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Quccanauns aHepTHH B PRAKIHAX C THKEAbIME HOHAME B pamMkax
NOTeHUHARLHOR Mogenu, . PopManEam

Mpennaraercs npocras noreHuManLHas MOAesds, B KOTOpoA QuCCHNAuLMS
BHEPI'HH B PEEKUMAX C THNME/IBIME HOHAMH CBA3LIBAETCH C BOAGY HMASHHEM
ypopHedl THraHTCKoro pedcHarca. Q6pa3osaHHe COCTABHOCD #Apa NP 3TOM
PACCMATPHBARTCH K&K 38XAAT HA KBA3HCTALMOHAPHGIE COCTONHHH.

PaGora ermonsena v JlaBoparopuw Teoperuuscrol guauxu QW AW,

Npenprnr OBseannenHoro MHECTHETYTA SAepHEX ACChogobanui, ByGua 1878

Afanasiev G.N., Shilov V.M,, Trajdos M,, E4 - 11416

The Energy Dissipation in Heavy lon Reactions within
the Potential Meodel

A simple potential madel is suggested in vhich the energy
dissipation in the heavy ion reactions is treated gquantum-mecha-—
nically. In the spirit of the early papers on the giant resonance
theory we treat it as the muiual eoscillations of the proton and nout-
ron nuclear densities. Just due to the excilation of these oscilla-
tions the kinetic energy dissipation takes place. The incoming
particle can be caplured to the guasistationary levels urder the
' Coulomb barrier. The reaction cross-section is defined in a usuni
way as an infinite sum of the partinl penetrabilities., The cross sec-
tion of the compound-nucleus formation is defined as a part of this
sum over those siates the kinetic energy of which is below the
Coulomb barrier,

The investigatlion has been performed at the Laboratory
of Theorelical Physics, JINR,

Prepiint of the Joint Inatituie for Muclear Besearch, Dubng 1978
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1. There are only few attemts to treat quantum-
mechanically the kinetic energy dissipation in heavy ion
reactions. In refs.”'*’  the Hamilionian of the ion-ion
system was composed of 3 parts: the Hamiltonian cor-
responding to intrinsic motion of the colliding ions, the
Hamiltonian of relative motion and the Hamiltonian cor-
responding to the interaction of these motions. The corigin
of this last term is due to the deformation of nuclear
surfaces resulting from their Coulomb repulsion. As
only quadrupoie deformation was taken into account,
only lowest collective states were excited.It was pointed
in refs.”!'®/ that taking into  account the Coulomb
excitation only is insufficient. Nevertheless, the calcu-
lations performed in’®’ show that Coulomb excit/ation
changes cross sections by an order of 309%. In refs./3.4’
the interaction of intrinsic and relative motions was
chosen in the form:

H = $A, V), (r) (1.1)

where A;\# = ,def(E)a;‘u(E). and af\#(E) is the creation
operator of the state with quantum numbers (iyx) and

‘energy E ; f(E)is the weight function. As an experiment

demonstrates the definite kinetic energy losses, the
f(E) was chosen to be a delta function:

f(E)y=F.8(E-ha).

The values V, (r) were defined as the Fourier series
components of %e following function



v(ry v, 2R 5 s cos g )= 3
(r)-- 0——-—;5-**— (cos@-cos P): =V
At last 0y were defined as the deflection angles of the
Coulomb classical trajectories. The interaction (1.1) was
treated in the first order of perturbation theory to calcu-
late both reaction and compound nucleus cross sections.
S0, this model uses the receipts of the classical mecha-
nics in order to fix the parameters of the model. Further
calculations are performed using the rules of the quan-
tum mechanics. The fitting parameters are o |, R, ,
Vg - The drawbacks of this model are evident: i) the
energy losses are put into it by "hand” (i.e., there is no
mechanism of the energy losses); ii) it uses the re-
ceipts of the classical mechanics, iii) there is no mecha-
nism of the compound nucleus formation.

{r).

