СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

E4 - 11378

J.Bang, F.A.Gareev, M.H.Gizzatkulov, S.A.Goncharov

annenne it mitteren

28

EXPANSION OF CONTINUUM FUNCTIONS ON RESONANCE WAVE FUNCTIONS AND AMPLITUDES. II.

2-78

E4 - 11378

J.Bang,* F.A.Gareev, M.H.Gizzatkulov, S.A.Goncharov

EXPANSION OF CONTINUUM FUNCTIONS ON RESONANCE WAVE FUNCTIONS AND AMPLITUDES. II.

SECOND ACRON BUT JUL TEHA

* On leave of absence from: The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark. Банг Е. и др.

E4 · 11378

Разложение функций континуума по резонансным волновым функциям и амплитудам. II.

В качестве иллюстрации общих доказательств сходимости полюсных разложений (согласно теореме Миттаг-Леффлера) волновых функций, амплитуд рассеяния и функций Грина при положительных энергиях рассмотрены примеры дельта-потенциала и прямоугольной ямы. Численные результаты представлены в виде таблиц и графиков.

Работа выполнена в Лаборатории теоретической физики, ОИ ЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1978

Bang J. et al.

E4 - 11378

Expansion of Continuum Functions on Resonance Wave Functions and Amplitudes, Π_{\bullet}

The pole expansion (Mittag-Leffler expansion) of wave functions scattering amplitudes and Green's functions at positive energies are discussed in a mathematically rigorous way. The general proofs of convergence are supplemented by numerical calculations, which, for simple examples, show the convergence to be fast. Applications of the method to nuclear structure calculations are discussed.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1978

© 1978 Объединенный институт ядерных исследований Дубна

Introduction

In a recent publication⁽¹⁾, henceforth reffered to as I, the Mittag-Leffler expansions (MLE) of wave functions, scattering amplitudes and Green's functions at positive energies are discussed in a mathematically rigorous way. In this paper, as an illustration of the obtained general results, some numerical investigations are discussed for two simple examples; δ -function potential and rectangular well potential, which were considered in detail by several authors (see, e.g., ref.^(2,3,4,5/)). It should be noticed that numerical investigations of the convergence of the MLE of the S-matrix are nearly absent in the literature (see, though, the article by Weidenmüller^(6/)) and for the wave functions, such investigations were never carried out.

We give here (IV) some formulae and numerical results which pertain to the above-mentioned potentials, restricting ourselves to the S-states (i.e. $\ell = 0$).

In (Y) some conclusions are discussed.

IV. <u>Numerical results</u>

a) Potential $V(z) = V_0 \delta(z - R)$

The exact expression for the S-matrix and wave function of the continuous spectrum for $z \leq R$ are

$$\vec{D}(K) = \frac{1 + V_0 (1 - e^{-2i\kappa R}) / 2i\kappa}{1 + V_0 (e^{2i\kappa R} - 1) / 2i\kappa}, \qquad (4.1)$$

$$\Psi^{G}(\kappa, 2) = \frac{e^{i\kappa R}}{\kappa} \frac{\sin \kappa r}{1 + V_{0} (e^{2i\kappa R} - 1)/2i\kappa} .$$
(4.2)

For the resonance wave function we have for $\tau \leq R$

$$\Psi_{n}(z) = \left[\frac{2(V_{o}-2iK_{n})}{f+R(V_{o}-2iK_{n})}\right]^{V_{o}} \sin \kappa_{n} z \qquad (4.3)$$

with κ_n determined by

$$1 + V_0 \left(e^{2i\kappa_n R} - 1 \right) / 2i\kappa_n = 0 \cdot$$
 (4.3a)

The expansion of the S-matrix is

$$S^{(P)}(\kappa) = e^{-2i\kappa R} \left[S_{R}(0) + \kappa S_{R}'(0) + \dots \frac{\kappa P}{P!} S_{R}^{(P)}(0) + \frac{\kappa S_{R}'(0)}{\kappa} \right]$$

$$+ \sum_{n=1}^{\infty} \left(\frac{\kappa}{\kappa_{n}} \right)^{P+1} \frac{\Gamma_{n}}{\kappa - \kappa_{n}} \left[\int_{0}^{\infty} \frac{\kappa}{\kappa} \right]$$
(4.4)

$$\Gamma_{u} = \frac{2 \kappa_{u}^{2}}{i V_{0} \left[1 + R (V_{0} - 2i \kappa_{u}) \right]}$$
(4.4a)

$$\beta_{R}^{\prime}(0) = 1$$
, $\beta_{R}^{\prime\prime}(0) = \frac{2iR}{1+V_{0}R}$ (4.4b)

$$\delta_{R}^{(0)}(0) = -\frac{1}{(1+V_{0}R)^{2}}$$

$$\delta_{R}^{(0)}(0) = -\frac{4iR^{3}(2-V_{0}R)}{(1+V_{0}R)^{3}}$$

and for the wave function, we have the expansions

$$\Psi^{G}(\kappa, 2)^{P} = \frac{2}{1+V_{0}R} - \frac{1}{2} \sum_{k=1}^{\infty} \frac{K}{\kappa_{n}} \frac{\varphi_{n}(2) \varphi_{n}(R)}{\kappa_{n}(\kappa-\kappa_{n})}, \text{ for } p = 0, \quad (4.5a)$$

$$\Psi^{G}(\kappa, 2)^{P} = \frac{2}{1+V_{0}R} + \frac{(\kappa^{2}R)}{(1+V_{0}R)^{2}} - \frac{1}{2} \sum_{k=1}^{\infty} \left(\frac{\kappa}{\kappa_{n}}\right)^{2} \frac{\varphi_{n}(2) \varphi_{n}(R)}{\kappa_{n}(\kappa-\kappa_{n})}, \text{ for } p = 1. \quad (4.5b)$$

