitude 
Mt (q 2.k-O) are given in fig. 2. Before evaluating 
them, let us note that the decomposition of the pion 
production amplitude into the Born and non-Born 
pa.rts depends on the form of the rr N -coupling 
(i.e., the non-Born terms are different for the p.s. 
and p.v. rr N -couplings). In order to make the compa
rison with the results of refs/ 3·261 unambiguous, we 
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Fig. 2. The contribution from different processes 
admitted by the PL eq. (12) to the non-Born part 
M ~~ of the pion weak production amplitude. 

I 

pass in our PL ( 12) to the p.s. rr N -coupling, which 
was used there. It can be made by the standard 
equivalence redefinition of the nucleon field 

g A -> -> 
i~yc. (r •rr) 

TT ;) N. N •N'"e (20) 

This replacement leads also to the renormalization 
of the coupling constants in a number of the contact 
vertices and, generally, produces some new vertices. 
This is the reason why the non-Born terms are 
different for the p.s. and p.v. rr N -couplings. The 
effect of the canonical transformation (20) on the 
amplitude (17) is 

i) the renormalization of the minimal A1 rr N coupling 
constant in the graph 2a 

min 1 1 2 
grrNA--2fgA ->- 2fgAt(l- 2 gA), (21) 

TT 1 TT 

ii) the appearance of a new graph (fig.3) due to the 

non-derivative rr N -coupling M(g ~/2 r;, N N 772 which 
comes from the nucleon mass term (the derivative 

15 
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~ 

Fig. 3. The graph Vvhich appears after passing in 
the PL eq. (12) to the pseudoscalar 77N -coupling. 

coupling -Ny r"N. iFxa ; which arises from the nuc
leon kinetic ~nergy llterm makes no contribution in 
either limit we deal with). 

Using the PL (12) with these modifications taken 
into account, we evaluate the contributions of the 
graphs in figs. 2 and 3 to the form factors a ',(3 ',y. 

They are listed in table 1. 
Summing up the contributions and neglecting for 

simplicity the terms -(q/M*)2 , we have 
f2 f 2 

y(q2).16 ~~ _1 __ + 2M~ 1 , 
9 M2 M*-M f77 q 2+m2 

2 K v m2 
(3 '(q )-- -- __p __ - 4 

2Mf m2 +Q2 9 
77 p 

2 
f77 NN* f TT 

M2 

, 2 1 2 q 2 ] a (q )--[1-g - . 
2 Mf A q 2+m2 

77 p 

77 

1 

M*-M' 
(22) 

It is seen from eqs. ( 22) that the low energy 
theorem (19) is exactly satisfied in our model. The 
origin of the controversy with the current algebra 
predictions in 1 3 •261 lies in the overpassing the 
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graphs with the At-meson pole. Just these graphs 
ensure the compatibility of the current algebra and 
the rho-dominance for the given process. Note that 
the contact At rr N -coupling (graph 2a) is prescribed 
by the gauge chiral invariance principle and is pre
sent in any PL realization of the hard pion method '!' 

The second reason why the calculations of 
ref. 

13
/ and partly of ref. 1261 deviate from the current 

algebra predictions is the incorrect treatment of the 
off-the-mass-shell behaviour of the p rr J A -vertex in 
the rho-meson weak decay current. It is usually 
assumed that this vertex is well approximated by 
its soft pion value 

n Aj E k A k njf 
<rr (0) I J A (k) I P > - g A (8A11 + __ :J.!:_)( · • (23) 

J1 prr J m 2 
p 

where 
g (0) m2 /3/ rrNN p 

-A • 
Mg A gp g p TT.J 

The Goldberger-Treiman relation f 77 g rrNN'" MgA together 
with the KSFR relation (7) yield 

g A"" 2f g 
prr.J TT p (24) 

Then this value of gprr.JA is substituted : 3
/ into the 

weak decay p-rr graph at k- 0 (small momentum 
transfer). 

* We might remove the A1 77 N -coupling by the 
equivalence transformation of the p "-field, f!

1
L --+p

11
' 

.... 2--+-+ 'JL 
= p J1 +(gAtgpf 77)(1-2gA)rrxa 11 .As a result, we would be 
left only with the p' -exchange graphs. In contrast 
with ~ , the p ~ is not transversal off-the-mass
shell and the terms q 11q vIm; in the p '-propaga
tor would contribute instead of the contact graph. 

18 

However, such an approximation is justified only 
if the off-the-mass-shell form factor gprr.JA (q-O,k 2 ) 

is assumed to be nearly constant in a rather wide 
range 0 <- k

2 
< m ~ . Within the hard pion method, it 

is possible to estimate explicitly the correction 
terms which arise when extrapolation from k 2 "'- m~ 
to k -0 is made. The off-the-mass-shell prrJA-ver
tex is now composed of the contact and A 

1 
-pole 

parts which enter into the graphs 2b and 2c, res
pectively, 

A. £' 
<rrn(q)IJ/ (k)lp£ >~Enj [(o, 

J1 1\Jl 

(q+k) A (q+k)
11 

+ 2 )x ( ) m 25 
p 

ml-2q 2 
X f 77 g p m 2 ,_ ?. + 0 ( q k ) ] . 