2. We suggest the following simple quantum-mecha-
nical model which permits us to treat the energy dissi-
pation in heavy ion reactions. The incident ion (see the
figure) is scattered inelastically on the nuclear target
and excites the intrinsic degrees of motion. We adopt
the simplest possibility and treat these intrinsic degrees
as the giant resonance oscillation modes of the target
nucleus. For simplicity we treat these modes in the spirit
of the early papers on this subject (cf. /57 ), e, we
consider these modes as the mutual oscillations of the
proton and neutron components of the nuclear density.

The following simplifications are also made:a)we neg-
lect the recoil effects experienced by the proton compo-
nent of the nuclear density; this is equivalent to using
of the infinite mass of this component; b) the proton and
neutron components being treated as structureless objects
(the same is true for the incident ion) are interacting
by the oscillator law; ¢) the interaction of the incident
lon with the proton component (i.e., with the fixed force
center located at the origin) is composed of the attrac-
tive square well at small distances and of the Coulomb
repulsion at the greater ones; d) the interaction of the
incident ion with the neutron component of the density
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Schematic presentation of the treated model.



- 15 short range and is treated in the first order perturba-
tion theory using the Fermi’s Golden rules. Point a) is
needed to escape the solution of the full 3-body problem
and permits us to be limited to the consideration of the
scattering of particle 1 on particle 2 in the field’®’ . Point
b) is needed to exclude the fission channel of the neutron
and proton density components. At last, points c¢) and d)
are aimed at presenting results in an explicit form using
the special functions of the mathematical physics.

3. The total Hamiltonian may be written as
H =H, +H, +V;,(ry,) .

Here H, is the oscillator Hamiltonian of particle 2 in
the field of the force center: 0
n® v korg
H2=‘“2.—H’,"2A2+V2(r2)' sz-—é&—,
Hiis the Hamiltonian of the incident ion 1 in the field
of the force center:

h2
H, =_2—m1A1+V1(r1}

-V r, <a

01’ 1 1

2
Z1 de

"

l'1> 31

At last, Vis(ry5) is the interaction of the incident ion 1
with oscillator 2. We consider’twg variants of the Vg :
a) delta function Vs = Vg .a(rlﬁr2 } and b) square well:

Vig=—Vorg for ryp<ag,, V=0 for 1y, >a

12 7~ %42 -
As in atomic physics 71% (the difference is that

there is no potential screening in the treated case) the
exact wave function may be developed into the eigenfunc-
tions of particle 2 in the field of the force center:

g (T Jug )+ IF (7 Ju (). (3.1)

Here u#(ﬂ) are the oscillator functions:
e 'y os5c
Wy e, () RO )Yy (96
4(7,) is the wave function of incident particle 1 in the

field of the origin, which has the following asymptotic
behaviour

GH(ry) - exp[iklz1 +ia11n 2k{r,~-z plor

L (0,400 )
A R

- Xp[i(k1r1—allt’12kll‘1 ] (3.2)
1
2m,B, AL
(k== oy = =)
h <Yy

In order to make the main text to be more readable, we
collected all the details concerning expressioq (3.2) and
the next ones in Appendix. The functions I, (ry) satisfy
the following system of the differential equations

, 2 2maViC ) e 7yl By (s
A+ kp, - IR (s v ()
) _ N - 3.3
+—£lg— i wv,ut ({1)5‘,{: (rl) @9
@& 0
g 2my - 0se ase .
(kw:"h_é(El_Ev + B v=n lom,

o8

B 0:11(92 (2!‘12 i f2+3/2)

1

Neglecting (point c¢)) the sum in the r.h.s. of (3.3) and
using the Green functions formalism, one easily finds F‘#:

) . 3 » . Y B2 a7
F o) - —5 h3 Y{,m(nl)[G[_‘,(rli*t)x.vp_,m(:l)r1 d;l, (3.4)
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" At last, finding the asymptotic value of (3.4) one easily
gets the scattering amplitude and cross section for the
excitation of the oscillator level with quantum numbers
N fpmy

e (o0 0Nf a0
o T 5T (20,41 * Ly B
A0 G O —mom, 0

<C{ 0T im0
(3.5)

k
On f = —115/—* 'Z
2rg 1 Ty

2
”fngfz 1112(61(’351)1L dﬂl:

on 2, +1
Ly 2l el Ky, RECED N

2 A
h 4n ki .
Fo ¢4 2. 2
NG EEED BIE o § A EER PR Y
6 00

The reaction cross section is defined in the usual way:

4
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4. Now about the compound nucleus cross section,
Due to the excitation of the oscillator levels the kinetic
energy is decreasing and may be below the Coulomb
barrier. In this case the capture to the guasistationary
levels inside this barrier i{s possible. Nevertheless, taking
inte account only the single-particle quasistationary levels
does not give good results: the compound nucleus cross
section after passing the maximal value decreases too
rapidly as a2 function of the ineident ion energy /1l One

8

e

may easily understand this if takes into consideration the
fact that compound nucleus is essentially many-particle
formation. So, it is not enough to treat onl)r single-par-
ticle quasistatmnary levels. In refs.’ we tried to
simulate the many-particle nature of the compound nucleus
with the use of the appropriate boundary condition. Here
we adopt a different apprecach. In view of lack of the
information about the nature of many-particle quasistatio-
nary states we postulate that each time as kinetic energy
of the incident ion (due to the excitation of the oscillator
levels) drops below the Coulomb barrier, the formation of
the compound nucleus takes place with the probability
equal to 1. After this logical jump we note that mathema-
tically this is equivalent to summing up in (3.6) over the
oscillator states within the energy interval:

z
EI - Ela_z..gg <E < L

1 nfs 1
(E1 is the energy oftheincidention, E ﬁ(2n +F 2 +3/2)h ).
The compound nucleus cross sectwn a% flrst grows as
a function of energy and after passing the maximum dec-
reases. The first is due to the fact that cross section
being equal to zero, if the kinetic energy is less than
the energy of the first excited state, grows with in-
creasing number of the excited states. On the other hand,
for E; sufficiently large there is relatively small num-
ber of the excited states in the interval (4.1).

The r.h.s. of inequality (4.1) means that the kinetic
energy loss must be less than the energy of the incident
ion. Otherwise, the formation of the bound state takes
place (force center + particle 1 + particle 2). But this is
possible only for discrete values of the incidention energy.

(4.1)

‘We want to point out the relation of the glven model to

others (see, for example, review paper } in which the
capture to the potential pocket is due to the using of the

cclassical equations of motion with a friction force. In the
'present quantum-mechanical model this capture is due

to the excitation of the intrinsic degrees of motion.

We are very thankful toDrs. V.G.Kartavenko, A.V.Mat-
veenko and V.P.Permjakov for the stimulating discussions.
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'APPENDIX

For the sake of completeness we give here the nor-
malized wave functions used in the text. The radial os-
cillator function

P+
ROSC _[ 2. l—‘(ngggz +3/2)]1/2 22 exp ( - o2 2 /9 )Lri, _2“(92)
“EPE ngT A0ce -
.2 a2 - B
Py = a 08¢ ————m
08C \ k2m2

Function ¢ (' Jused in (3.2} is equal to
R 3 . P iT”J
d)(rl):i—Ed)P(rl)P[](cosﬁl)(zf+1)1 e U (A1)

where for the treated potential well V, (r )

- TS S, ﬁﬁr,-‘-forr(a
3, (1,)= ljﬁ(kol Py (eqa p- koﬂp(kmal)f )( Ly

1
.é_l (e, r )-8y (ko) k)] for t >

(A.2)
functions j[) (x) equal:

Jp (%) = \/"g“ JVL_l (%),
t‘én (r) are combmatlons of the usual Coulomb functions:
fél"”(x): Go(n. 0 LiF, (5.x).

The dot above the f; and prime near the jy mean the
differentiation with respect to argument. The partial
S -matrix in (A.2) is equal to:

1‘V(k1a1)JV(ko1 ) -k ff (CENITICTES

(1) (1)
o F5 i e =k 1y (k8 )

Sp(ky Kgy) =

k 01y

10

The wave numbers k; , kg are equal to

Ly .2y _j2my
ky=v o2 By 0=V e (B +Voy)

The asymptotic value of ¢(r;) is given by (2.2). The
Coulomb and nuclear amplitudes which enter into (2.2)
are equal to

. 21'7]1;
f.(6, )= EiLk-lz(ze +1)e Py (cosg) =

ZyZgye° 1

7,
L2 4, exp[—iallnsin2—§L+in+2iq0]
m, v, sin ¢

S 2iny _
wal) 5iKe 3 (20 +1e (8 —DE (cosd,).