So we can compare the exact expressions for the S-matrix and the wave functions with the corresponding MLE. In Table 1 the values of κ_n are given for $V_0 = 40 \text{ fm}^{-1}$ and -40 fm^{-1} and in Table 2a and 2b the values of the exact S-matrix and the S-matrix, obtained from the MLE for p = 1,3 with $n \le 4$ and $n \le 7$ ($V_0 = 40 \text{ fm}^{-1}$). Figure 1 shows the value of $\left| \frac{\beta_{exact}}{\beta_{exact}} \right|$ for p = 1,2,3 and $n \le 7$ (dotted curve) and $n \le 4$ (full drawn). Tables 3a, 3b and 3c show the exact wave function and the MLE approximation for the wave functions

with p = 0, 1 and $n \le i$, $n \le i$ and $n \le 22$, for $V_0 = 40$ fm⁻¹. In tables 4a, 4b and 4c the corresponding results for $V_0 = -40$ fm⁻¹ are shown.

b) Rectangular well

So, $V(2) = -V_0$ for $2 \le R$, and V(2) = 0, for 2 > R. The exact expression for 3-matrix and wave function for $2 \le R$ are

$$\delta(\kappa) = \frac{\varkappa \cos \varkappa R + i\kappa \sin \varkappa R}{\varkappa \cos \varkappa R - i\kappa \sin \varkappa R} e^{-\lambda i\kappa R}, \quad (4.6)$$

$$\Psi^{G}(\kappa, z) = \frac{\sin \varkappa z}{\varkappa \cos \varkappa \ell - i \kappa \sin \varkappa \kappa}, \qquad (4.7)$$

where

$$K^2 = \frac{2m}{\hbar^2} E$$
, $\mathcal{L}_0^2 = \frac{2m}{\hbar^2} V_0$ and $\mathcal{L}_0^2 = K^2 + 2\varepsilon^2$

For resonance wave function we have for $2 \leq R$

.

$$\Psi_{n}(2) = \sqrt{\frac{2k_{n}}{i+k_{n}R}} \sin \omega_{n} 2 \qquad (4.8)$$

with Kn determined by

$$\operatorname{pect}_{g \approx R} = i \kappa .$$
 (4.8a)

The MLE of the S-matrix is

$$S_{R}^{i}(0) = 1$$
, $S_{R}^{i}(0) = \frac{2i}{3\epsilon_{o}} tg s_{o}R$, $S_{R}^{i}(0) = -\frac{4}{3\epsilon_{o}^{2}} tg^{2} s_{o}R$ (4.9a)

$$S_{R}^{\prime\prime\prime}(o) = \frac{6\epsilon}{\Re^{3}} (\Re_{o}R - t_{g} \Re_{R}) (1 + t_{g}^{2} \chi_{o}R) - \frac{6\epsilon}{\Re^{3}} t_{g}^{3} \varkappa_{o}R$$

and for the wave function we have the expansion

 $\Psi^{G}(\kappa, z)^{P} = \Psi^{G}(0, z) + \kappa \Psi^{G}(0, z) + \dots + \frac{\kappa^{P}}{2} \Psi^{G}(0, z) -$

$$-\frac{1}{2}\sum_{k=1}^{\infty}\left(\frac{K}{K_{h}}\right)^{p+1}\frac{Y_{h}(R)Y_{h}(2)}{K_{h}(K-K_{h})}$$
(4.10)

$$\Psi^{G}(0,2) = \frac{1}{R_{0}} \frac{\sin \alpha_{0} 2}{\cos \alpha_{0} R}$$

$$\Psi^{G}(0,2) = \frac{1}{R_{0}^{2}} \frac{\sin \alpha_{0} 2 \sin \alpha_{0} R}{\cos^{2} \alpha_{0} R}$$

$$\Psi^{G''}(0,2) = \frac{2}{R_{0}^{2}} \frac{\cos^{2} 2}{\cos^{2} \alpha_{0} R} - \frac{1}{R_{0}^{2}} \frac{\sin \alpha_{0} 2}{\cos^{2} \alpha_{0} R} \left[1 - \cos^{2} \sin \alpha_{0} R + \sin^{2} \cos^{2} R \right]$$
(4.10a)

There is interesting relation

$$Y^{f}(\kappa,R)^{P} = \frac{S^{P^{f}(\kappa)}e^{2i\kappa R}-1}{2i\kappa}$$
 (4.11)

In Tables 5 the values of k_n are given for $V_0 = 48.72$ MeV, $\beta_0 = 4.6$ and $\beta_0 = 5.0$ (where $\beta_0 = 2_0 R$). In Tables 7 the values of the exact 3-matrix and the MLE of one are given for p = 2.3 with $n \leq 1.7$ and 22 ($\beta_0 = 4.6$). Figures 2 show the values $\left| \frac{S^{exact} - S^{ep}}{S^{exact}} \right|$ for p = 2 (Fig.2a) and p = 3 (Fig.2b), $\beta_0 = 4.6$. Figure 3 shows the same values for $\beta_0 = 5.0$, p = 2 (dotted curve) and p = 3 (full drawn). Tables 6 show the exact wave function and its expansion with p = 1,2 and $n \leq 1.7,22$, for $\beta_0 = 4.6$. In tables 8 the corresponding results with $n \leq 4$, for $\beta_0 = 5.0$ are shown.

From the tables and figures it is seen, that the convergence is strongly dependent on p and becomes faster for larger p-values. This is the advantage of the MLE, as p can be choosen so as to get a fast convergence. For these tables, it is seen, that for $h \leq 22$, the MLE expression for the wave function is correct with 3-4 digits for κ between 0 and 3 fm⁻¹, and in some cases for larger κ . A similar good convergence is seen for the Green functions.

It follows from the general relations given in I that the MLE of the wave function convergence for $0 \le 2 \le R$ however, it, is seen that the convergence is good also for $2 \le R$. If this point is regarded as the limit $2 \Rightarrow R = 0$, this is not surprising.

V. Conclusions

Here we have shown, that the MLE method can be used to calculate simple, analytic expressions in κ for S-matrix, scattering states and Green's functions of the problem of one particle in a potential of a sort which includes, with reasonable accuracy the usual nuclear potentials.