A 

When the rho-meson is on-the-mass-shell, the 
soft pion limit (qzO,k2 --nfp) of eq. (25) coincides 
vvith eq. (24). We obtain the same value of gprr.JA 
also if k -0 and q 2.- m 2 

. However, in the combined 
limit q .. o and k .. o (the Prho-meson is off-the-mass
shell), the vertex (25) has the value 

g .J A ( q • 0 , k • 0) "' f g PTT 7T p • (26) 

i.e., it is twice smaller in comparison with (24). This 
shows the importance of the off-the-mass-shell cor
rections. In our scheme, just the value of g A-f g 
enters into the graph 2b. Consequently, the ~77JntrlbJ
tion from this graph is twice smaller as compared 
to the standard calculations 131 

• Note that the hard 
pion momentum dependence of the prrJA -vertex has 
been taken into account by Adler /26 1who, however, 
did not consider the contact graph 2a, and there
fore, did not obtain the complete agreement with the 
PCAC results. 

A The momentum dependence of the p rr J -vertex 
turns out to be important in the practical calcula-
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tions. Indeed, we have shown 12t/ for reaction (5) 
that the contribution to the doublet transition rate 
from the graph 1d is nearly cancelled by that due 
to the At -pole graph 1e. This type of cancellation 
may also bring the calculations of ref/ 7/ for reac
tion (1) into better agreement with experiment. 
_A In the limit q-0, k ,:o, we parametrize the amplitude 

M A by anabgy with eq. (17) 

-A -
MA (q-O,k 2 )-iu(p2 )!a(~)p(k 2)k, +a<-:-{iA(k2)a, k -

llj 1\ llj 1\V V (27) 

-2 ia '(k2)MyA ]!u(p t ), 

where now a'( k
2
)=a '(q -O,k2 ), etc. It follows from eqs. 

(1_7) and (27) that a' is the only form factor which 
survives in the combined limit q- 0, k -0. 

Generally, the form factors p ,A and a' are 
restricted by the current algebra and PCAC as 
follows 1261 

2 1 2 
p(k )---f-gAgP(k ), 

rr 

A (k 2 ) • _1_ F 2 v (k 2 ) , 
frr 

2 1 v 2 2 
a ' (k ) - - [ F t (k ) - g A g A (k ) ), 

2f M rr 

(28) 

where g p , gA are the standard weak induced pseu
doscalar and axial-vector form factors, F{ (k 2)-1+0(k

2
) 

V 2 K V 2 
and F 2 (k )•2M+O(k ) are the vector current form 
factors. 

In the framework of our definition of the non
Born part M ~ of the amplitude M~ (figs. 2 and 3), 
p (k 2) is given by the graph in fig. 3 and contains 
only the pion-pole piece. Notice, however, that our 

20 

g p (k 
2 

) consists of the pion-pole as well as At-meson 
pole parts (the last one coming from the term - kvk A 
in the At-meson propagator which mediates the weak 
axial-vector current in the NNJ A vertex). The seeming 
inconsistency with the first of eqs. (28) is removed 
by puttinr our Born terms into the form used in · 
refs. /S •

26 (they remained different even after passing 
to the p.s. rr N -coupling). Then we obtain for p (k 2 ) 
the missing A 1 -meson pole part as demanded by the 
first of eqs. (28). 

The remaining part of the amplitude (27) is given 
(see table 2) by the graphs 2a-2c ( N * -isobar 
makes no contribution in the limit q--+ 0 ). Summing 

Table 2 
The contributions of the graphs 2a-2c to the form 
factors A and a' in the limit q--+ 0. 

~ s A(k~ (I '(k 2 ) 

s 

K m 2 2 
1 mp 2 2a ___::::___ ___f!. __ - ---(1-2g ) 

2Mf m2 t k2 9Mf 2 k2 A 
rr A - rr mAt 

Kv m2 
1 

m2 
2b p p 

4Mf 2 k 2 4Mf m~+k 2 
rr mp+ rr 

2 k2 2 2 
Kv mo 1 m

0
k 

2c 
- 4Mf (m2 +k2)(m2 +k2) 4Mf (m2 +k 2)(m 2 + k 2) 

rr p A rr p A 
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up the contributions and using the first Weinberg 
s urn rule ( 6), we finally have 

K m2 
A(k2) v p 

- 2Mf 2 2 ' 
1T fip+k 

2 2 
, 2 1 mp 2 rnA ) 

a (k ) • - ( 2 2 - g A 2 2 · 
2Mf 17 m + !.{ m A+ k 

p 

(29) 

Keeping in mind that in the present model 

F :(k 
2
)·mi I (m: + k

2
). F 2v(k 2 )•(K vi2M)m ~/ (m~ +k2 ) 

(rho-dominance), and besides gA(k2) .. gAm!;Cmi+k2),we 
observe complete agreement between our calculations 
and the general PCAC predictions (26), Again, the 
crucial role in attaining this agreement is played 
by the contact graph 2a, Note, that in the limit k-+0, 
we again recover the Adler-Weisberger theorem 
(19). 

Let us emphasize that the inclusion of other 
particles into the present scheme (such as the nuc
leon isobars with J-112) cannot affect eqs, (29) as 
far as it is made in a gauge chiral invariant vvay, 
Note also, that the minimal model by Ogievetsky 
and Zupnik corresponds to the choice o--1 for the 
anomalous magnetic momentum o of the A 

1
-meson 

in the general hard pion vertices 1141 .Any other 
choice leads to a stronger momentum dependence 
of the form factors, However, in the limit q .... Q , the 
weak pion production amplitude does not depend on 
the o , and the relations (29) hold in any realization 
of the hard pion method, 

Throughout this section we used the KSFR re
lation (7) alongside with the first Weinberg sum 
rule (6), However, the correct PCAC behaviour of 
the amplitude is governed by the first Weinberg sum 
rule alone. In particular, the derivation of eq. (29) 
is completely independent of employing the KSFR rela
tion. 
22 
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