Here ng is the Coulomb phase:

n =argl (£ +1+ ia,)

4

uq is Sommerfield’s parameter:

The Green functions GPV(rl Iy ) (see 2.4) are obtained
using the method presented in/15/ The final formulas are:
r,r>a(= a; )

Gy (r.x’ )——~2—-k-r—r—[f§2)(k,,r<) Sp kg, 06 e 15 s )

for r .r° < a.

Gf(rr’)j ] rr"—'—""‘.}H(k r )[n (k > )
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(0 . (1
fp (kayk, np(kgA)- kDu ng(kova e (k,a)

“’(k,;a)kw(k 2) —ky, i (kg a)f(“<k..,a)

x g (kev '-">)]

for r<a<r” (o r’<a<r)

GPV (r r’),_iﬁ_f.{V <)f(l)(k r >)>-<
- Tr

X S 1 —
iy (%, d)f(”(k adk,,

(k Dya)fél) (k,a)

where as usual
r =T , [ =tr" if r>r ’

> <
‘ r =T if r<r’

> <
Function n,(x) may be expressed through the standard

Neumann function

a X
ng(x) =/ 5 YF,+-1— (x).
Functions w LM (rel. (3.3)) are defined in the fol-

lowing way:

T (0, )V, (7 =1 g (7, )dry

(1F,-T,Du (F)df,

12

The functions me (see 3.4) are the radial components
of w y
(r1 )dQ.1

17 - —»
ng(rl) = | Yfm(nl)wv

Note that symbol ¥ marks the oscillator basis (v=n,f ofy)
n P 1112

As the motion always takes place in plane, the
rn
This non-

is different from zero only, when m --m,
vanishing component is equal to:

112{72 mo 2?. -I'l 2? +1
pfeme 1 @Rl Dy
S g 1 4 Nty 1
fy iy, gty ¢ bo €04 7
) ¢ 2 b1 2 1
Y { +1 1
“ ngl (rl)(g r ! © 0 00 -—mgO m,,

Vn2g2 is obtained by folding the two oscillator functions

with a partial component of the potential
!

2 ose 2
Vnzgg (r)=7r1,-R ool (T DR (1 )V, (1ot ddr,
v (lt _ri) Evp (1,15 )Py (coso, ) 2Ll
12 M1 12 Ve 12 47

For the simplest potentials the Vngfg are obtained

explicitly. For the delta potential:

-

V = LS5(F —
1o VO 8(1‘1 r2)
one has:
Vv =V R (r, YR (r ).
n2£’2 0 n2?2 1 001

For the square well potential:
13



-V, r.. <a

V. [ 12 12
12 :
0 r12> a4,
One easily {inds

[ 47 .
Vio ,-2_?._:1_\705?'0 if r1+r2<a12
vl <o it |F —F,lza

12 1 Tral L%

g2 2 2 2 2 2
22V r; 4 —a S

AR | P, (_ﬂ.i_:.,_%___ﬁ_l_z_)h% (-1 2 712 y)
e af 41 +1 2, —1 2ror,

-

-
if [rl —r2\<a12.

Finally, the coefficient C (?4f; ny,?, ) (2.5) equals

1

X
- 1) , (D
Fylky )y (k a)k g~k Jy (k 2)fp (k,a)

C(P,lﬂ » D, 122 Y

1
x
- 1 . :
Ip (kma)f(ﬂ ) (kpa)k,, —k jp (kma)flg.l)(kﬁ)

X

a
x [jp (k. 1)ij k..o)V (r)dr +
[ g (kg Chgp OV, p (0)

z{ [f(;)( er)_SF (kOV’kV)f(El)(kvr)] *

1 v

(2) (1)
f k -5 k... k f k \' d
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