It should be streessed, that although the expansion

$$\Psi = \sum_{n} \frac{C_n \Psi_n(2)}{K - K_n}$$

is valid only for $2 \le R$, an equally exact expression for Ψ^+ is obtained for 2 > R, using the MLE of the S-matrix. These expansions converge uniformly in the whole K -space, except at the poles, and in practice, the convergence can be improved by chosing the constant p sufficiently large. In the case, that only one pole needs to be taken into account in the expansion of Ψ^{-+} , we obtain the factorised expression $\Psi^{-+} \approx \Psi_{-}(\iota) F(\kappa)$, which was earlier used by several authors in nuclear reaction calculations/7/.

As was shown, by some examples in I, the MLE highly facilitates the inclusion of continuum states in nuclear structure calculations, e.g., of the shell model type. The same will be the cast with other nuclear structure calculations, e.g., with RPA methods. However, the non-orthogonality of the wave functions means that some care is needed, when they are used in such problems.

Other discrete basis sets can be used in such calculations, e.g., the above mentioned functions of Kapur and Peirls, etc., or the harmonic oscillator functions. Nevertheless, the expansion in resonance states has the advantage of giving a much simpler expression for $G^{+}(k)$ in the complex k-plane, thus facilitating the calculation of matrices like (3.18). Also, the particle emission properties of mixed states are in such a calculation determined in a simple way through S(k).

Such structure calculation will be the subject of a later publication. In conclusion, the authors want to thank collaborators of JINR, Dubna and the Niela Bohr Institute, Copenhagen, particularly B.Nilsson, for enlightening discussions.

One of the authors (J.B.) wants to thank J.I.N.R. for paying his stay in Dubna for a period in which part of the work was done, and the Danish Scientific Research Council for a grant covering ` the travel expenses of this stay.

-9

Table 2a

	ex	act	p	= 1	p :	= 3
k	Re(S)	Im(S)	Re(S)	Im(S)	Re(S)	Im(S)
1.00	3709	9287	371 5	9296	3709	9287
3.00	.8270	.5623	.837 8	. 56 1 6	.8277	.56 I 8
5.00	9502	.3II 8	9628	.3563	9480	.329 8
3.06	.2214	.9752	.232 5	.973I	.2221	.974 6
3.07	9562	2926	945I	2949	95 55	2932
3.08	.7291	6844	.7404	6869	.7299	6850
3.09	•9570	2900	.9682	2929	.9577	2907
3.10	.9909	1345	1.0022	I376	.9916	1352
3.II	. 9980	0625	I.0093	0658	.998 8	0631
3.12	.9997	0262	1.0109	0298	I.0004	0269
3.13	I.0000	0083	1.0112	0122	I.0007	009I
3.14	I.0000	0010	I.0II3	0052	I.0007	018
3.1 5	I.0000	0004	1.0113	0048	I.0007	012
3.16	1.0000	0042	1.0112	0089	I.0007	0050
3.17	.9999	OIII	1.0112	0161	I.0006	0120

S-matrix expansion for different k, retaining only the first pole.

Table 2b

	e	xact	р	= 1	p =	3
k	Re(S)	Im(S)	Re(S)	Im(S)	Re(S)	Im(S)
I.00	3709	9287	3712	9292	3709	9287
3.00	.8270	.5623	.8319	. 5636	.8270	.5623
5.00	9502	.3118	9619	.3203	9503	.3119
3.06	.2214	.9752	.2267	.9759	.2214	.9752
3.07	.9 562	2926	9509	2919	9562	2926
3.08	.7291	6844	.73 45	6838	.7292	6844
3.09	.9570	2900	.962 5	2896	.9570	2900
3. IO	.9909	 I34 5	.9964	1342	.9909	1345
3.II	.9980	0625	I.0036	0622	.9981	0625
3.12	.9997	0262	1.0052	0261	.9997	0262
3.13	1.0000	0083	I.0056	0083	1.0000	0083
3.14 3.15 3.16 3.17	I.0000 I.0000 I.0000 .9999	0010 0004 0042 0111	I.0056 I.0057 I.0057 I.0057 I.0057	0011 0006 0045 0116	I.0000 I.0000 I.0000 I.0000	0010 0004 0042 0111

S-matrix expansion for different k with the first seven poles in the expansion

 $\frac{\text{Table 1}}{\text{Position of poles, V = V_0}} \delta(\tau - R)$

		والمستعدين المستعدين والمستعد المتعاد فكفو المستعد المتعاد والمستعد المستعد المستعد المستعد المستعد المستعد الم			
v _o = -	+40., _R =I	v _o =-40	v _o ⇒-40., r=I		
Re(K _n)	Im(K _n)	Re(K _n)	Im(K _n)		
.3066E+0I	5667E-02	0.	.2000E+02		
.6I34E+0I	2I97E-0I	.322IE+0I	6563E-02		
.9209E+0I	4709E-0I	.6439E+0I	2523E-02		
.1229E+02	7866E-0I	.9649E+0I	5340E-0I		
.1538E+02	II43E+00	.1285E+02	8796E-01		
.1847E+02	1522E+00	.1604E+02	1261E+00		
.2I58E+02	1908E+00	.1923E+02	1658E+00		
.2468E+02	2291E+00	.224IE+02	2056E+00		
.2780E+02	2666E+ 0 0	.2558E+02	2447E+00		
.309IE+02	3029E+00	.2875E+02	2825E+00		
.3403E+02	3378E+00	.3I92E+02	3I88E+00		
.3716E+02	37I2E+00	.3808E+02	3535E+00		
•4028E+02	4032E+00	.3824E+02	3866E+00		
.434IE+02	4337E+00	.4I40E+02	4182E+00		
•4654E+02	4628E+00	.4455E+02	4483E+00		
.4967E+02	4907E+00	.477IE+02	4769E+00		
.5280E+02	5I73E+00	•5086E+02	-,5043E+00		
.559 3E+02	5428E+00	.540IE+02	5305E+00		
.5906E+02	567IE+00	.5716E+02	5555E+00		
.6220E+02	5905E+00	.603IE+02	5794E+00		
•65 3 3E+02	6I30E+00	.6346E+02	6024E+00		
.6847E+02	6346E+00	.6661E+02	6244E+00		
	$V_0 =$ Re(K _n) .3066E+0I .6134E+0I .9209E+0I .1229E+02 .1538E+02 .1538E+02 .2158E+02 .2468E+02 .2780E+02 .3091E+02 .3091E+02 .4028E+02 .4028E+02 .4028E+02 .4028E+02 .4054E+02 .5280E+02 .5593E+02 .5906E+02 .6220E+02 .6847E+02	$V_{o} = +40., R = I$ $Re(K_{n}) Im(K_{n})$ $.3066E+0I5667E-02$ $.6I34E+0I2I97E-0I$ $.9209E+0I4709E-0I$ $.I229E+027866E-0I$ $.I538E+02I143E+00$ $.1847E+021522E+00$ $.2I58E+021908E+00$ $.2468E+02229IE+00$ $.2468E+02229IE+00$ $.309IE+023029E+00$ $.3403E+0237I2E+00$ $.4028E+024032E+00$ $.4028E+024032E+00$ $.4028E+024032E+00$ $.4028E+024032E+00$ $.4028E+024032E+00$ $.4028E+024032E+00$ $.4028E+024032E+00$ $.5593E+025173E+00$ $.5593E+02567IE+00$ $.6220E+025905E+00$ $.6847E+026130E+00$	$V_{0} = +40.$, $R = I$ $V_{0} = -40$ Re(K_{n})Im(K_{n})Re(K_{n}).3066E+0I5667E-0206I34E+0I2197E-0I.3221E+0I.9209E+0I4709E-0I.6439E+0I.1229E+027866E-0I.9649E+0I.1538E+021I43E+00.1285E+02.1847E+021522E+00.1604E+02.2158E+021908E+00.1923E+02.2468E+022291E+00.2241E+02.2780E+023029E+00.2875E+02.3091E+023029E+00.3808E+02.3716E+023712E+00.3808E+02.4028E+024032E+00.4455E+02.4028E+024628E+00.4455E+02.4967E+025173E+00.5086E+02.5906E+025671E+00.5716E+02.5906E+025671E+00.6031E+02.6220E+025905E+00.6031E+02.6847E+026346E+00.6661E+02		

Table 3a

		ez	act		- 0	n – 1	
				P -	- 0	p =	ļ
k	r	Re Y)	Im("\")	$\operatorname{Re}(\mathcal{Y})$	Im (¥)	$\operatorname{Re}(\mathcal{U})$	$Im(\mathcal{U})$
I.0	.2 .4 .6 .8 I.0	.5806E-02 .1138E-01 .1650E-01 .2096E-01 .2459E-01	.1428E-03 .2800E-03 .4060E-03 .5158E-03 .6050E-03	.5960E-02 .II53E-0I .I645E-0I .207IE-0I .2453E-0I	.2490E-03 .4116E-03 .4313E-03 .3012E-03 .6615E-04	.5906E-02 .1153E-01 .1645E-01 .2071E-01 .2453E-01	.1468E-03 .2839E-03 .4050E-03 .5094E-03 .6021E-03
3.0	.2 .4 .6 .8 I.0	.2059E+00 .3399E+00 .3552E+00 .2464E+00 .5I47E-0I	.3259E-01 .5380E-01 .5622E-01 .3899E-01 .8146E-02	.2078E+00 .3416E+00 .3545E+00 .2435E+00 .5086E-01	.3304E-01 .5432E-01 .5625E-01 .3815E-01 .6444E-02	.2078E+00 .3416E+00 .3545E+00 .2435E+00 .5086E-01	.3274E-01 .5394E-01 .5617E-01 .3877E-01 .8052E-02
5.0	.2 .4 .68 1.0	2240E-01 242IE-01 3757E-02 .20I5E-01 .2553E-01	2908E-02 3142E-02 4877E-03 .2615E-02 .3314E-02	9682E-02 1406E-01 9758E-02 .3430E-02 .2248E-01	6132E-03 1015E-02 1066E-02 7478E-03 1705E-03	9682E-02 1406E-01 9758E-02 .3430E-02 .2248E-01	II24E-02 I653E-02 II97E-02 .293IE-03 .2509E-02

Here $E+02 = 10^2$ etc.

Wave functions expanded for $r \leqslant R$ and different k-values retaining only the first pole in the expansion.

Table 3b

		exac	t	р	= 0	p = 1	
k	r	Re (¥)	. Im (¥)	$\operatorname{Re}(\Psi)$	Im (¥)	$\operatorname{Re}(\Psi)$	Im (¥)
1.0	.2 .4 .6 .0 I.0	.5806E-02 .1138E-01 .1650E-01 .2096E-01 .2459E-01	.1428E-03 .2800E-03 .4060E-03 .5158E-03 .6050E-03	.5804E-02 .1138E-01 .1650E-01 .2096E-01 .2459E-01	.1264E-03 .2853E-03 .4308E-03 .4961E-03 .3198E-03	.5804E-02 .1138E-01 .1650E-01 .2096E-01 .2459E-01	.1428E-03 .2800E-03 .4060E-03 .5158E-03 .6049E-03
3.0	.2 .4 .6 .8 I.0	.2059E+00 .3399E+00 .3552E+00 .2464E+00 .5147E-01	.3259E-01 .5380E-01 .5622E-01 .3899E-01 .8146E-02	.2059E+00 .3399E+00 .3552E+00 .2464E+00 .5I44E-0	.3254E-01 .5382E-01 .5629E-01 .3893E-01 .7287E-02	.2059E+00 .3399E+00 .3552E+00 .2464E+00 .5144E-01	.3259E-01 .5380E-01 .5622E-01 .3899E-01 .8142E-02
5.0	.2 .4 .8 1.0	2240E-0I 242IE-0I 3757E-02 .20I5E-0I .2553E-0I	2908E-02 3142E-02 3877E-03 .2615E-02 .3314E-02	2244E-0I 242IE-0I 3697E-02 .2017E-01 .2545E-01	2994E-02 3115E-02 3575E-03 .2515E-02 .1869E-02	2244E-0I 242IE-0I 3697E-02 .20I7E-0I .2545E-0I	- 2912E-02 - 3141E-02 - 4815E-03 2614E-02 - 3294E-02

Here $E+02 = 10^2$ etc.

Wave functions expanded for $z \leq R$ and different k-values with the first seven poles in the expansion.

 $\frac{\text{Table 3c}}{\text{Wave function with } n \leq 22} (V_0 = 40)$

ĸ	· · ·	exact		p = 0		p = 1	
~	C	Re (¥)	Im (Ψ)	Re (¥)	$\operatorname{Im}(\mathcal{U})$	Re(\varLet)	Im (¥)
1.0	0.2	.5806E-02	.1428E-03	.5806E-02	. 1412E-03	.5806E-02	.1428E-03
	0.4	.1138E-01	.2800E-03	.1138E-01	.2789E-03	.1138E-01	.2800E-03
	0.6	.1650E-01	.4060E-03	.1650E-01	.4084E-03	.1650E-01	.4060E-03
	0.8	.2096E-01	.5158E-03	.2096E-01	.5213E-03	.2096E-01	.5158E-03
	1.0	.2459E-01	.6050E-03	.2459E-01	.4941E-03	.2459E-01	.6050E-03
3.0	0.2	.2059E-+00	.3259E-01	.2059E+00	.3259E-01	.2059E+00	.3259E-01
	0.4	.3399E+00	.5380E-01	.3399E+00	.5380E-01	.3399E+00	.5380E-01
	0.6	.3552E+00	.5622E-01	.3552E+00	.5622E-01	.3552E+00	.5622E-01
	0.8	.2464E+00	.3899E-01	.2464E+00	.3901E-01	.2464E+00	.3899F-01
	1.0	.5147E-01	.8146E-02	.5147E-01	.7813E-02	.5147E-01	.8146E-02
5.0	0.2	2240E-01	2908E-02	2240E-0I	2916E-02	2240E-0I	2908E-02
	0.4	242IE-01	3142E-02	242IE-0I	3148E-02	242IE-0I	3142E-01
	0.6	3757E-02	4877E-03	3756E-02	4758E-03	3756E-02	4876E-03
	0.8	.20I5E-01	.2615E-02	.20I5E-0I	.2643E-02	.20I5E-0I	.2615E-02
	1.0	.2553E-01	.3314E-02	.2553E-0I	.2758E-02	.2553E-0I	.3313E-02

Table 4a Wave function with $n \leq 1$ ($V_0 = -40$)

_		exact		p = 0		p = 1	
к	2	Re . (₩)	Im (¥)	$\operatorname{Re}\left(\Psi ight)$	$\operatorname{Im}(\Psi)$	Re(¥)	Im (¥)
I.0	0.2	5995E-02	1523E-03	5128E-02	.1403E-09	5128E-02	.1315E-03
	0.4	II75E-0I	.2986E-03	1026E-01	.7661E-08	1026E-01	.2630E-03
	0.6	I704E-0I	.4329E-03	1538E-01	.4183E-06	1538E-01	.3945E-03
	0.8	2I65E-0I	.5500E-03	2051E-01	.2284E-04	2051E-01	.5259E-03
	1.0	2539E-0I	.6451E-03	2558E-01	.1247E-02	2558E-01	.6543E-03
3.0	0.2	6539E-0I	.3213E-02	5128E-02	.4126E-09	5128E-02	.3945E-03
	0.4	1079E+00	.5304E-02	1026E-01	.2253E-07	1026E-01	.7890E-03
	0.6	1128E+00	.5542E-02	153ME-01	.1230E-05	1538E-01	.1183E-02
	0.8	7822E-0I	.3844E-02	2050E-01	.6717E-04	2050E-01	.1576E-02
	1.0	1634E-0I	.8031E-03	2509E-01	.3667E-02	2509E-01	.1890E-02
5.0	0.2	.2085E-01	2514E-02	5128E-02	.6617E-09	5128E-02	.6575E-03
	0.4	.2253E-01	2716E-02	1026E-01	.3614E-07	1026E-01	.1315E-02
	0.6	.3497E-02	4216E-03	1538E-01	.1973E-05	1538E-01	.1972E-02
	0.8	1875E-01	.2261E-02	2049E-01	.1077E-03	2049E-01	.2623E-02
	1.0	2376E-01	.2864E-02	2417E-01	.5882E-02	2417E-01	.2920E-02

5

 $\frac{\text{Table 4b}}{\text{Wave function with } n \leq 7} (V_0 = -40)$

• K	፞ጚ	exact		p = 0		p = 1	
		Re(\L')	Im (\4^)	Re (¥)	Im (¥)	Re(¥)	Im (&)
1.0	0.2	5995E-02	.1523E-03	5997E-02	.1702E-03	5997E-02	.1524E-03
	0.4	II75E-0I	.2986E-03	II75E-0I	.28I4E-03	II75E-01	.2985E-03
	0.6	I704E-0I	.4329E-03	I704E-0I	.42I2E-03	I704E-01	.4329E-03
	0.8	2165E-0I	.5500E-03	2165E-0I	.6I28E-03	2I65E-01	.5501E-03
	1.0	2539E-0I	.6451E-03	2540E-0I	.9479E-03	2540E-01	.6453E-03
3.0	0.2	6539E-0I	.3213E-02	6540E-0I	.3268E-02	6540E-0I	.3214E-02
	0.4	1079E+00	.5304E-02	1079E+00	.5252E-02	I079E+00	.5303E-02
	0.6	1128E+00	.5542E-02	1128E+00	.5506E-02	II28E+00	.5541E-02
	0.8	7822E-0I	.3844E-02	7827E-01	.4035E-02	7827E-0I	.3847E-02
	1.0	1634E-0I	.8031E-03	1638E-01	.1716E-02	I638E-0I	.8082E-03
5.0	0.2	.2085E-01	2514E-02	.2080E-0I	2419E-02	.2080E-01	2509E-02
	0.4	.2253E-01	2716E-02	.2259E-0I	2806E-02	.2259E-01	2720E-02
	0.6	.3497E-02	4216E-03	.3514E-02	4843E-03	.3514E-02	4262E-03
	0.8	1875E-01	.2261E-02	1889E-0I	.2588E-02	1889E-01	.2274E-02
	1.0	2376E-01	.2864E-02	2387E-0I	.4402E-02	2387E-01	.2889E-02

<u>Table 4c</u> Wave function with $n \leq 2\lambda$ ($V_0 = -40$)

	2	exact		p	= 0	p = 1		
		Re (¥)	Im (¥)	Re (\4)	$\operatorname{Im}(\mathbf{Y})$	Re(𝔄)	Im (4 ⁻)	
1.00	0.2	5995E-02	.1523E-03	5995E-02	.1504E-03	5995E-02	. 1523E-03	
	0.4	II75E-0I	.2986E-03	II75E-0I	.2999E-03	1175E-01	.2986E-03	
	0.6	I704E-0I	.4329E-03	I704E-0I	.4310E-03	1704E-01	.4329E-03	
	0.8	2165E-0I	.5500E-03	2165E-0I	.5430E-03	2165E-01	.5500E-03	
	1.0	2539E-0I	.6451E-03	2539E-0I	.7584E-03	2539E-01	.6452E-03	
3.0	0.2	6539E-01	.3213E-02	6539E-0I	.3218E-02	6539E-01	.32 I3E-02	
	0.4	1079E+00	.5304E-02	1079E+00	.5308E-02	1079E+00	.5304E-02	
	0.6	1128E+00	.5542E-02	1128E+00	.5536E-02	1128E+00	.5542E-02	
	0.8	7822E-01	.3844E-02	7822E-01	.3823E-02	7822E-01	.3844E-02	
	I.0	1634E-01	.8031E-03	1634E-01	.1143E-02	1634E-01	.8033E-03	
5.0	0.2	.2085E-01	2514E-02	.2085E-0I	2505E-02	.2085E-0I	2514E-02	
	0.4	.2253E-01	2716E-02	.2253E-0I	2710E-02	.2253E-0I	2716E-02	
	0.6	.3497E-02	4216E-03	.3497E-02	4313E-03	.3497E-02	4216E-03	
	0.6	1875E-01	.2261E-02	1875E-0I	.2226E-02	1875E-0I	.2261E-02	
	1.0	2376E-01	.2864E-02	2377E-0I	.3432E-02	2377E-0I	.2865E-02	

:	β ₀ = 4.(63	Ą	,= 5 . 0
Z	Re(K _n)	Im(K _n)	Re(K _n)	Im(K _n)
۲	.5703E-0I	3335E+00	·	.2955E+00
N	·	.1275E+0I	0.	8756E+00
ω	.2066E+0I	4623E+00	0.	.I3IIE+0I
4	.328IE+0I	5563E+00	. I808E+0I	405IE+00
თ	.44I3E+0I	6303E+00	.296IE+0I	4900E+00
6	.55I3E+OI	6911E+00	.4018E+0I	5570E+00
7	.6597E+0I	7428E+00	.5038E+0I	6I24E+00
8	.7670E+0I	7878E+00	.6040E+0I	6596E+00
ç	.8738E+0I	8274E+00	.7032E+0I	7006E+00
1 0	.980IE+0I	8630E+00	.8017E+0I	.7368E+00
Ħ	.1086F+02	895IE+00	.8998E+0I	7694E+00
12	.II92E+02	9245E+00	.9975E+0I	7988E+00
13	.1298E+02	95I5E+00	.1095E+02	8257E+00
$\mathbf{I4}$.I403E+02	9765E+00	.II92E+02	8505F+00
15	• I509E+02	9998E+00	.I290E+02	8734E+00
16	.1614E+02	IO2IE+OI	.I387E+02	8948E+00
17	.I7I9E+02	I042E+0I	.I484E+02	9I48E+00
81	.IC24E+O2	106IE+0I	.1580E+02	9336E+00
61	. 19 29E+02	·1080E+01	.1677E+02	95I3E+00
20	.2034E+02	I097E+0I	.I774E+02	9680E+00
21	.2I40E+02	III3E+OI	.1871E+02	9839E+00
22	.2245E+02	II29E+0I	.1968E+02	9990E+00

Positions of the poles for the rectangular potential wells.

Table 6a

ĸ	Ś	exact		p = 1		p = 2	
		$\operatorname{Re}(\Psi)$	$\operatorname{Im}(\mathcal{Y})$	Re (¥)	$\operatorname{Im}(Y)$	Re (&)	Im (¥)
I.0	.50	.5301E+00	2930E+00	.4654E+00	3047E+00	.5340E+00	3047E+00
	I.20	.4824E+00	2667E+00	.458IE+00	2564E+00	.5055E+00	2564E+00
	I.80	9101E+01	.503IE+0I	6225E-0I	.I046E+00	5970E-0I	.I046E+00
	2.40	5652E+00	.3I25E+00	6048E+00	3705E+30	5589E+00	.3705E+00
	3.00	4234E+00	.234IE+00	5480E+00	.2017E+C3	4302E+00	.2017E+00
3.0	.60	2259E+00	1636E+00	.1807E+30	.1517E+00	.7978E+00	.1517E+00
	1.20	.1968E+00	.1425E+00	.7512E-01	.3053E+00	.5014E+00	.3053E+00
	1.80	.5446E-01	.3943E-01	2797E+00	.2708E+00	3467E+00	.2708E+00
	2.40	2443E+00	1768E+00	5206E+00	1560E+00	1073E+00	1560E+00
	3.00	.1583E+00	.1146E+00	2998E+00	7895E+00	1661E+01	7895E+00
5.0	.50	7065E-03	.1248E-04	.1497E+00	.3072E+C0	.1862E+01	.3072E+00
	I.20	.1413E-02	2496E-04	.3275E-01	.5393E+00	.1216E+01	.5392E+00
	I.80	2119E-02	.3744E-04	3036E+00	.3885E+00	4896E+00	.3885E+00
	2.40	.2825E-02	4992E-04	5093E+00	3893E+00	.6387E+00	3893E+00
	3.00	3532E-02	.6240E-04	2604E+00	1393E+01	.5185E+01	1393E+01

Wave functions expanded for $z \leq R$ and different K-values retaining only the first pole in the expansion (rectangular well: $V_0 = 48.72$ MeV, R=3 fm i.e. $\beta_0 = 32$ R=4.6)

Table 5

19

Table 6b

ĸ	۶.	exact		p = 1		p = 2	
		Re (𝔄)	Im (¥)	Re(\℃)	Im (Y)	Re (또)	Im (ど)
I.0	.60	.530IE+00	2930E+00	.5294E+00	2931E+00	.5300E+00	2931E+00
	I.20	.4824E+00	2667E+00	.4827E+00	2666E+00	.4824E+00	2666E+00
	I.80	9I0IE-0I	.503IE-01	893IE-0I	.5025E-01	9098E-01	5025E-01
	2.40	5652E+00	.3I25E+00	5684E+00	.3119E+00	5653E+00	.3119E+00
	3.00	4234E+00	.234IE+00	46I4E+00	.2335E+00	4237E+00	.2335E+00
3.0	.60	2259E+00	1636E+00	2328E+00	1645E+00	2270E+00	1645E+00
	1.20	.1968E+00	.1425E+00	.1998E+00	.1458E+00	.1969E+00	.1458E+00
	1.80	.5446E-01	.3943E-01	.7262E-01	.3786E-01	.5759E-01	.3786E-01
	2.40	2443E+00	1768E+00	2739E+00	1945E+00	2455E+00	1945E+00
	3.00	.1583E+00	.1146E+00	2019E+00	.9629E-01	.1376E+00	.9628E-01
5.0	.60	7065E-03	.1248 E 04	2832E-01	8597E-02	1214E-01	8597E-02
	I.20	.1413E-02	2496E-04	.7930E-02	.2268E-01	2115E-03	.2268E-01
	I.80	2119E-02	.3744E-04	.7374E-01	1615E-01	.3199E-01	1615E-02
	2.40	.2826E-02	4992E-04	7762E-01	115 3E+0 0	.1144E-02	1153E+00
	3.00	3532E-02	.6240E-04	1144E+01	1306E+00	2015E+00	1306E+00

Wave functions expanded for $l \in R$ and different k-values with the first 7 poles in the expansion (rectangular well: $V_0=47.72$ MeV, R=3 fm i.e. $\beta_0 = 2$, R=4.6)

Table 6c

		exact		p = 1		p = 2	
K	Z	Re (¥)	Im (Y)	Re (℃)	Im (4)	Re (Y)	Im (¥)
1.0	.60	.5301E+00	2930E+00	.5300E+00	2930E+00	.5301E+00	2930E+D0
	I.20	.4824E+30	2667E+00	.4824E+00	2667E+00	.4824E+00	2667E+00
	I.80	9101E-01	.503IE-0I	9093E-01	.503IE-0I	9101E-01	.503IF-01
	2.40	5652E+00	.3I25E+00	5649F+00	.3I25E+00	5652E+00	.3I25E+30
	3.00	4234E+00	.234IE+00	4352E+00	.234IE+00	4234E+00	.234IE+00
3.0	.60	2259E+00	1636E+00	2261E+00	1636E+00	2259E+00	1636E+00
	I.20	.1968E+00	.1425E+00	.1966E+00	.1424E+00	.1968E+00	.1424E+00
	I.80	.5446E-01	.3943E-01	.5524E-01	.3934E-01	.5448E-01	.3934E-01
	2.40	2443E+00	1768E+00	2409E+00	1765E+00	2442E+00	1765E+00
	3.00	.1583E+00	.1146E+00	.5184E-01	.1139E+00	.1577E+30	.1139E+02
5.0	.60	7065E-03	.1248E-04	1299E-02	.1127E-04	7344E-03	.1127E-04
	I.20	.1413E-02	2496E-04	.8585E-03	2381E-03	.1393E-02	2381E-03
	I.80	2119E-02	.3744E-04	.1258E-03	3653E-03	2001E-02	3653E-03
	2.40	.2826E-02	4992E-04	.1234E-01	.1450E-02	.3186E-02	.1450E-02
	3.00	3532E-02	.6240E-04	3024E+03	3256E-02	8251E-02	3256E-02

Wave functions expanded for $2 \le R$ and different κ -value with the first 22 poles in the expansion (rectangular well: V_0 =48.72 MeV, R=3 fm (β_0 =4.6))

Table 7a

		exac	t	р	= 2	р	= 3
n	ĸ	ReS	ImS	ReS	ImS	ReS	ImS
I 4	.50 I.00 2.00 2.50 3.50 4.00 4.50 5.00	.6079E+03 .7473E+00 8033E+00 9870E+00 9220E+00 5073E+00 4155E+00 9603E-01 .3246E-01 .1891E+00 .6079E+00	.7940E+00 6645E+00 .5956E+00 .1608E+00 .8618E+00 .9096E+00 .9954E+00 .9954E+00 .9954E+00 .9820E+00 .7940E+00	.5982E+00 .9350E+00 -2063E+01 .3139E+01 .5139E+01 .5139E+01 .6124E+01 .6124E+01 .4876E+01 .6051E+00	.8477E+00 1078E+01 .5791E+00 .2376E+00 .1448E+01 .3121E+01 5285E+01 .7924E+01 1098E+02 .1435E+02 .1435E+02 .8113E+00	.6059E+00 .8133E+00 1457E+01 .1269E+01 .2313E+00 3695E+01 .9795E+01 1913E+02 .3211E+02 4893E+02 .6076E+00	.7938E+00 6594E+00 7607E+00 .3179E+01 6619E+01 .1089E+02 1552E+02 .1976E+02 2258E+02 .2275E+02 .2275E+02
7	1.00 1.50 2.00 3.00 3.50 4.00 4.50 5.00		6645E+00 5956E+00 .1608E+00 .3872E+00 .8618E+00 .9096E+00 .9954E+00 .9995E+00 .9820E+00	1036E+00 2376E+00 2808E+01 3593E+01 8513E+01 .1396E+02 1552E+02 .1527E+02	7994E+00 1603E+00 80IIE+00 .2068E+0I 152IE+0I .323IE+0I .2I39E+0I 8644E+0I .1514E+02	.7537E+00 8420E+00 8358E+00 1393E+01 7672E+00 3514E+01 3373E+01 1941E+01	6656E+00 5888E+00 .1397E+00 .9635E+00 4108E+01 5922E+01 1235E+02 I773+02

S-matrix expansion for different k with the first 1 and 4 poles in the expansion (rectangular well: V_0 =48.72 MeV, R=3 fm (β_0 =4.6))

Table 7b

h	њ	exact		p = 2		p = 3	
	<u> </u>	ReS	ImS	ReS	ImS	ReS	ImS
7	.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00	.6079E+00 .7473E+00 9870E+00 9870E+00 9220E+00 5073E+70 41557+00 9603E-01 .3246E-01 .1891E+00	.7940E+00 6645E+00 5956E+00 .1608E+00 .3872E+00 .8618E+00 .9954E+00 .9954E+00 .9954E+00 .9954E+00 .9955E+00	.6065E+00 .7696E+00 -9151E+00 1758E+01 .1199E+01 3476E+01 .4969E+01 7803E+01 .1166E+02	.8033E+00 737IE+00 3628E+0C 35IIE+00 .1287E+0I 4228E+00 .265IE+0I 9229E+00 .2619E+0I .5127E+00	.6078E+00 .7485E+00 8102E+00 9622E+00 9915E+00 3410E+00 7703E+00 .5972E+00 1229E+01 .2346E+01	.7940E+00 6646E+00 .5948E+00 .1582E+00 .3916E+0 .8621E+0C .8792E+00 .1125E+01 .6104F+00 .1967E+01
22	.50 I.00 I.53 2.00 2.50 3.00 3.50 4.00 4.50 5.00	.6079E+00 .7473E+00 8033E+00 9870E+00 9270E+00 5073E+00 4155E+00 4155E+00 3246E-01 .3246E-01 .1891E+00	.7940E+03 6645E+00 5956E+00 .3872E+00 .8618E+00 .9096E+00 .9954E+00 .9955E+00 .9820E+00	.6075E+00 .7539E+00 2363E+00 8250E+00 1164E+01 1268E-01 .1287E+01 .2051E+01 .3147E+01	.7969E+00 687IE+00 5233E+00 .1997F-02 .6663E+00 .4430E+00 .I460E+01 .3622E+00 .I613E+01 .5538E+00	.6079E+00 .7473E+00 98036E+00 9244E+00 9244E+00 4263E+00 4263E+00 7650E-01 3490E-03 .2408E+01	.7940E+00 6645E+00 .1609B+00 .3870E+00 .8625E+00 .9074E+00 .1001E+01 .9869E+00 .1007E+01

S-matrix expansion for different K with the first 7 and 22 poles in the expansion (rectangular well: V_0 =48.72 MeV, R=3 fm (i.e. β_0 =4.6))

Table 8

ν	. 7	exact	exact		p = 1		= 2
~	L.	Re (¥)	Im (¥)	Re (Ψ)	Im (死)	Re (⊉)	2 Im (*) 3969E+00 4507E+00 1146E+00 .3219E+00 8459E-01 8041E-01 .9279E-02 .9848E-01 .8018E-01 .2755E+00 .1432E+00 2021E+00 2252E+00 .7492E-01 .4844E+00 .3203E-01 4955E+00 2061E-01
0.5	.60	.7799E+00	3973E+00	.7927E+00	3969E+00	.7799E+00	3969E+00
	I.20	.8847E+00	4507E+00	.882IE+00	4507E+00	8346E+00	4507E+00
	I.80	.2238E+00	II40E+00	.22I8F+00	II46E+00	.2238E+00	1146E+00
	2.40	-6309E+00	.32I3E+00	6 229E+00	32I9E+00	6307E+00	.3219E+00
	3.00	9394E+00	.4786E+00	9470E+00	.4798E+00	9397E+00	.4798E+00
1.0	.60	.4958E+00	879IE-0I	.5079E+00	8459E-01	.4969E+00	8459E-01
	I.20	.4513E+00	8000E-0I	.4396E+00	8041E-01	.4498E+00	8041E-01
	I.80	8513E-01	.1509E-0I	930IE-0I	.9279E-02	8500E-01	.9279E-02
	2.40	5287E+00	.9374E-0I	4949E+00	.9848E-01	5259E+00	.9848E-01
	3.00	3961E+00	.7022E-0I	4300E+00	.8018E-01	4008E+00	.8018E-01
I.5	.60	.4334E+00	.2612E+00	.4640E+00	.2755E+00	.4393E+00	.2755E+00
	1.20	.2427E+00	.1463E+00	.2113E+00	.1432E+00	.234IE+00	.1432E+00
	1.80	2975E+00	1793E+00	3138E+00	2021E+00	2958E+00	2021E+00
	2.40	4093E+00	2467E+00	3240E+00	2252E+00	3938E+00	2252E+00
	3.00	.6830E-01	.4117E-01	2488E-01	.7492E-01	.4084E-01	.7492E-01
2.0	.60	2083E+00	.434IE+00	1455E+00	.4844E+00	1894E+00	.4844E+00
	1.20	2445E-01	.5095E-01	9787E-01	.3203E-01	5736E-01	.3203E-01
	1.80	.2055E+00	4282E+00	.1875E+00	4955E+00	.2195E+00	4955E+00
	2.40	.4856E-01	1012E+00	.2243E+00	2061E-01	.1002E+00	2061E-01
	3.00	1998E+00	.4163E+00	4262E+00	.4889E+00	3093E+00	.4889E+00

Wave functions expanded for $2 \leq R$ and different K-value with the 4 poles in the expansion (rectangular well: V₀=48.72 MeV, R=3.26 fm, i.e. β.=5.0)

References

- 1. J.Bang, F.A.Gareev, M.H.Gizzatkulov and S.A.Goncharov. JINR, E4-11377, Dubna, 1978.
- 2. W.Romo, Nucl. Phys. <u>A116</u>, 618 (1968).
- R.M.More, E.Gerjuoy. Phys. Rev. AT, 1188 (1975).
 H.M.Nussenzveig, Nucl. Phys. <u>11</u>, 499 (1959).
 H.M.Nussenzveig, "Causality and Dispersion Relations", Academic
- Press, New York, 1972.
- 6. H.A.Weidenmüler, Ann. of Phys. 28, 60 (1964).
- 7. J.Bang and J.Zimanyi, Nucl. Phys. <u>A139</u>, 534 (1969).

25

Received by Publishing Department on March 7, 1978.